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Abstract

This paper discusses the nature of interactions between high—
level intelligent agents and low-level control algorithms.
Control algorithms offer the promise of simplifying a dy-
namic system’s apparent behavior as perceived by an intel-
ligent agent, thus making the agent’s task much easier. How-
ever, the coupled dynamics of such a hybrid system can be
difficult to predict and may lead to undesirable behavior. We
demonstrate that it is possible for a rational intelligent agent
acting on a well-controlled dynamical system to cause un-
desirable behavior when coupled, and present a method for
analyzing the resulting dynamics of such coupled, hybrid sys-
tems. A technique for alleviating these behaviors using newly
developed control algorithms is then suggested. These con-
trollers, which are adaptive in nature, also suggest the possi-
bility of “distributing” learning and intelligence between the
high and low levels of authority. A new architecture for hy-
brid systems encapsulating these ideas is then suggested.

Introduction

The deployment of dynamically complex autonomous sys-
tems such as NASA’s New Millennium spacecraft series and
the military’s AUVs and UAVs has created the need for
“high level” intelligent software agents which will interact
with “low level” hardware control systems. The low level
control algorithms are designed to simplify the input/output
behavior of a complex dynamical system as perceived by
a high-level intelligent agent, while the high level “intelli-
gence” is responsible for specifying the desired system be-
havior which will satisfy top level goals and constraints. The
dynamical simplification accomplished by the low level con-
troller potentially makes the high level agent’s task much
easier, reducing the scope of potential behaviors which must
be accommodated by goal directed plans.

Often, the lower-level software modules are treated as
“black boxes” by the higher—level software; however, the dy-
namic behavior of a control algorithm coupled with a phys-
ical system can still be quite complex. Therefore, when in-
telligent agents and control algorithms are linked in a feed-
back system, undesirable behavior may result even though
each module can be verified to function correctly in isola-
tion. Some control algorithms are more successful than oth-
ers in simplifying the apparent dynamics of the physical sys-
tem; careful design of the control algorithm is therefore one
key to producing desirable overall system performance.

This paper discusses both the problems incurred by un-
wanted Al agent/control system coupled dynamic interac-
tions, and also the possibility for improved system perfor-
mance through careful design of the coupled dynamics. Our
principle interest is in automating the task of docking two
space vehicles, as illustrated by the (terrestrial) research
prototype in Figure 3, which is currently human piloted.
We use a well-known problem in flight dynamics — pilot—
induced oscillations, or PIO — as an example of the undesir-
able, possibly catastrophic problems that can occur through
the interaction of higher— and lower—level systems. Meth-
ods for analyzing PIO-like behavior in a prototype hybrid
agent/control system are presented, thus possibly providing
a bridge between the Al and controls communities.

We also describe possible strategies for mitigating the ef-
fects of unwanted PIO-like behaviors. We discuss new non-
linear control technologies which can be shown to be less
susceptible to these behaviors. Unlike more standard linear
controllers, though, these nonlinear controllers require an
accurate mathematical model of the physical system. This
motivates a discussion of adaptive controllers which can
learn system models in situ. Adaptive controllers further
allow for the possibility of distributing learning and intel-
ligence through each of the two layers of software so as to
maintain desirable coupled dynamics. Finally, we suggest
a new architecture for hybrid AI agents/control software,
along with challenges that this architecture presents for re-
searchers.

Hybrid Al/control systems

While it is difficult to describe a “typical” autonomous sys-
tem, a sufficiently general block diagram might be similar
to Figure 1. The box labeled “controlling agent” can have
many instantiations, depending on design philosophy, avail-
able resources, and the exact requirements for the system’s
performance. A common — indeed prototype — instance
of this agent might be a skilled (or unskilled) human, flying
an aircraft or docking a spacecraft; the goal of the consid-
erations in this paper is to replace this most “canonical” of
agents with fully autonomous software of comparable (or
superior) capability. The agent may be given a set of goals
or be capable of generating goals internally, or it may be
designed to instinctively perform actions which embody the
goals of the designer. It may also internally generate plans
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Figure 1: Block diagram of a generic autonomous system

intended to fulfill these goals and desired trajectories to carry
out the plans. Regardless of the nature of the agent or the
sources of the goals which drive it, its outputs are the actu-
ator commands intended to cause the dynamical system to
follow trajectories consistent with its goals. In general, we
assume that the agent receives feedback from the environ-
ment which includes information about the performance of
the physical system.

In attempting to automate the process of mapping goals to
physical inputs, it is helpful to break the problem into two
subtasks: the problem of translating goals into sequences
of desired actions, and the problem of translating desired
actions into the physical inputs required to force the sys-
tem to carry out these actions. This decomposition is shown
schematically in 2. The output of both of these subtasks may
vary continuously in response to the evolution of the actual
physical state of the system, as indicated by the nested feed-
back loops.

While this division of labor may be artificial in terms of
how the performance of the agent of Figure 1 is achieved
in biological systems, it is nonetheless a useful intermedi-
ate abstraction, amenable to rigorous analysis. In fact, one
could argue that the decomposition between Figure 1 and
Figure 2 represents a current distinction between two classes
of engineering expertise: control theory deals with the de-
sign of the second block of this diagram and analysis of the
performance of the inner feedback loop, while artificial in-
telligence theory is often broadly directed towards design of
the first block and analysis of the performance of the outer
feedback loop. Moreover, as we shall discuss at the end of
this paper, even if the indicated partition is non-biological,
it may serve as a useful framework within which biological
capabilities may be closely mimicked.

While the box labeled “control algorithm” can have many
instantiations, control laws as a class are usually mathemat-
ically derived algorithms which accept as their input a de-
sired trajectory through the physical system’s state space,
and output commands to the system’s actuators which at-
tempt to cause it to follow the trajectory. Control algorithms
have proven successful in controlling a wide range of phys-
ical systems, often in the face of dynamic, changing envi-
ronments, noisy sensors and actuators, and poorly modeled
target systems. Control algorithms may be used as shown
in Figure 2 to simplify the apparent dynamics of the physi-
cal system as seen by the intelligent agent; indeed, there are
aircraft which are difficult or impossible for a human agent
to pilot without a continuous controller which simplifies the
dynamics (“handling qualities”) perceived by the pilot.

Ideally, this arrangement should make the agent’s task
much easier in that it can rely on the control algorithm
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Figure 2: Block diagram of a hybrid Al/control system. The
dashed box shows components encapsulated by the “control-
ling agent” block of Figure 1.

to force the physical system to carry out desired actions,
even if the physical system has very complex dynamics
and complicated mappings between actuator inputs and sys-
tem outputs. However, even in the very simple case of a
physical system which can be accurately modeled by lin-
ear differential equations and a linear proportional-integral-
derivative (PID) control algorithm, the coupled control algo-
rithm/physical system can exhibit nontrivial dynamic behav-
ior. In particular, control algorithms require nonzero time to
bring the system near a desired state or to respond to system
disturbances. In addition, the manner in which the system
transitions from the initial state to the desired state often en-
tails a damped oscillatory trajectory with an overshoot that
can be a significant fraction of the difference between the
initial and desired states. Systems that must be modeled
by nonlinear equations — the more common case, which
includes such physical systems as robotic arms, spacecraft,
aircraft, and underwater vehicles — can exhibit even more
complex dynamic behavior (Slotine & Li 1991, pp. 4-12).

A related, but more subtle, challenge involves the un-
expected behaviors that can result from the coupled dy-
namics of a rational intelligent agent commanding a well-
controlled vehicle. On first glance, the challenge of math-
ematically analyzing the dynamics of a system like the one
in Figure 2 may seem intractable due to the inherently non—
mathematical nature of most intelligent agents. For insight
on how this might be accomplished, one may take as inspi-
ration research performed on what has been referred to as
“the senior flying qualities problem”: pilot-induced oscilla-
tions, or PIO (McRuer 1995, p. 2). PIO is a rapid oscillatory
motion which can beset a piloted aircraft under certain cir-
cumstances, often with disastrous results. PIO is most often
observed with very experienced, well-trained pilots flying a
wide variety of aircraft, which have included the M2-F2, X-
15, YF-22, MD-11, C-17, and the Space Shuttle (McRuer
1995, p. 2).

The PIO phenomenon is not caused by a poorly behaved
dynamical system,; in fact, PIOs have been observed on sys-
tems which are quite well behaved in isolation. Instead, PIO
is known to result from the coupled interaction of the pi-
lot and the underlying system dynamics (McRuer 1995, p.
3); that is, it is an instability phenomenon introduced by the
closing of the outer feedback of Figure 2. Humans are of-
ten considered the “gold standard” for intelligent agents, and
aircraft dynamics share many physical characteristics with
the many complex systems that are now the subject of au-
tomation research. If a well-trained, highly experienced and
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Figure 3: MPOD performing a docking task

supremely rational human pilot can interact with a mechan-
ical system in such a way as to cause sudden, violent be-
havior, the possibility that an intelligent agent acting on an
underlying dynamical system could result in undesirable be-
havior should at least be entertained.

Analysis of PIO in a hybrid system

The Space Systems Laboratory (SSL) at the University of
Maryland, College Park has a long history of studying the
operation of human—piloted spacecraft.The primary research
tool of the SSL is the Neutral Buoyancy Research Facility.
Neutral buoyancy, the use of water to simulate weightless-
ness, is the principal method used by NASA and other space
agencies to practice end-to—end space operations. The SSL
historically has concentrated on developing robotic systems
to assist humans or, in some cases, perform space operations
tasks which humans cannot or do not desire to perform. In
general SSL research utilizes these robots operating in neu-
tral buoyancy to analyze human/robotic interaction, demon-
strate advanced spacecraft control algorithms, and develop
autonomous robotic systems.

The specific target of the research described below is
MPOD (the Multimode Proximity Operations Device), a
neutral buoyancy version of an orbital maneuvering vehicle.
Orbital maneuvering vehicles have been proposed for ferry-
ing cargo and personnel between spacecraft in different or-
bits, for positioning astronauts at worksites during extrave-
hicular operations, and for retrieving malfunctioning space
hardware from remote locations. As such, OMVs must ac-
tively maneuver with great precision and reliability while in
close proximity to other spacecraft and astronauts.

To render the apparent dynamics of this complex vehi-
cle as simple as possible to the pilot, a number of differ-
ent control strategies have been explored. Only the vehi-
cle’s attitude is currently controlled automatically, as the
neutral buoyancy tank does not currently provide the sen-
sors (GPS or equivalent) necessary to implement a transla-
tional feedback algorithm. The attitude control algorithms
implemented on MPOD include a standard linear trajectory—
tracking attitude controller and a family of new nonlinear
trajectory—tracking attitude controllers. These latter are de-
rived from an underlying PD component, with additional
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nonlinear terms in the control algorithms designed to di-
rectly compensate for the nonlinearities in the vehicle’s dy-
namics.

The PD controllers were tuned with three different gain-
sets — a “loose” set, a “medium” set, and a “stiff” set —
each resulting in closed-loop dynamics with similar over-
shoot characteristics to a step change in orientation, but
with increasing bandwidth. Theoretically, these controllers
would be expected to exhibit more accurate tracking and
faster responses as the gainsets increase in stiffness. The
loose and medium gainsets were also used for the PD com-
ponents of the nonlinear controller; the action of the added
nonlinear terms used sufficient additional control authority
that the stiff gainset could not be employed without saturat-
ing the actuators on the vehicle.

Figure 4 shows two step responses for the stiff PD con-
troller. Notice that the controller appears to be quite well
behaved. There is no oscillatory behavior present, with
an overshoot of only 7%. The system exhibits little or no
steady-state offset, with the deviations from the desired tra-
jectory being caused by noise and disturbances largely due
to currents and eddies in the neutral buoyancy tank. The
loose and medium gainset produced responses with similar
overshoot, longer settling times, and slightly higher steady—
state errors, in accordance with theory. Following the step
response evaluations, the pointing accuracy of each of the
controllers was evaluated on a more demanding task by
commanding MPOD to track a sinusoidally varying (“tum-
bling”) attitude maneuver. The mean—square pointing error
in each control mode is shown in Figure 5. The tracking met-
ric here is expressed in quaternion units, and may roughly be
converted to degrees by multiplying by 120. Notice that the
mean-square tracking error decreases as the gains increase,
and that the nonlinear controllers are more accurate than the
linear controllers with the same PD gainset; this again is as
predicted by theory. Notice, also, that the stiff PD controller
is the most accurate of any of the controllers tested.

Thus, by the generally accepted metrics used by control
engineers, each of the controllers appears to result in a suc-
cessful design of the inner loop of Figure 2, with the high
gain PD controller producing the best overall response in
the isolated task of tracking a specified reference attitude.
Next, the coupled performance of a human pilot performing
a docking task with each of the different controller modes
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Figure 5: Pointing accuracy of linear and nonlinear con-
trollers. Metric is quaternion error.

was investigated.

The setup for this task is illustrated in Figure 6: the
pilot commands the desired motion of MPOD using two
3DOF joysticks (one for attitude, one for translation). Pi-
lots were instructed to fly MPOD from a point in the middle
of the NBRF tank to a hard dock with a target affixed to the
tank wall. During testing, completion time and pilot hand
controller usage (a measure of physical workload) were
recorded. In addition, after using each controller the pilots
were asked to rate the system performance using a Cooper—
Harper questionnaire, a popular method for determining pi-
lot mental workload (Sanders & McCormick 1993).

Although it was expected that human pilots would per-
form better with more accurate controllers, this proved not
to be the case. Figure 7 shows a graph indicating the per-
formance of four experienced pilots after six docking at-
tempts with each controller. The metric in this graph factors
in both mental and physical effort multiplied by task com-
pletion time as described in (Henshaw 1998, pp. 76-78).
Clearly, lower values for this metric are indicative of better
performance. The individual metrics also broadly tracked
the trends seen in Figure 7. Notice that while performance
was uniform with the nonlinear controllers, it varied quite
considerably across the three PD controllers with the worst
performance being exhibited with the stiff PD controller.

Somewhat counter—intuitively, then, the controller which
provides the best performance in isolation appears to pro-
duce the worst performance when utilized with a goal-
driven human pilot. Moreover, video observation of MPOD
and its pilots when using this controller showed that MPOD
could exhibited undamped oscillatory behavior, with the pi-
lot “fighting” with the vehicle to try to stop the oscillations
as shown in Figure 8. From the previous graphs, however,
it is clear that this behavior was not caused by poor perfor-
mance on the part of the controller. Instead, the oscillatory
behavior appeared to be due to a coupling of the pilot and
the closed—loop vehicle system. This is a classic symptom
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Figure 7: Pilot performance during docking tasks. Letters
indicate statistically different groups.

of pilot-induced oscillations (Blakelock 1991).

In order to mathematically analyze a PIO such as that ob-
served on MPOD, a mathematical model of human pilot be-
havior is needed. One widely accepted method for accom-
plishing this is called the “crossover model”, which models
the dynamics of a human pilot as a linear PD controller with
a time delay. The crossover model attempts to represent the
behavior of an experienced human pilot performing a set-
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Figure 8: System behavior during a PIO event. Solid line
is the requested trajectory from the pilot; dashed line is the
actual trajectory of the vehicle.

point maintenance task such as maintaining straight—-and—
level flight in an airplane or hovering in a helicopter. The
crossover model has been used within the aerospace com-
munity for at least thirty years, and has proven successful
in modeling pilot behavior across a very wide range of con-
trolled elements. For a synopsis of the crossover model and
justification for its use as a human pilot model, see (Blake-
lock 1991) or (McRuer 1995).

Specifically, the crossover model states that the pilot’s be-
havior (the mapping between the perceived error between
the actual and goal state and the resulting commanded mo-
tion) can be modeled as

Gpilot (3) = Spe"’“ (TLS + 1) 1)

where Gpiot () is the pilot transfer function. The pilot time
delay, e~"™%, represents processing delays and neuromus-
cular lag and is normally on the order of 0.2 to 0.4 seconds.
The crossover model states that pilot’s effective proportional
gain Sy, and derivative gain S, x Ty, change depending on the
dynamics of the element being controlled so that the slope
of the Bode plot of the open-loop pilot/plant system is ap-
proximately -20dB/decade in the crossover region. The gain
Sp in particular is task dependent, generally increasing when
the required precision to complete a task increases, as during
the final phases of an attempted docking of a spacecraft or
landing of an aircraft. An implied condition is that the pilot
zero must be minimum phase, i.e. the pilot zero must lie in
the left half—plane (Blakelock 1991, pp. 459—465).
Mathematical models of the rest of the system are also
needed. From physical principles and extensive flight test-
ing, a single-axis, linear model of MPOD was determined

to be

2.8 x 10~
5 (o5 +1)
Similarly the action of the PD controller is given by

Tpp = —Kag — Ky€
= —Kd(f

()

Gumpop (8) =
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Figure 9: Block diagram of the MPOD system

where € is a configuration error (here the attitude error) and
(v is the corresponding velocity tracking error (here angular
velocity). An alternate description of the actions of the PD
controller (useful in the discussion below) employs the aux-
iliary variable 0 = & + A€ with complete equivalence to the
first form by taking Kp = AK p. For the stiff PD controller,
K4 is 160 and ) is 8. Finally, there is an input shaping (tra-
jectory generation) filter between the pilot and the controller
which smooths the transition between new attitudes. The
filter can be represented by the transfer function

K

s(s+2) )

Gfilter (3) =
where, in this instance, K = 2.
The linearized dynamics of the controlled MPOD system
as perceived by the pilot is then computed to be

K wi (3s+1)
8(84+2) " 8§24+ 2(wns+w?

and the transfer function for the coupled open—loop dynam-
ics of the pilot/vehicle system is

Spe” ™2 (Tps+1) x Ger (8) . 5)

A reprisal of Figure 2 illustrating the model just developed
is shown in Figure 9.

The root locus plot is a tool that is used to examine the lo-
cation of the poles (modes) of a feedback system as a func-
tion of the overall gain of the feedback loop. A linear system
becomes unstable (exhibits “runaway” behavior) when any
one of the poles becomes positive. The gain in the feedback
system of Figure 9 is controlled by the gain of the pilot S,
and Figure 10 shows a root locus plot for the coupled system
as a function of this gain. The arrows indicate the direction
of migration of the closed—loop poles as the pilot gain in-
creases.

Notice that the system can become unstable if the pi-
lot gain becomes large enough, as may happen in the final
stages of a docking maneuver when accuracy is critical. This
immediately suggests that PIO may be a problem for this
system. Indeed, simulations using this model predict the os-
cillatory behavior experimentally observed in Figure 8 and
correctly forecast the frequency of the oscillations.

This analysis illustrates that a rational “high-level” in-
telligent agent commanding a well—controlled system can
result in unsatisfactory or even unstable system behavior.
It is important to realize that the linear control method-
ology which produced the observed instability is virtually
ubiquitous, being found an nearly all commercially avail-
able robotic systems, many flight control systems, and most

Gor(s) = O]
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Figure 10: Root locus of coupled pilot-stiff PD con-

troller system. Asterisks show estimated position of system
closed-loop poles.

spacecraft attitude control systems. Moreover, the dynamics
of the pilot model are quite simple, and in fact might be a
reasonable representation for the actions of a rational intel-
ligent agent attempting to perform a task such as tracking a
moving target.

What can be done about undesirable interactions?

In recent years there has been considerable progress in de-
veloping control algorithms which have superior perfor-
mance to the linear controller analyzed above. One alterna-
tive which has also been implemented and tested on MPOD
is a nonlinear controller related to the computed torque con-
troller that is beginning to gain acceptance in the control of
robotic manipulators (Slotine & Li 1991), (Egeland & God-
havn 1994), (Sanner 1996).
The form of the controller is

T7pp + H (€) wp + C (e, w) wr + E (€, w)
w—o

Tnl =
Wr = ©)
where o is the auxiliary variable introduced in the above dis-
cussion of the PD controller. The additional nonlinear terms
employed in this design utilize H — the positive definite
symmetric inertia matrix of the dynamics, C' — containing
the contribution of Coriolis and centripetal forces on the dy-
namics, and E — representing environmental forces. Many
physical systems, including aircraft, spacecraft, underwater
vehicles, wheeled vehicles, and robotic manipulators, have
dynamics to which this algorithm can be successfully ap-
plied. Indeed, for each of these systems, it can be (non-
trivially) proven that the above control algorithm produces
closed~loop dynamics (that is, the inner loop of Figure 2)
which are globally stable with tracking errors which decay
exponentially to zero for any smooth desired trajectory (Fos-
sen 1994), (Henshaw 1998, pp. 15-30), (Egeland & God-
havn 1994).
In terms of the linear analysis above, this convergence
also implies that the controller causes the closed—-loop ve-
hicle/controller dynamics to become:

Ger (s) = s

s(s+2) ™
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Figure 11: Root locus plot of coupled nonlinear con-

troller/pilot system

Note in particular that, although the action of the controller
is nonlinear, its effect is to put a particulary simple lin-
ear “face” on the closed—loop dynamics, as perceived by a
higher-level agent. If the PIO analysis from above is now
repeated using the nonlinear controller, the root locus plot
for the outer feedback loop (representing a prediction of the
coupled agent/controlled system interaction) shown in Fig-
ure 11 results. The structure of the predicted interaction dy-
namics predicted by this plot is quite different from that ob-
tained with the PD controller. Disregarding the effects of
pilot time delay, this system will always be stable regardless
of the position of the pilot zero or the value for the pilot gain,
and in fact will be critically damped for a wide range of zero
locations and gains. In theory, therefore, the system should
exhibit PIO only when the pilot gain becomes enormously
large, in fact, an order of magnitude larger than the gains
found to match the simulated responses with the observed
data (Henshaw 1998, p. 107).

Notably, the nonlinear controller/vehicle system appears
to be far less susceptible to pilot-induced oscillations. This
does not appear to be because the controller is more accu-
rate or has faster response times. Instead, the resistance to
PIO-type behaviors appears to arise because the nonlinear
controller presents a much simpler dynamical system to the
agent than does the corresponding PD controller. The dif-
ference in perceived dynamic complexity can easily be seen
by directly comparing equation 4, which represents the lin-
ear controller/vehicle dynamic behavior as seen by the pi-
lot, with equation 7, the dynamic behavior of the nonlin-
ear controller/vehicle system. It appears that systems with
more complex dynamics may be more susceptible to PIO
regardless of how well they perform in terms of traditional

- (isolated) controller metrics such as accuracy, overshoot, or
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Desirable Hybrid System Interactions
Adaptation: low—level learning

Clearly, one challenge to using more advanced controllers
such as the one described above is the problem of obtain-
ing an accurate mathematical model of the physical system
being controlled, including good estimates for the mass and
rotational inertias, environmental effects, and thruster char-
acteristics. While this can sometimes be accomplished, it
may be quite challenging to completely characterize actua-
tors, rotational inertias, or environmental forces such as drag
and friction. The situation can be further complicated when
the physical system changes, as with an aircraft dropping
cargo or a robotic arm experiencing a partial actuator fail-
ure.

In order to alleviate this problem, adaptive versions of
these controllers have been developed. The exact forms and
capabilities of adaptive controllers can be quite varied de-
pending on the exact nature of the parameters or forces be-
ing learned. One possible instantiation of such a controller
is

7pp + H () 0 + C (e,w) wy + E (6, w)
= Tpp+Ya

Tnl
®)

where H, C, and E represent approximations of H, C, and
E respectively. Under the further (and not very restrictive)
assumption that the estimated nonlinear terms can be fac-
tored as

H (€) wr + C (e,w) wy + E (e,w) = Y&,

where Y is a matrix of known nonlinear functions and g is a
vector of unknown parameters, then the “adaptation law”

4=-IYTe )

guarantees global stability and asymptotically converging
tracking errors, even if the “true” physical parameters a are
completely unknown when the system is initialized (Ege-
land & Godhavn 1994). The positive definite matrix I" is the
learning rate for the system.

System parametric uncertainties such as mass, rotational
inertias and drag coefficients can be handled this way. More
complex structural uncertainties such as the exact nature of
drag or frictional forces can be dealt with by neural-network
based adaptive components, as can complex actuator and
structural dynamics. Global asymptotic stability can also be
shown for neural-network based adaptive controllers and for
combinations of different kinds of adaptation mechanisms
(Sanner 1996).

Cooperative learning in hybrid systems

Many Al designs for robotic learning model the learning
process at the top level (the first box in Figure 2), assuming
“dumb” low-level servo controllers which mindless push the
system to the configurations requested by the (adaptive) high
level agent. The above discussion shows that control theory
has its own notions of learning, which enable “smart” servos
that can labor to maintain the fiction of dynamic simplic-
ity for a top level agent, despite uncertainty in the physical
properties of the systems they control.
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This suggests that learning can be profitably distributed
between the two modules of Figure 2, with the low-level
controller becoming incrementally better at its goal of track-
ing specified system configurations in a manner relatively
transparent to the top level agent, while simultaneously this
agent may also be incrementally learning to specify motions
which better achieve its top level goals. In fact, the analysis
above suggests that such a strategy might be necessary for
the success of the hybrid system, as PIO-type instabilities
may set in if the low-level controller does not successfully
maintain the appearance of dynamic simplicity for the high
level agent.

‘While rigorous mathematical analysis of this cooperation,
in the spirit of the analysis above, will be quite complex, it
is encouraging to note from Figure 7 that when the adaptive
nonlinear controller was paired with a human pilot (who is
presumably learning to better perform the docking task at
each iteration), the overall performance metric was among
the best seen in these experiments. More extensive data must
be collected quantifying the interaction of a learning agent
(like a human) with a learning controller like that described
above to fully support the advantages of this cooperation.
This is the subject of current experimentation in the Space
Systems Lab.

Biological Considerations

Since human and other biological agents are, in a sense, the
current “gold standard” against which potential autonomous
software architectures are evaluated, it is interesting to in-
quire whether there is any biological support for the hier-
archical interaction and distributed learning paradigm sug-
gested above. While the data is limited, there do appear to be
indications that the actions of biological intelligences might
at least be profitably modeled in this fashion.

It has been hypothesized that humans may generate “de-
sired trajectories” to perform certain tasks which are in-
variant regardless of the muscles or joint actions required
to carry them out. For instance, it has been noted that a
person’s handwriting remains nearly the same regardless of
whether the writing takes place on a piece of paper or a
chalkboard, indicating a characteristic pattern of hand mo-
tions used to describe each letter. However, writing on pa-
per requires a very different set of actuation of arm and hand
muscles than does writing on chalkboard, and a different
set of environmental forces is encountered (Winter 1990).
While one could attempt to explain this behavior in terms of
the “black box” agent seen in Figure 1, it seems more eas-
ily interpreted in the model of Figure 2: the brain may have
characteristic trajectories for the hand in its goal to trace out
each letter (which are subgoals of spelling a word, which
are subgoals of sentences, etc.), while a low-level, adaptive
control strategy works to execute these motions.

More concretely, consider a planar reaching task — that
is, when the goal presented is to move the hand to a new
position on a horizontal surface. In this situation, humans
appear to adopt an invariant strategy of moving the hand in
a straight line between the new and old positions, with a ve-
locity profile that assumes a characteristic bell shape. This
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Figure 12: Suggested architecture for hybrid autonomous
agent/control systems

is the so—called “minimum jerk™ trajectory, in that it corre-
sponds to a hand trajectory which minimizes the derivative
of acceleration (jerk) as the hand transitions between the two
endpoints (Flash & Hogan 1985). Additionally, if a deter-
ministic external force is applied to the hand as it moves
in the plane, disturbing this trajectory, with practice human
subjects learn to account for the presence of this force until
they can again execute the minimum jerk trajectory, despite
the disturbance (Shadmehr & Mussa-Ivaldi 1994). Interest-
ingly, rejection of the perturbation is not accomplished by
“stiffening” control of the arm (just as stiffer gains in a PD
controller will produce lower tracking errors), but rather by
learning a model of the forces which will be applied to the
arm at each point in the workspace. This was shown by sud-
denly removing the presence of the disturbances in subjects
who had already learned to accommodate them, and observ-
ing that the resulting arm motion was perturbed away from
the minimum jerk trajectory just as though the “negative” of
the original disturbance was applied (Shadmehr & Mussa-
Ivaldi 1994).

One possibility for modeling these observations is again
in the framework of Figure 2, with the top level agent com-
puting a minimum jerk trajectory between current and goal
states, and the low level agent acting as an adaptive nonlin-
ear controller in the fashion described in the previous sec-
tion. Indeed (Kosha & Sanner 1999) performed a simula-
tion of the perturbed reaching task in this spirit, additionally
modeling the adaptive nonlinear component of the arm con-
trol dynamics using neuron-like elements, and produced re-
sults which qualitatively matched many of the reported fea-
tures of the human responses.

These observations are not meant to suggest that biolog-
ical signal processing is segregated into the subtasks and
components discussed herein, but rather that this framework
may be useful for producing systems which can mimic the
important observed features of biological systems. More-
over, as demonstrated above, this framework appears quite
amenable to theoretical analysis which can both predict the
dangers of PIO-like behavior and provide the designer with
insights which may lead to the creation of more robust adap-
tive autonomous systems.

Directions for Further Work

Control systems do not have unlimited “command author-
ity”: there are practical limits to the magnitude of the forces,
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torques, voltages, etc. which can be manipulated in the
physical system to influence its actions. This means that
the low—level controller can maintain the desired apparent
dynamic simplicity to the high-level agent only over a fi-
nite range of configurations; in aerospace this range is some-
times known as the “flight envelope”. Accurate knowledge
of this envelope is an important requirement for the high—
level agent, lest, in pursuit of its goals, it commands motion
of which the system is incapable.

The flight envelope inherently depends on the exact dy-
namics of the system — the mass, rotational inertias, ex-
ternal forces, and so on, as well as the characteristics of
the actuators. To compute the envelope of feasible trajec-
tories, then, the high level agent must have knowledge of,
or a means to learn about, the same physical parameters that
an adaptive low level controller requires. Extending the co-
operative learning notion suggested above, might the two
modules actually share this information, for example by the
adaptive controller feeding back its parameter estimates to
the high level agent?

This appears to be an attractive idea at first glance, but it
is complicated by a well-known feature of adaptive control
algorithms: although they can guarantee accurate tracking,
they cannot guarantee that their parameter estimates will
converge to the true physical values without additional con-
ditions. A simple example to illustrate this point might be
an attitude controller attempting to estimate rotational iner-
tias. If the vehicle is only asked to rotate around one axis,
the adaptive controller does not need accurate estimates of
the rotational inertias of the other axes in order to guarantee
good tracking, and in fact there is no way for the adaptive
mechanism to accurately estimate a rotational inertia with-
out experiencing rotations around the corresponding axis.

One could think of this as the need for the controller to
continually “practice” throughout its envelope in order to
guarantee that all of its parameter estimates are exact. Math-
ematically, convergence of the estimated parameters can be
guaranteed if the desired trajectories given to the controller
are sufficiently complex to allow the controller to “explore”
enough of the state space. This requirement is known as the
persistency of excitation criterion (Slotine & Li 1991, pp.
331-332), and can be exactly quantified for a given physical
system.

Unfortunately, it may be that the need to fulfill the persis-
tency of excitation requirement might conflict with the sys-
tem’s goals. For instance, exploring large parts of the state
space might involve large motions, fast velocities, or com-
plex “wiggles” which, by themselves, do not aid in accom-
plishing the system’s objectives and could actually violate
safety constraints during certain operations like docking a
spacecraft or landing an airplane. Conversely, though, gen-
erating an accurate flight envelope is necessary to accom-
plish future goals. The tension between optimally accom-
plishing near-term goals and fulfilling the persistency of ex-
citation requirement entails a high level of cooperation be-
tween the agent and the controller. One possible approach
to solving this problem might be for the agent to take “time
out” between goals — for instance, during transit between
worksites — to specifically command trajectories which sat-



isfy the persistency of excitation criterion. Exactly how this
could be done is presently an unsolved problem, but has an
intriguing parallel with children practicing in order to learn
the abilities and parameters of their physical systems — their
bodies. :

Similarly, it may be useful for the agent to have some
knowledge of the accuracy of the flight envelope estimate.
If an upcoming task required rotation around a specific axis,
for instance, the agent might use an estimate of the accuracy
of the corresponding rotational inertia to decide whether to
“practice” rotational maneuvers around that axis in order to
ensure an accurate estimate before attempting the task. Be-
cause the persistency of excitation criterion is a mathemati-
cal requirement on the desired trajectories, it should be pos-
sible to use it to produce confidence intervals on the accu-
racy of the physical parameter estimates. Methods for gen-
erating confidence intervals, and more importantly for their
use by an agent, are also matters of current research.

The considerations discussed here suggest an architecture
for hybrid systems as shown in Figure 12. This new archi-
tecture allows for distributed adaptation, with the controller
both simplifying the apparent system dynamics for the intel-
ligent agent and generating estimates of the system’s phys-
ical parameters. The agent uses these estimates to produce
desired trajectories which fall within the flight envelope and,
in addition, are sufficiently complex to allow the controller’s
adaptation mechanism to accurately update it’s parameter
estimates. Much work remains to make the ideas encapsu-
lated by this architecture rigorous, and especially to analyze
the implications of the additional feedback loops.

Conclusions

We have demonstrated that undesirable behavior can result
from the interaction of rational intelligent agents and well-
designed control algorithms. Mathematical methods of anal-
ysis can predict this behavior, however. These methods also
lead to new design goals for the controllers in these systems,
favoring controllers which provide simpler closed—loop sys-
tem dynamics. We have also presented advanced controller
designs which, although more complex than standard linear
controllers, are more successful at simplifying the closed-
loop dynamics. This appears to make them less susceptible
to PIO.

We discussed adaptive versions of these controllers which
eliminate the need for the designer to accurately model the
dynamics of the physical system. Furthermore, these con-
trollers naturally lead to systems with distributed adaptation
which may allow for the improved performance of intelli-
gent agents in the face of changing system parameters or
changing environmental factors. Preliminary but intriguing
evidence indicates that biological systems may work in a
similar manner.

As more complex autonomous systems are deployed, in-
telligent agents will be faced with tasks which will require
human-level control abilities. This work is hopefully a small
step in that direction.
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