From: AAAI Technical Report SS-02-02. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Context Specific Multiagent Coordination and Planning with Factored MDPs

Carlos Guestrin Shobha Venkataraman Daphne Koller
Computer Science Dept. Computer Science Dept. Computer Science Dept.
Stanford University Stanford University Stanford University
guestrin@cs.stanford.edu shobha@cs.stanford.edu koller@cs.stanford.edu

Abstract

We present a new, principled and efficient algorithm for deci-
sion making and planning cooperative multi-agent dynamic
systems. We consider systems where the agents’ value func-
tion is a sum of local value rules, that specify an increment to
the value in certain contexts, which can depend both on the
current state and on the actions of some subset of the agents.
‘We show that the task of finding an optimal joint action rel-
ative to this type of value function leads to a very natural
communication pattern, where agents send messages along a
coordination graph determined by the structure of the value
rules. We show that the coordination structure depends on the
state of the system, and even on the actual numerical values
assigned to the value rules. We then show how to apply this
framework to the task of multi-agent planning in dynamic
systems. We view the entire multi-agent system as a single,
large Markov decision process (MDP). We assume that the
agents’ reward functions and the system dynamics are de-
scribed in terms of factored rules. We show how to use an
efficient linear programming algorithm to derive a rule-based
value function which is an approximation to the optimal joint
value function. Given this value function, the agents then ap-
ply the coordination graph algorithm at each iteration of the
process to decide on a joint action, potentially leading to a
different coordination pattern at each step of the plan.

1 Infroduction

Consider a system where multiple agents, each with its own
set of possible actions and its own observations, must co-
ordinate in order to achieve a common goal. We want to
find a mechanism for coordinating the agents’ actions so as
to maximize their joint utility. A naive approach is to sim-
ply consider all possible joint actions, and choose the one
that gives the highest value. Unfortunately, this approach is
infeasible in all but the simplest settings, as the number of
joint actions grows exponentially with the number of agents.
Furthermore, we want to avoid a centralized decision making
process, letting the agents communicate with each other so as
to reach a jointly optimal decision. In this paper, we provide
a framework for context-specific coordination in multi-agent
systems. We provide a simple communication algorithm be-
tween the agents based on an elegant and intuitive data struc-
ture which we call the coordination graph. We also show how
this framework can be applied to sequential decision making
using the framework of factored MDPs,

Our approach is based on context specificity — a common
property of real-world decision making tasks [2]. Specifi-
cally, we assume that the agents’ value function can be de-
composed into a set of value rules, each describing a context

17

— an assignment to state variables and actions — and a value
increment which gets added to the agents’ total value in sit-
uations when that context applies. For example, a value rule
might assert that in states where agent 1 and agent 2 are fac-
ing each other in a narrow hallway, and if they both take the
action of moving forward, then the total value is decremented
by 1000 points. This representation is reminiscent of the tree-
structured value functions of Boutilier and Dearden [3], but
is substantially more general, as the rules are not necessarily
mutually exclusive, but can be added together to form more
complex functions.

Based on this representation, we define a notion of a coor-
dination graph, which describes the dependencies implied by
the value rules between the agents’ actions. We provide a dis-
tributed decision-making algorithm that uses message pass-
ing over the communication graph to reach a jointly optimal
action. This algorithm allows the coordination structure be-
tween the agents to vary from one situation to another. For ex-
ample, it can change in different states; e.g., if the two agents
are not near each other, they do not have to coordinate their
motion. The coordination structure can also vary based on
the exact choice of the values in the value rules; e.g., if the
rewards are such that it is simply not optimal for one agent to
enter the hallway, then no coordination will ever be required
regardless of agent 2’s action.

We then extend this framework to the problem of sequen-
tial decision making under uncertainty. We use the frame-
work of Markov decision processes (MDPs), viewing the *ac-
tion” as a joint action for all of the agents and the reward is the
total reward for all of the agents. Once again, we use context
specificity, assuming that the rewards and the probabilities
defining the transition dynamics are all rule-structured. We
show how to use an efficient linear programming algorithm
to construct an approximate value function for this MDP, one
that exhibits a similar rule structure. The agents can then use
the coordination graph to decide on a joint action at each time
step. Interestingly, although the value function is computed
once in an offline setting, the online choice of action using
the coordination graph gives rise to a highly variable coordi-
nation structure.

2 Context specific coordination task

We begin by considering the simpler problem of having a
group of agents select a globally optimal joint action in order
to maximize their joint value. Suppose we have a collection
of agents, where each agent j must choose an action a; from
a finite set of possible actions Dom(A;). We use A to denote

{A1,...,Ay}. The agents are acting in a space described by a
set of discrete state variables, X = {X; ... X,}, where each
X; takes on values in some finite domain Dom(Xj). A state
x defines a setting z; € Dom(X;) for each variable X; and
an action a defines an action a; € Dom(A;) for each agent.
The agents must choose the joint action a that maximizes the
total utility.

In a multi-agent coordination problem, the overall value
function is often decomposed as a sum of “local” value func-
tion, associated with the “jurisdiction” of the different agents.
For example, if multiple agents are collaborating in a task to
clear the debris from some large area, our overall value is the
total amount of debris cleared and the total resources spent.
But, we can often decompose this into a set of local value
functions, where the value function for each agent represents
the amount of debris cleared from its area of responsibility,
and the amount of resources it spent.

A standard solution is to simply specify a table for each
agent, listing its local values for different combinations of
variables on which the value depends. However, this repre-
sentation is often highly redundant, forcing us to represent
many irrelevant interactions. In our example, an agent A;’s
value function might depend on the actions of a neighboring
agent A, e.g., if Aa’s action is moving debris into A;’s terri-
tory. However, this is only one situation, and there is no point
in making A;’s entire value function depend on As’s action
in all other situations. As another example, the agent’s value
function might depend on whether it is currently raining, but
only if there is a hole in the roof in his area; there is no point
depending on this attribute in all other situations.

To exploit such context specific independencies, we define
value rules:

Definition 2.1 A value rule {p,c:v) is a function p
{X,A} — IR, where the context c is an assignment to a
subset of the variables C C {X, A} and v € IR, such that:

o(x,8) = { v, if {x,a} is consistent with c;
%771 0, otherwise;

where an assignment c to some set of variables C is consis-
tent with some other assignment b to a subset of variables B
if ¢ and b assign the same value to every variable in CNB. |
In our hallway example from the introduction, we might have

arule .
(Pny A1, Az in-hallway = true A

Ay =straight A Ag = straight : —1000).

This definition of rules adapts the definition of rules for
exploiting context specific independence in inference for
Bayesian networks by Zhang and Poole [13].

Note that the value of the rule p(x,a) can be defined by
observing only the context variables in the assignment {x,a}.
We call such function a restricted domain function:
Definition 2.2 We say that a function f is restricted fo a do-
main Dom|[f] = C C X if f : C — R. If f is restricted
toY and Y C Z, we will use f(z) as shorthand for f(y)
where y is the part of the instantiation z that corresponds to
variablesinY. 1
Under this definition, a value rle (p,c:v)
has domain restricted to C, eg., Dom|ps] =
{agent 1 in-hallway, agent 2 in-hallway, A;, A2}.

The immediate local utility Q; of agent j can be repre-
sented by a set of value rules, we call such function a rule-
based function or rule function for short:

18

Definition 2.3 A rule-based function f is a function f :
{X, A} = R, composed of a set of rules {p1,...,pn} such
that:

fx,2) =) pi(x,a). I

i=1
Thus, each Q; is defined by a set of rules {p,.. ., P}

The notion of a rule-based function is related to the tree-
structure functions used by Boutilier and Dearden [3] and by
Boutilier et al. [2], but is substantially more general. In the
tree-structure value functions, the rules corresponding to the
different leaves are mutually exclusive and exhaustive. Thus,
the total number of different values represented in the tree is
equal to the number of leaves (or rules). In the rule-based
function representation, the rules are not mutually exclusive,
and their values are added to form the overall function value
for different settings of the variables. Different rules are
added in different settings, and, in fact, with k rules, one
can easily generate 2* different possible values. Thus, the
rule-based functions can provide a compact representation to
a much richer class of value functions. .

Note that if each rule p] has domain restricted to C?, then

- i
Q; will be a restricted domain function of U;C]. The domain
of Q; can be further divided into two parts: the observable
state variables:

Observable[Q;] = {X: € X | X; € Dom[Q;]};
and the relevant agent decision variables:
Relevant[Q;] = {A: € A | A; € Dom[Q;]}.

This distinction will allow us to characterize the observations
each agent needs to make and the type of communication
needed to obtain the joint optimal action, i.e., the joint action
choice that maximizes the total utility @ = 3°; Q;.

3 Cooperative action selection

Recall that the agents’ task is to select a joint action a that
maximizes) ; Q;(x,a). The fact that the Q; depend on the
actions of multiple agents forces the agents to coordinate their
action choices. As we now show, this coordination can be
performed using a very natural data structure called a coordi-
nation graph.

3.1 Coordination graph

Intuitively, a coordination graph connects agents whose lo-
cal value functions interact with each other. This definition is
the directed extension of the definition we proposed in previ-
ous work [8] and is the collaborative counterpart of the rele-
vance graph proposed for competitive settings by Koller and
Milch [1 lg.

Definition 3.1 A coordination graph for a set of agents with
local utilities Q@ = {Q1,...,Qg} is a directed graph whose
nodes corresponds to agent decisions {A,,...,Ay}, and
which contains an edge A; — A; if and only if A; €
Relevant[Q;]. 1

An example of a coordination graph with 6 agents and one
state variable is shown in Fig. 1(a). We see, for example, that
agent A3 has the parents A; and A2, because both their value
functions depend on Aj3’s action; conversely, A3 has the child
Ay, because A4’s action affects Q3.

(ana,:4)

{a,na,:2) m

(a,ax:T}
m'm (@ ad,AnE:3
{a,na,Ax:5)

(g, aa,ax:l)

‘tyAd ax:id;

(@ nd, Ax:2)

(@, AayAx:2) W (3, na,Ax:3) (@, nay:2)

(ayna,ax:3) {ayra,:3)

(@ (b)

Figure 1: (a) Coordination graph for a 6-agent problem, the
rules in Q); are indicated in the figure by the rules next to A;.
(b) Graph after conditioning on the state X = z.

Recall that our task is to task to find a coordination strat-
egy for the agents to maximize) j Q; at state x. First, note
that the domain of the Q; functions that comprise the value
can include both action choices and state variables. We as-
sume that the agents have full observability of the relevant
state variables, i.e., agent j can observe Observable{Q;].
Given a particular state x = {zy,...,Zn}, agent j discards
all rules in Q); not consistent with the current state x. We call
this process conditioning on the current state.

Note that the agents do not need to have access to all of
the state variables: An agent j only needs to observe the vari-
ables that appear in its Q; function, i.e., Observable[Q;],
thereby decreasing considerably the amount of information
each agent needs to observe. Interestingly, after the agents
observe the current state the coordination graph may become
simpler, in our example the edges A; — Az and Ag = A4,
disappear after agents observe that X = =z, as shown in
Fig. 1(b). Thus, agents A; and Ag will only need to coor-
dinate directly in the context of X = Z.

After conditioning on the current state, each ¢); will only
depend on the agents’ action choices A. Qur task now is to
select a joint action a that maximizes 3, Q;(a). The struc-
ture of the coordination graph will allow us to design an ef-
ficient coordination strategy for the agents. Maximization in
a graph structure suggests the use of non-serial dynamic pro-
gramming (1], or variable elimination. To exploit structure in
rules, we use a variable elimination algorithm similar to vari-
able elimination in a Bayesian network with context specific
independence [13].

Intuitively, the algorithm operates by having an individual
agent “collect” value rules relevant to them from their parents.
The agent can then decide on its own strategy, taking all of the
implications into consideration. The choice of optimal action
and the ensuing payoff will, of course, depend on the actions
of agents whose strategies have not yet been decided. For
example, A; optimal “strategy” might be to go left if A; goes
left, with an incremental value of 3, and to go right if A, goes
right, with an incremental value of —1. However, A, cannot
make a final decision on what to do without knowing Az’s
final decision, which might depend on various other factors
as well. The agent therefore simply communicates the value
ramifications of its strategy to other agents, so that they can
make informed decisions on their own strategies.

We now describe the algorithm more formally. In the de-
scription of our algorithm, we will need to perform a maxi-
mization step, i.e., “maximizing out” some variable. We will
use MazOut (f, A;) to denote a procedure that takes a rule

19

function f and a variable A; and returns a rule function g
such that: g(A) = max,, f(A). We will describe the imple-
mentation of such procedure in Section 3.2.

Our rule-base coordination algorithm computes the maxi-
mum utility by repeating the following loop, until all agents
have decided on a strategy.

1. Select some undecided agent 4;; -

2. Agent A; receives a message from its parents in the graph
with all the rules that depend on Ay, i.e., all rules {p, ¢ : v)
such that A; € C. These rules are added to @;. At this
point the graph structure will change, in particular A; has
no parents in the coordination graph and can be optimized
independently.

3. Agent A; computes its local maximization, i.e., computes
o1 = MazOut (Q;, A;). This local maximization corre-
sponds to a strategy decision.

4. Agent A, distributes the rules in g; to its children. At this
point the graph structure changes: A;’s strategy is now
fixed, and therefore it has been “eliminated”.

Once this procedure is completed, a second pass in the reverse
order can be performed to compute the optimal action choice
for all of the agents. We note that this algorithm is essentially
a context specific extension of the algorithm used to solve in-
fluence diagrams with multiple parallel decisions [9] (as is the
one in the next section). However, to our knowledge, these
ideas have not been applied to the problem of coordinating
the decision making process of multiple collaborating agents.

The cost of this algorithm is polynomial in the num-
ber of new rules generated in the maximization operation
MazOut (Q;, A;). The number of rules is never larger and
in many cases exponentially smaller than the complexity
bounds on the table-based coordination graph in our previ-
ous work [8], which, in turn, was exponential only in the in-
duced width of the graph [6]. However, the computational
costs involved in managing sets of rules usually imply that
the computational advantage of the rule-based approach will
only be prominent in problems that possess a fair amount of
context specific structure.

More importantly, the rule based coordination structure
exhibits several important properties. First, as we discussed,
the structure often changes when conditioning on the current
state, as in Fig. 1. Thus, in different states of the world, the
agents may have to coordinate their actions differently. In
our example, if the situation is such that a certain passage-
way is blocked, agent A; might have to transport his debris
through the territory of agent A, requiring coordination be-
tween them.

More surprisingly, interactions that seem to hold between
agents even after the state-based simplification can disap-
pear as agents make strategy decisions. For example, if
@1 = {{(a1Aaz:5),(aGr Aaz AT3: 1)}, then A;’s opti-
mal strategy is to do a; regardless, at which point the added
value is 5 regardless of Aj3’s decision. In other words,
MazOut (Q1,A:1) = {(az:5)}. In this example, there is
an a priori dependence between A and A3. However, after
maximizing A,, the dependence disappears and agents A
and A3 may not need to communicate.

The context-sensitivity of the rules also reduces commu-
nication between agents. In particular, agents only need to
communicate relevant rules to each other, reducing unneces-
sary interaction. For example, in Fig. 1(b), when agent A;

decides on its strategy, agent As only needs to pass the rules
that involve Ay, i.e., only {a; A @5 : 4). The rule involving
Ag is not transmitted, avoiding the need for agent A4; to con-
sider agent Ag’s decision in its strategy.

Finally, we note that the rule structure provides substan-
tial flexibility in constructing the system. In particular, the
structure of the coordination graph can easily be adapted in-
crementally as new value rules are added or eliminated. For
example, if it turns out that the floor in some room is too weak
to bear the weight of two agents, it is easy to introduce an ad-
ditional value rule that associates a negative value with pairs
of action choices that lead to two agents going into the room
at the same time.

3.2 Rule-based maximization

In our coordination algorithm, we need a maximization op-
erator: the MazOut (f, A;) procedure which takes a rule
function f and a variable A; and returns a rule function g
such that: g{a) = max,, f(a). We will assume that every
rule in f contains variable A;. Our procedure is based on
the rule-based variable elimination developed by Zhang and
Poole [13] for Bayesian network inference. We briefly de-
scribe our construction here, as it is slightly different from
theirs.

First, we are going to need to define two basic op-
erations: rule splitting and residual. A rule {p,c:v)
can be split on an uneliminated variable B with domain

b1,...,b;} and replaced by an equivalent set of rules

(p1,cAby :v),...,{pk,c A bk : v)}. We have just split a
rule on a variable, but we can also split a rule on a context
b: Given a rule {(p,c : v} and a context b compatible with
¢, denote Split (p, b) by the successive splitting of p on each
variable assigned in b which is not assigned in c. -

When we split p on b we are left with a single rule
compatible with b; all other rules have contexts incompat-
ible with b. This set of incompatible rules is called the
residual, denoted by Residual (p,b). More formally, we
have that Residual (p,b) = {}, if b C c; otherwise, se-
lect a variable B assigned as b; in b, but not assigned in
c and set Residual (p,b) = {{cAB=0b;:v) | i # j}U
Residual ({c A B = b; : v),b).

Note that we can now separate the rule that is compat-
ible with the splitting context b, that is, Split (p,b) =
Residual (p,b) U (c Ab : v). None of the other rules will
be compatible with b. Thus, if we want to add two com-
patible rules {(p;,¢; : v1) and {p2, ¢z : v2), then all we need
to do is replace these rules by the set: Residual (p1,c2) U
Residual (p2,¢1) U {1 Acg : vy + v2).

We are now ready to describe the procedure. Note that we
need to add a set of value rules with zero value to guarantee
that our rule function f is complete, i.e., assigns a value to ev-
ery context. The procedure in Fig. 2 maximizes out variable
B from rule function f.

4 One-Step Lookahead

We now consider an extension to the action selection prob-
lem: we assume that the agents are trying to maximize the
sum of an immediate reward and a value that they expect to
receive one step in the future. We describe the dynamics of
such system T using a dynamic decision network (DDN) [5].

20

MazOut (f, B)
g={}
Add completing rules to f:
{pi,B=1b;:0),i=1,...,k.
// Summing compatible rules:
‘While there are two compatible rules {p1,¢: : v1)
and (p2,c2 : v2):
replace these two rules by the set:
Residual (p1, c2) U Residual (p2,c1) U
{c1 Aca:v1 + v2).
// Maximizing out variable B:
Repeat until f is empty:

If there are rules
{B = b A c: v;},Vb; € Dom(B), then
remove these rules from f and add rule
{c : max; v;) to g;

Else select two rules: {p;, B = b; A c; : v;)
and (p;, B = b; A c¢; : v;) such that ¢; is
compatible with c;, but not identical, and
replace them with
Split (pi, c;) U Split (p;, ci)

Figure 2: Maximizing out variable B from rule function f.

Figure 3: A DDN for a 4-agent MDP.

4.1 Dynamic Decision Network

Let X; denote the ith variable at the current time and X
the variable at the next step. The transition graph of a
DDN is a two-layer directed acyclic graph G whose nodes
are {A;,...,4,,X1,...,Xn, X{,...,X,}, and where only
nodes in X' have parents. We denote the parents of X]
in the graph by Parents(X!). For simplicity of exposition,
we assume that Parents(X;) € X U A, i.e, all of the par-
ents of a node are in the previous time step. (This assump-
tion can be relaxed, but our algorithm becomes somewhat
more complex.) Each node X is associated with a condi-
tional probability distribution (CPD) P(X; | Parents(X})).
The transition probability P(x’ | x,a) is then defined to be
I1; P(x; | u;), where u; is the value in x, a of the variables
in Parents(X). The immediate rewards are a set of func-
tions ry, ..., 7y, and the next-step values are a set of functions
hi,...,

Fig. 3 shows a DDN for a simple four-agent problem,
where the ovals represent the variables X; and the rectangles
the agent actions. The diamond nodes in the first time step
represent the immediate reward, while the h nodes in the sec-
ond time step represent the future value associated with a sub-
set of the state variables. The actions of agents A,,..., A4
are represented as squares.

In most representations of Bayesian networks and DDNs,
tables are used to represent the utility nodes r; and h; and
the transition probabilities P(X] | Parents(X})). However,
as discussed by Boutilier et al. f2 , decision problems often

exhibit a substantial amount of context specificity, both in the
value functions and in the transition dynamics. We have al-
ready described a rule-based representation of the value func-
tion components, which exploits context specificity. We now
describe how the rule representation can also be used for the
probabilities specifying the transition dynamics; our formu-
lation follows the lines of [13].

Definition 4.1 A probability rule (x,c: p) isa function
{X,X', A} — [0,1], where the context c is an assignment
10 a subse of the variables C C {X,X',A} andp € [0,1),

such that: 7l }i . i
v v J b if{x,x,a} is consistent with c;
m(x,x',a) = 1, otherwise;
if {x,x',a} is cons:stem with ¢ we say that the rule 7 is ap-
plicable fo {x,x’,a}. A rule-based conditional probability
distribution (rule CPD) P is a function P : {X}, X, A} -
[0,1], composed of a set of probability rules {7r1, T2, .

such that: n

H mi(x},x,a

=1
where for every assignment of (x},x,a) one and only one

rule should be applicable.

We can now define the conditional probabilities P(X] |
Parents(X})) as a rule CPD, where the context variables Cof
the rules depend on variables in {X U Parents(X)}. Using
this compact DDN representation, we will be able to compute
a one-step lookahead plan very efficiently.

P(x} | x,a)

4.2 One-step lookahead action selection

In the one-step lookahead case, for any setting x of the state
variables, the agems aim to maximize:

Q(x,a) = Zr, X, a)+2P(x’|x,a)Zh (x").

i=
We can decompose this global utlhty, or@ functlon, into local
Q; functions:

Qj(x,a) = rj(x,a) + EP(x | x,a)h;(x').

The objective of the agents is to coordinate and find a joint
action that maximizes Q(x,a) = }:J_l Qj(x,a). However,
computing Q;’s naively would require an enumeration of ev-
ery one of the exponentially many states. This computation
can be simplified dramatically by using a factored backpro-
jection [10] to replace the above expectation. Here, we extend
this construction to exploit rule functions.

First, note that h; is a rule function, which can be writ-

ten as hj(x’) = ¥, p(h’)(x’) where p(h3) has the form
<p$h’), Sh’) : 5"’)>. Each rule is a restricted domain func-

tion; thus, we can write the expected value g; of receiving h;
at the next time step, a procedure called backprojection, as

gi(x,8) =) P(x'|xa)h(x')
= ZP(x lxa)Zp"'”(x’);
ZZP(X' | x,a)p{" (x');

- TR [x)
i

1l

21

RuleBac{k}proj (p) . where pis given by (p,c : v).
g=
Generate a set P of relevant probablllty rules: P =
{1rJ € P(X | Parents(X!)) | X; assigned in ¢ and
c is compatible with c; }.
Rem%ve X' assignments from the context of all rules
in
// Multiply compatible rules:
While there are two compatible rules {p;, c1 : p1)
and (pa2, €2 : p2):
replace these two rules by the set:
Residual (p1,c2) U Residual (p2,c;) U
(c1 Ac:pip2).
// Generate value rules:
For each rule 7; in P:

g=gU {({c;: piv)}.

Figure 4: Rule-based backprojection.

where the term v{*") P(c{") | x,a) can be written as a rule

function. We denote this operation by RuleBackproj (p,(-h"))
and describe the procedure in Fig. 4. Thus, we can write the
backprojection of h; as:

93(x8) = 3 _ RuleBackproj o My

where g; is a sum of rule based functions, and therefore also
a rule-based function. For notation purposes, we will use
g; = RuleBackproj(h;) to refer to this definition of back-
projection.
Using this notation, we can write the local utilities Q; as
Qj(x,a) = r;(x,a) + g;(x,a);

which is again a rule-based function. Thus, we can decom-
pose @ as a set of rule-based functions @ ;, one for each agent,
which depend only on the current state x and action choice a.
This is exactly the case we addressed in Section 3.1. There-
fore, we can perform efficient one-step lookahead planning
using the same coordination graph.

5 Multi-Agent Sequential Decision Making

We now turn our attention to the substantially more complex
case where the agents are acting in a dynamic environment
and are trying to jointly maximize their expected long-term
return. The Markov Decision Process (MDP) framework
formalizes this problem. We begin by describing the MDP
framework in general, and then discussing how the techniques
described in the previous section can be used to allow agents
to make optimal collaborative decisions in context-sensitive
dynamic settings.

5.1 Markov Decision Processes

An MDP is defined as a 4-tuple (X, A, R, P) where: X isa
finite set of N = |X| states; A is a set of actions; R is a re-
ward function R : X x A — IR, such that R(x, a) represents
the reward obtained in state x after taking action a; and P is
a Markovian transition model where P(x' | x, a) represents
the probability of going from state x to state x’ with action a.

We assume that the MDP has an infinite horizon and that
future rewards are discounted exponentially with a discount
factor v € [0, 1). A stationary pollcy « for an MDP is a map-
ping 7 : X = A, where w(x) is the action the agent takes at

state x. The optimal value function V* is defined so that the
value of a state must be the maximal value achievable by any
action at that state. More precisely, we define Qy(x,a) =
R(x,a) + 7Y, P(x' | x,a)V(x'), and the Bellman opera-
tor T* to be T*V(x) = max, Qv(x,a). The optimal value
function V* is the fixed point of 7*: V* = T*V*,

For any value function V, we can define the policy ob-
tained by acting greedily relative to V: Greedy(V)(x) =
arg max, Qy(x, a). The greedy policy relative to the optimal
value function V* is the optimal policy 7* = Greedy(V*).

There are several algorithms for computing the optimal
policy. One is via linear programming. Our variables are
W,...,Vn, where V; represents V(x(¥) with x(9 referring
to the ith state. Our LP is:

o'V
Vi> R(x(’) a)+73; P(x | x®, a)V;
Vie{l,...,N},a € A

Minimize:
Subject to:

Where the state relevance weights o can be any positive
weight vector such that a(x) > 0,Vx and }°, o(x) = 1,
i.e., we can think of a as a probability distribution over the
states,

In our setting, the state space is exponentially large, with
one state for each assignment x to X. We use the common
approach of restricting attention to value functions that are
compactly represented as a linear combination of basis func-
tions H = {hy,...,hi}. A linear value function over H is a
function V that can be written as V(x) = 2;5:1 wjhj(x) for
some coefficients w = (wy, ..., w;) . Itis useful to define an
|X] x k matrix A whose columns are the k basis functions,
viewed as vectors. Our approximate value function is then
represented by Aw.

The linear programming approach can be adapted to use
this value function representation [12] by changing the objec-
tive function to a - Aw, and changing the constraints to have
the form, Aw > 7*Aw. In this approximate formulation,
the variables are w,, ..., w, i.e., the weights for our basis
functions. The LP is given by:

Variables: wj,...,wg;
Minimize: a(x) ; Wi hi(x) ;
Subject to w.) >
R(x,a) +7Y0 P(x' | x,a) E w; hi(x")
VxeX,Vac A

2
In other words, this formulation takes the exact LP and sub-
stitutes the explicit state value function by a linear value func-
tion representation 3 wi hi(x), or, in our more compact no-
tation, V is replaced by Aw. There is, in general, no guaran-
tee as to the quality of the approximation Aw, but the recent
work of de Farias and Van Roy [4] provides some analysis of
the error relative to that of the best possible approximation in
the subspace, and some guidance as to selecting a so as to
improve the quality of the approximation. This transforma-
tion has the effect of reducing the number of free variables in
the LP to k (one for each basis function coefficient), but the
number of constraints remains |X| x |.A]. In the next section,
we discuss how we can use the structure of a factored MDP
to provide a compact representation and efficient solutlon of
this LP.

22

5.2 Factored MDPs

Factored MDPs [2] allow the representation of large struc-
tured MDPs by using a dynamic Bayesian network to repre-
sent the transition model. Our representation of the one-step
transition dynamics in Section 4 is precisely a factored MDP,
where we factor not only the states but also the actions.

In [10], we proposed the use of factored linear value func-
tions to approximate the value function in a factored MDP.
These value functions are a weighted linear combination of
basis functions, as above, but where each basis function is
restricted to depend only on a small subset of state variables.
The h functions in Fig. 3 are an example. In this paper, we ex-
tend the factored value function concept to rules. Thus, each
basis function A; is a rule function. If we had a value function
V represented in this way, then we could use our algorithm of
Section 4 to implement Greedy(V) by having the agents use
our message passing coordination algorithm at each step.

First, consider the objective function of the LP in (2):

Objective = Z a(x) Z wj hj(x).
x 3

Representing such an objective function explicitly would re-
quire a summation over all the exponentially large state space.
However, we can use structure in the rule functions to repre-
sent this objective function compactly. Note that:

20 30 hy(x)

= Zw, ZZa(x)p"'”(x);

ij ngh: a(cgh,)) = Zw,-a,-;
£ -

(hi)y —
where a(c;™") z:[x consitent with <!
are marginalizing out from a all variables that do not appear
in the context of the rule. Such computation can be very ef-
ficient if we use a factored representation for the state rel-
evance weights a, e.g., a Bayesian network. In our exper-

iments, we used an uniform distribution. Here, a(csh") is
simply 1 /|C("") Using this method, we can precompute
one coefficient a; for each basis function and our objective
function simply becomes }: w;a;.

The second step is the representation of the constraints:

> wihi(x) > R(x,a) + 7 P(X' | x,8)) wi hi(x);

1
VxeX,VaeA.

Although there are exponentially many constraints, we can
replace these constraints by an equivalent set which is ex-
ponentially smaller. In previous work, we have applied such
transformation in the context of single agent problems [7] and
table-based multiagent factored MDPs [8]. We will now ex-
tend these ideas to exploit the rule-based representation of our
reward and basis functions.

First, note that the constraints above can be replaced by a
single, nonlinear constraint:

0 2 max [R(x,a) + > (r9i(x) — hi()wi | 5

Objective =

h)y a(x), ie., we

where g; = RuleBackproj(h;) = 3., P(x' | x,a)h;(x'),
which can be computed as described in Section 4.2. Al-
though, a naive approach to maximizing over the state space
would require the enumeration of every state, as we have
shown in Section 3.1, the structure in rule functions allow us
to perform such maximization very efficiently. We are going
to apply the same intuition to decompose this nonlinear con-
straint into a set of linear constraints following a very similar
procedure to variable elimination.

More generally, suppose we wish to enforce the constraint
0 > mazyF"(y), where F¥(y) = 3, f"(y) such that
each f; is a rule; in the multiagent case we are considering
Y = X U A. The superscript w means that f; might depend
onw. Specifically, if f; comes from a basis function, it would
be multiplied by some weight w;; if f; is a rule from the
reward function, it will not.

In our factored linear program, we generate LP variables,
which we are going to associate with contexts; we call these
LP rules. An LP rule has the form (e, c : u}; it is associated
with a context ¢ and a variable u in the linear program. We
begin by transforming all our original rules f]‘-"’ into LP rules

as follows: If rule f; has the form (p;, c; : v;); and comes
from basis function ¢, we introduce an LP rule (e;, c; : u;)
and the equality constraint u; = w;v;; if f; has the same
form but comes from a reward function, we introduce an LP
rule of the same form, but the equality constraint u; = v;.

Now, we have only LP rules and need to represent the con-
straint: 0 > mazy -, e;(y). To represent such constraint,
we follow an algorithm very similar to the variable elimina-
tion procedure in Section 3.1. The main difference occurs in
the MazOut (f, B) operation in Fig. 2. Instead of generat-
ing new value rules, we generate new LP rules, with associ-
ated new variables and new constraints. The simplest case
occurs when computing a residual or adding two LP rules.
For example, when we would add two value rules in the orig-
inal algorithm, we instead perform the following operation
on their associated LP rules: If the LP rules are {e;, ¢; : u;)
and (e;, c; : u;), we create a new rule with context c; A ¢;
whose value should be u; + u;. To enforce this last con-
straint, we simply create a new LP variable u; associated with
the rule (ex,c; A c; : ux) and add an additional constraint
ur = u; + u;. A similar procedure can be followed when
computing the residuals.

More interesting constraints are generated when we per-
form a maximization. In the original algorithm in Fig. 2 this
occurs when we create a new rule {c : max; v;). Foliowing
the same process as in the LP rule summation above, if we
were maximizing (e;, B = b; A ¢; : u;),Vb; € Dom(B), we
can generate a new LP variable u; associated with the rule
(ek,c : ui). However, we cannot add the nonlinear constraint
ux = max; u;, but we can add a set of equivalent linear con-
straints ux > u;, for each 7.

Therefore, using these simple operations, we can exploit
structure in the rule functions to represent the nonlinear con-
straint e, > mazy Y, e;(y), where ey, is the very last LP
rule we generate. A fzmal constraint u, = 0 implies that
we are representing exactly the constraints in the LP of (2),
without having to enumerate every state and action. This ex-
ponential saving will allow us to solve very large rule-based
factored MDPs very efficiently.

More interestingly, this structure can give rise to very in-

23

teresting coordination behavior. The value functions that we
construct using this LP algorithm are rule-based functions.
These are the value functions used as the one-step lookahead
in Section 4. Assuming that the reward function and tran-
sition model have a similar structure, we will get an overall
value function that is also a rule-based function. This value
function is the one that is used at each stage of the MDP for
the agents to select an optimal joint action.! As discussed in
Section 3.1, the use of rule-based functions allows the agents
to use the coordination graph as a data structure which the
agents can use to jointly select optimal actions in a distributed
way.

It is important to note that, although the same value func-
tion is used at all steps in the MDP, the actual coordination
structure varies substantially between steps. As we discussed,
the coordination graph depends on the state variable assign-
ment X, so that in different states the coordination pattern
changes.

Furthermore, as we discussed, the coordination also de-
pends on the numerical values of the value rules; i.e., some-
times dominance of one action over another will allow the
elimination of a coordination step without losing optimality.
Thus, even an MDP with the same structure and the same set
of value rules, a different set of reward values might lead to a
different coordination strategy.

Finally, we observe that the structure of the computed
value rules determines the nature of the coordination. In some
cases, we may be willing to introduce another approximation
into our value function, in order to reduce the complexity of
the coordination process. In particular, if we have a value rule
(p, ¢ : v) where v is relatively small, then we might be willing
to simply drop it from the rule set. If ¢ involves the actions of
several agents, dropping p from our rule-based function might
substantially reduce the amount of coordination required.

6 Experimental results

We tested our new rule-based algorithm on a variation of the
multiagent SysAdmin problem presented in [8]. In this prob-
lem, there is a network of computers and each computer is
associated with an administrator agent. Here, the dynamic
system associated with each machine is represented with an
agent A; and three variables: Status S; € {good, faulty,
dead}, Load L; € {idle, loaded, process successful} and
NeighborMessage M; € {1,...,4 neighbors}. The system
receives a reward of 1 if a process terminates successfully (in
the ring topologies, one machine receives reward of 2 to break
symmetry). If the Status is faulty, processes take longer to ter-
minate. If the machine dies, the process is lost. Each agent
A; must decide whether machine ¢ should be rebooted, in
which case the Status becomes good and any running process
is lost. Machines become faulty and die with small probabil-
ities. However, a dead neighbor on the network may trans-
mit bad packets, considerably increasing the probability that
a machine will become faulty and die. This neighbor interac-
tion is governed by the NeighborMessage variable, which, at
every time step, uniformly selects one neighboring machine

't is important to note that, by optimal, we mean optimal relative
to the computed value function. The value function itself is an ap-
proximation of the long-term optimal value function, and therefore
does not guarantee truly optimal behavior.

L
°:"' ye160e- 17001 _o® .l"
30000 | ...
"l ..-
20000 o - “
3 ./’ { B " oot
+ 10000 - 10 oo
easaeeseset
° 4_,".'..—-—-“3-““:- sz oloos egoeo?™’
[L] 10 135 2 E-]] 5 10 15 2 E-]
oumber of spems mber of aghnts

im s " Iu p o EET
& ---omnon - .
150 e N %0 ;" i
| P s e i 0 !
.l. o i i
® ".._:..Mc"”’”’ ® M -t
o in33 —a o
° L] 10 15 » » %
o wmd"m 150 ‘ember of sgeats

©) @

(@
Figure 5: Bidirectional ring: (a) Number of LP constraints; (b) Running time. Other running times: (¢) Unidirectional ring; (d) Inverted star.

to receive packets from. For a network of n machines, the
number of states in the MDP is 9" and the joint action space
contains 2" possible actions, e.g., a problem with 30 agents
has over 10%° states and a billion possible actions.

We implemented the rule-based factored approximate lin-
ear programming and the message passing coordination algo-
rithms in C++, using CPLEX as the LP solver. We experi-
mented with “single” basis functions, which contains a rule
basis function for each joint value of each S; and L;. We
use v = 0.95. Three network topologies were considered:
bidirectional ring, where machine ¢ can communicate with
machine z + 1 and ¢ — 1 (mod n); unidirectional ring, where .
machine 1 can communicate only with machine 7 + 1 (mod
n); and reverse star, where every machine can send packets
only to machine 1.

For bidirectional ring, for example, as shown in Fig. 5(a),
the total number of constraints generated grows linearly with
the number of agents. Furthermore, the rule-based (CSI)
approach generates considerably fewer constraints than the
table-based approach (non-CSI). However, the constant over-
head of managing rules causes the rule-based approach to

be about two times slower than the table-based approach, as

shown in Fig. 5(b). Similar observations can be made in the
unidirectional ring case in Fig. 5(c).

However, note that in ring topologies the number of par-
ents for each variable in the DDN and the induced width of
the coordination graph are constant as the number of agents
increases. On the other hand, in the reverse star topology, ev-
ery machine in the network can affect the status of machine
1, as all machines can send it (potentially bad) packets. Thus,
the number of parents of S; increases with the number of
computers in the network. In this case, we observe quite a
different behavior, as seen in Fig. 5(d). In the table-based
approach, the tables grow exponentially with the number of
agents, yielding an exponential running time. On the other
hand, the size of the rule set only grows linearly, yielding a
quadratic total running time.

Notice that in all topologies, the sizes of the state and ac-
tion spaces are growing exponentially with the number of ma-
chines. Nonetheless, the total running time is only growing
quadratically. This exponential gain has allowed us to run
very large problems, with over 1024 states.

7 Conclusion

We have provided principled and efficient approach to plan-
ning in multiagent domains. We show that the task of finding
an optimal joint action relative to a rule-based value function
leads to a very natural communication pattern, where agents
send messages along a coordination graph determined by the
structure of the value rules. Rather than placing a priori re-
strictions on the communication structure between agents, the
coordination structure dynamically changes according to the

24

state of the system, and even on the actual numerical values
assigned to the value rules. Furthermore, the coordination
graph can be adapted incrementally as the agents learn new
rules or discard unimportant ones.

Our initial experimental results are very promising. By ex-
ploiting rule structure in both the state and action spaces, we
can deal with considerably larger MDPs than those described
in previous work. In a family of multiagent network adminis-
tration problems, the algorithm tackles MDPs with over 10124
states and over 10%® actions. Furthermore, we demonstrated
that the rule-based method can scale polynomially as the size
of parent sets increases, as opposed to the exponential growth
of the table-based method. We believe that the adaptive co-
ordination graph presented here will provide a well-founded
schema for other multiagent collaboration and communica-
tion approaches.

Acknowledgments We are very grateful to Ronald Parr for
many useful discussions. This work was supported by the ONR un-
der the MURI program “Decision Making Under Uncertainty” and
by the Sloan Foundation. The first author was also supported by a
Siebel Scholarship.

References

{1] U. Bertele and F. Brioschi. Nonserial Dynamic Programming.
Academic Press, New York, 1972.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research, 11:1 — 94, 1999,

[3]1 C. Boutilier and R. Dearden. Approximating value trees in
structured dynamic programming. In Proc. ICML, 1996.

[4] D.P. de Farias and B. Van Roy. The linear programming ap-
proach to approximate dynamic programming. Submitted to
the IEEE Transactions on Automatic Control, January 2001,

[5] T.Dean and K. Kanazawa, A model for reasoning about persis-
tence and causation. Comp. Intelligence, 5(3):142-150, 1989.

f6] R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113(1-2):41-8S, 1999.

[7] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm
projections for factored MDPs. In Proc. of IICAI-01, 2001.

[81 Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent
planning with factored MDPs. In NIPS-14, 2001.

[9] F. Jensen, F. Jensen, and S. Dittmer. From influence diagrams
to junction trees. In UAI-94, 1994.

(10] D. Koller and R. Parr. Computing factored value functions for
policies in structured MDPs. In IJCAI-99, 1999.

[11] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. In JJCAL-01, 2001.

[12] P. Schweitzer and A. Seidmann. Generalized polynomial
approximations in Markovian decision processes. Journ. of
Math. Analysis and Applications, 110:568 — 582, 1985,

{131 N.L. Zhang and D. Poole. QOn the role of context-specific in-
dependence in probabilistic reasoning. In IJCAI-99, 1999.

