
Using Autonomous Agents to Improve Efficiency and Robustness in
Slow, Unreliable Networks

Daria Chac6n, Benjamin Bell, and John McCormick

Lockheed Martin Advanced Technology Laboratories
1 Federal Street

Camden, NJ 08102
[dchacon, bbell, jmccormi]@atl.lmco.com

Problem Description
A number of environmental factors commonly present in
military and particularly tactical military contexts affect the
ability of applications to operate robustly and efficiently:
¯ Machines hosting agents may shut down due to damage

or power loss
¯ Hostile forces may disrupt communication links
¯ Communication links may be exceedingly slow, since

some signals are transmitted over tactical radio links
with maximum data rates as low as 4.8 kbps

¯ Tactical processors and network services may be over-
loaded, impeding the completion of agent tasks.
Mobile agents can significantly reduce load on networks

in environments where bandwidth is limited and only a
small percentage of the information available in the net-
work is needed by an application. (Kotz et. al. 2000).
However, to exploit this capability in military tactical net-
works, which are particularly fragile and dynamic, agents
must be highly robust and fault-tolerant.

In this abstract, we present a brief case study that illus-
trates problems common to military environments, and we
describe ideas for improving agents’ decision-making
capabilities to enable them to operate efficiently and
robustly in the face of degraded network conditions.

Background
Lockheed Martin’s Advanced Technologies Laboratory
(ATL) has over five years of experience in developing and
deploying mobile agents in military applications. Due to the
fragility of tactical networks and the dynamic nature of mil-
itary field operation centers, ATL has often encountered the
need for robust, efficient agent operation in the face of cat-
astrophic network failures and poor network performance.

EMAA: The Extendable Mobile Agent
Architecture
ATL has deployed over fifteen agent applications built on
our Extendable Mobile Agent Architecture (EMAA), 
flexible, Java-based mobile agent development architec-
ture. EMAA provides simple, standardized mechanisms for
an agent to migrate from one computing node to another

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

and to use resources at that node. At EMAA’s core lies a
Dock that provides an execution environment for agents,
handles incoming and outgoing agent transfers, and con-
trois agent access to services.

EMAA allows users to define agents, services, and
events. Under the EMAA framework, agents are built from
small, easily reused tasks that combine to meet a user’s
goal. An agent’s tasks are structured within an itinerary.
Agents may be mobile, and typically use stationary ser-
vices. Services may implement connections to external
systems (e.g., databases or legacy applications), provide
complex functionality, or carry out other functions, but
they are not primary actors. Goal-oriented and directed
activity is generally held to be the function of agents. Both
agents and services may send and receive events.

In the following subsections we discuss two EMAA fea-
tures which support robust agent operation under undesir-
able conditions.

Itineraries. EMAA itineraries are composed of states
(each of which may contain one or more tasks) and transi-
tions between states; they are structured as finite state
machines. An EMAA agent contains internal memory that
encodes data dependencies among tasks: the output of one
task may be used as input to another task, etc. Itineraries
employ some decision logic to determine whether and
where to execute states. Some states must be executed on a
specific machine, and others must be executed on any
machine where the resources needed to support execution
of the encapsulated task (or tasks) exist.

Reliable Event Messaging. To address the need for remote
control and execution monitoring of mobile agents, ATL
developed the Event Transceiver Server (ETS), an event
handler residing on each dock with registered listeners for
agents. The ETS provides reliable event messaging for
mobile objects, both sending and receiving. It is invaluable
for remotely or locally controlling, monitoring, and retask-
ing agents.

DAIS: A Case Study and Problem Illustration
The Domain Adaptive Information System (DAIS) employs
mobile agents for information discovery and dissemination
in a military intelligence (MI) network. Counter Intelli-
gence/Human Intelligence (CI/HUMINT) operations gather
information from prisoners of war, cooperating civilians in
the secured rear area, and tong-range surveillance teams

34

From: AAAI Technical Report SS-01-06. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



inserted into the enemy’s territory. Effective CI/HUMINT
operations are essential to the protection of friendly forces
and to successful operation in hostile arenas.

Until recently, CI/HUMINT operations depended on
hand-delivered paper reports, telephone messages, and
transcription. Costly delays of several hours often occurred
between the collection of information and its integration
into planning processes. DAIS was developed to improve
the efficiency and speed of military tactical operations.

DAIS illustrates a number of problems pertinent to a dis-
cussion of robust agent autonomy. Communications among
many tactical elements were carried over tactical radios,
which often moved in and out of router range.
Communication connectivity to remote teams was inter-
mittent, and links provided painfully slow maximum data
rates, ranging from 4.8 to 64 kbps depending on range and
hardware. Processing power on command elements varied
widely, from low-powered laptops to powerful servers.

DAIS employed several pragmatic strategies to mitigate
the problem of unreliable network connectivity. Before
sending an agent over a communication link, the Dock ver-
ified that the destination host was reachable, thus averting
costly timeouts. If a connection was unavailable, an agent
could request the Dock to notify it when the connection
became available again. If the agent was composed of inde-
pendent tasks, it could split its itinerary to create a second
agent assigned to complete the non-machine-dependent
tasks. After completing their tasks, both agents reunited to
combine and deliver results.

Despite these efforts, DAIS did not address the chal-
lenges of handling machine failures, avoiding slow com-
munication links, and overloaded processors. Some
approaches taken in DAIS to mitigate network problems
break down for complex agents with itineraries composed
of interdependent tasks. The lessons we learned in deploy-
ing DAIS and other military agent applications help us
articulate solutions to the challenges of robust agent fimc-
tionality in distributed, unreliable networks.

Approaches to Increasing Agent Robustness

and Efficiency

Intelligent Mobility
We define intelligent mobility as the ability of an agent to
adaptively choose an execution path in real time, considering
both the relative priorities of different execution paths and
the condition of the network. An effective implementation of
intelligent mobility allows an agent to avoid slower commu-
nication links and processors, and react to communication
failures by choosing an alternative host or execution path.

As an EMAA agent implements its itinerary, it executes
the initial state and follows one of possibly several valid
transition paths to a next state. A state may be bound to a
set of host constraints or a set of resource constraints; if
host constraints are given, the state must run on one of the
specified machines. If resource constraints are given for a
state, the agent must discover the set of machines at which
all of the required resources are present. The agent is sup-

plied with transition logic that may evaluate valid transi-
tions based on host availability, transition utility, and tran-
sition feasibility/efficiency.

Host availability. If no host is available to support a given
transition, the transition logic should eliminate it from con-
sideration.

Utility. The transition logic can obtain the relative utility of
the transition (utility describes the fact that one transition
may be inherently preferable to another; e.g., one data
source may be more frequently updated than others), which
may have been calculated or assigned at runtime.

Feasibility/Efficiency. The transition logic may determine
the feasibility and efficiency of following the transition
based on environmental conditions. Variables that can
affect the feasibility and efficiency of a transition include:
¯ Cost of using a service
¯ Reliability ofservice
¯ Reliability of communication link to the service
¯ Cost (speed) of using communication link

An agent may factor the first two variables into the fea-
sibility/efficiency calculation if the agent architecture
employs a resource control strategy that permits services to
impose usage costs to prevent thoughtless or unintentional
overuse. The resource control strategy also requires ser-
vices to publish self-descriptive information including fail-
ure rates (if applicable), usage penalties, etc. This is simi-
lar to market-based resource allocation schemes such as
that proposed in Bredin et. al, 2000. The Dock or a desig-
nated link information server may retain statistics and sta-
tus data on communication links, including mean time to
failure, mean failure duration, average throughput, and link
availability status. This allows an agent to consider the last
two variables listed above. An agent’s transition logic
might weigh any combination of these four variables to
assess feasibility and efficiency of each transition.

For each transition, the transition logic may then consid-
er utility together with feasibility/efficiency to determine the
transition’s overall effectiveness, where effectiveness is
accomplishing the agent’s overall objective. Transition logic
will generally be agent-specific or application-specific,
since the relative importance of efficiency to utility in tran-
sition selection will vary among applications and agents.

Employment of Failure Recovery Strategies
Agents in tactical networks must robustly react to
inevitable machine failures. EMAA agents contain hooks
for reaction policies to be executed in special situations
including migration, remotely initiated halt, or catastroph-
ic errors that inhibit execution of the itinerary. In case of a
"soft" machine or Dock failure (a non-instantaneous failure
which affords applications time to close politely), an indi-
vidual agent select and employ and appropriate recovery
strategy. The Dock will notify all hosted agents and servers
that a shutdown is imminent, and agents may react accord-
ingly. An agent must depend upon other agents or compo-
nents for help in handling a "hard" failure (an immediate,
unexpected system shutdown).

35



Automatic Restart Upon Machine Availability. In case
of either a hard or soft failure, an agent may register a
request with the Dock to restart the agent as soon as the
machine becomes available again. This is appropriate for
agents that can be restarted without restoration of state.

Migration to a Different Machine. In the case of soft fail-
ure, an agent may evaluate other execution options for the
task to be executed, perhaps moving to another machine
that offers services needed to complete task execution.

Reinstantiation by Monitoring Entity. An agent remotely
monitored by another agent, a service, or an application
may be tracked and reinstantiated by the monitoring entity
upon failure (the monitoring entity assumes a catastrophic
failure when it fails to receive status events within a desired
time interval). This is appropriate for agents that need not
preserve full state data (for example, unprocessed query
results). Because EMAA’s Distributed Event Messaging
System allows task-level monitoring, it is possible to restart
the agent after the last successfully executed task.

Restoration of Full, Cheekpointed State. Some agents
may require their full state preserved upon restoration. An
agent collecting a time-tagged process snapshot, for exam-
ple, could not be reinstantiated without losing unrecover-
able, time-sensitive data. The agent must checkpoint its
state data with either a local, persistent store or a remote
store.1 If it is monitored remotely by another entity, or a
local persistent entity, that entity can restart the agent with
full state information. This solution should be used spar-
ingly, since it may tax storage resources or increase band-
width usage, reducing the benefit added by agent mobility.

Summary
We have presented the intelligent mobility concept as a
means for agents to improve execution efficiency and
exploit alternatives in case of resource unavailability. We
suggest failure recovery strategies to improve robustness of
overall application performance in the face of machine fail-
ures. Figure 1 illustrates the specific problems that our pro-
posed approaches seek to overcome.

Common Problems Proposed Solutions
Reaction to temporary host failure Failure handling strategies

Temporary link failure detection Failure handling strategies

Temporary link failure handling Intelligent Mobility

Slow comms link avoidance Intelligent Mobility

Slow processor avoidance Intelligent Mobility

Figure 1. Intelligent mobility and failure handling strategies are
complementary approaches to addressing problems common to
tactical networks.

1Explicit checkpointing (periodic storage of state) for itinerary-based
agents employing weak mobility has been described by Silva, Batista, and
Silva (2000). The design of the EMAA agent itinerary lends itself well 
implicit checkpointing between state executions, although that feature has
not yet been fully implemented.

Ensuring reliable agent operation in a fragile distributed
environment poses many challenges not yet addressed. For
instance, interrelated failures are likely to occur on tactical
networks, since damage to one machine is often accompa-
nied by damage to other machines on the network. If per-
manent or semi-permanent link or host failures occur, ser-
vices and agents may need to be entirely replicated else-
where on the network. Additional problems may arise
when a machine thought to have permanently failed
becomes available after having been replicated elsewhere.

Despite the remaining challenges, mobile agent architec-
tures offer inherent advantages in coping with unreliable
network environments. An agent requires only a brief con-
nection to migrate, whereas client-server solutions general-
ly require a sustained connection over unreliable links.
Each EMAA agent operates within its own thread, so a sin-
gle failure poses no threat to other independent agents or
interacting systems. Because an individual agent can be
persistent, it can wait and retry communication links, or
choose a different execution strategy. Itinerary-based
agents are inherently amenable to high-level checkpointing,
since an agent’s itinerary is naturally divided into distinct
execution states. Building on these advantages by adding to
agents the ability to evaluate choices in reaction to unex-
pected conditions in their environment will add greatly to
the robustness and efficiency of agent applications.

Acknowledgements
Work on DAIS was supported by DARPA Contract
N66001-95-C-8636. We thank Dr. Susan McGrath for her
initial direction on this effort, and Dr. Martin Hofmann for
his helpful review of this abstract.

References
Bredin, J., Maheswaran, R., Imer, C., Basar, T., Kotz, D.,
and Rus, D. 2000. Game-Theoretic Formulation of Multi-
Agent Resource Allocation. In Proceedings of the Fourth
International Conference on Autonomous Agents, 349-356.

Hofmann, M.O., McGovern, A., Whitebread, K.R. 1998.
Mobile Agents on the Digital Battlefield, In Proceedings
Second International Conference on Autonomous Agents
(Agents ’98), 219-225, Minneapolis/St.Paul, MN.

Kotz, D., Jiang, G., Gray, R., Cybenko, G., and Peterson,
R. 2000. Performance Analysis of Mobile Agents for
Filtering Data Streams on Wireless Networks. ACM
Workshop on Modeling, Simulation, and Analysis of
Wireless and Mobile Systems.

McGrath, S., Chac6n, D., Whitebread, K. 2000, Intelligent
Mobile Agents in the Military Domain. In Proceedings of
the Autonomous Agents 200 Workshop on Agents in
Industry, Barcelona, Spain.

Silva, L., Batista, V., Silva, J. 2000, Fault-Tolerant
Execution of Mobile Agents., In Proceedings of the
International Conference on Dependable Systems and
Networks.

36


