From: AAAI Technical Report SS-02-02. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

On measuring the usefulness of modeling in a competitive
and cooperative environment

Leonardo Garrido -

Ramén Brena
Centro de Inteligencia Artificial, Tecnolégico de Monterrey

Katia Sycara
The Robotics Institute, Carnegie Mellon University

Abstract

This paper presents recent results of our experimental
work in quantifying exactly how useful is building mod-
els about other agents using no more than the observa-
tion of others' behavior. The testbed we used in our
experiments is an abstraction of the meeting scheduling
problem, called the Meeting Scheduling Game, which
has competitive as well as cooperative features. The
agents are selfish, and use a rational decision theo-
retic approach based on the probabilistic models that
the agent is learning. We view agent modeling as an
iterative and gradual process, where every new piece
of information about a particular agent is analyzed in
such a way that the model of the agent is further refined.
We present our Bayesian-modeler agent which updates
his models about the others using a Bayesian updating
mechanism. We propose a framework for measuring
the performance of different modelling strategies and
establish quantified lower and upper limits for the per-
formance of any modeling strategy. Finally, we contrast
the performances of a modeler from an individual and
from a collective point of view, comparing the benefits
for the modeler itself as well as for the group as a whole.

Introduction

Several approaches in the field of multiagent systems (MAS)
(Durfee 1991; Wooldridge & Jennings 1995) make heavy
use of beliefs as an internal model of the world (Bratman
1987) One form of belief of particular importance in muiti-
agent systems are the agent’s beliefs about other agents (Vi-
dal & Durfee 1997b). This kind of belief could come from a
preexisting knowledge base (a kind of “prejudice”), or could
be inferred from observing others’ behavior,

The purpuse of a modelling activity could be to benefit a
specific agent, in the case of “selfish” agents, or to improve
the performance of a group as a whole, in the case of cooper-
ative agents -or even a combination of both. In real life there
are many situations where cooperation and competition are
present simultaneously. Collective sports are a good exam-
ple, and for automated agents, we have simulated sports like
the Robocup automated soccer competition (Stone, Veloso,
& Riley 1999).

Copyright © 2002, American Association for Artificial Intelli-
gence (Www.aaai.org). All rights reserved.

48

Now, concerning the modelling activity, in the soccer
competition example it could be beneficial to learn the other
teams’ strategy in order to exploit their weaknesses. Of
course, in this soccer example it is not interesting for one
player to model its team mates, as all the players in one
team are normally designed by the same programmers. In-
deed, good real soccer teams improve as the different play-
ers get used to their mates’ styles and reactions. We see a
broad spectrum ranging from purely competitive situation
(like zero-sum games), in one extreme, to purely coopera-
tive situations where everybody gets benefits from a better
performance, in the other extreme; there are of course many
intermediate situations. In this work, we investigate such an
intermediate scenario, where there are individualistic as well
as collective issues.

Research on modeling other agents has been approached
from different perspectives. = Carmel and Markovitch
(Carmel & Markovitch 1996), for example, have presented
an heuristic algorithm to infer a model of the opponent’s
strategy, represented as a Deterministic Finite Automaton
(DFA), from its input/output behavior. The work of Mor
et al (Mor, Goldman, & Rosenschein 1996) also sees agent
strategies as DFA, showing that a class of automata can be
learned in polynomial time. Another interesting work on op-
ponent modeling has been presented by Sen and Arora (Sen
& Arora 1997) who propose a scheme for learning opponent
action probabilities and a maximum expected utility strategy
for exploiting weaker opponents.

Tambe et al (Tambe & Rosenbloom 1996) have proposed
an approach for tracking recursive agent models based on a
plan recognition task. Gmytrasiewicz (Gmytrasiewicz 1996)
has presented the Recursive Modeling Method (RMM)
which uses nested models of other agents, combining game-
theoretic and decision-theoretic mechanisms. Suryadi and
Gmytrasiewicz (Suryadi & Gmytrasiewicz 1999) have pro-
posed the use of influence diagrams for learning models
about other agents. Vidal and Durfee (Vidal & Durfee 1996)
have developed an algorithm in order to see which of the
nested models are important to choose in an effective man-
ner. These authors have also presented a framework for de-
termining the complexities of learning nested models (Vidal
& Durfee 1997a).

In the robotic soccer domain there have been other related
papers. For instance: mechanisms for learning partners and

competitors’ skills as ratios of effectiveness (Nadella & Sen
1997) and the use of Hidden Markov Models to recognize
strategic behaviors (Han & Veloso 1999).

We view agent modeling as an iterative and gradual pro-
cess, where every new piece of information about a partic-
ular agent is analyzed in such a way that the model of the
agent is further refined, using a Bayesian updating mecha-
nism. There have been other papers sharing this view, for

instance: Gmytrasiewicz et al (Gmytrasiewicz, Noh, & Kel-

logg 1998) have proposed a framework for Bayesian updat-
ing of agent models within the formalism of the RMM; Zeng
and Sycara (Zeng & Sycara 1998) have presented an exper-

imental research where a buyer models the supplier under

a Bayesian representation in Bazaar, a sequential decision
making model of negotiation,

In this particular research, we are interested in evaluat-
ing, in an experimental way, the advantage an agent can ob-
tain by building models about the others’ roles and strate-
gies. This advantage is, in the first place, taken from a “self-
ish” or individualistic point of view. Later on, we comple-
mented this research with an analysis of the collective ben-
efits (or damages) resulting from a modelling activity. In
(Garrido, Brena, & Sycara 1998) we presented our experi-
mental framework and reported preliminary experiments us-
ing some non-modeling strategies. In this paper, we present
our experimental research in exploring a range of strategies
from least- to most-informed in order to evaluate the upper-
and lower-limits of the modeler agent performance. Later
on, we discuss the benefits that could be drawn from the
modelling activity from a collective point of view.

In the following sections, we first review our experimental
framework. We present the basic non-modeling and model-
ing strategies. Then, we present our experimental scenarios
and discuss the results we have obtained. Finally, we present
the conclusions of this paper.

Experimental Framework

We have implemented the Meeting Scheduling Game (MSG)
{Garrido & Brena 1998) as our experimental testbed which
models some characteristics of the distributed meeting
scheduling problem. Our main concems creating this test
bed were: to allow self-interested as well as cooperative be-
havior, show or hide players’ private information, and define
different players’ roles and strategies.

In this game, a group of agents try to arrange a meeting in
such a way that certain meeting slot is available for as many
as possible players. So that each player tries to arrange a
meeting at a convenient and free time slot with an acceptable
utility for him.

Each player’s role is defined by a preference profile which
is coded as a calendar slot utility function, ranking each slot
from the most preferable slot to the least preferable one. We
have defined several agent roles. For example, the following
are some basic and familiar agent roles:

The Early-Rising. It prefers the early hours of the day.

The Night-Owl. It prefers the meetings to be scheduled as
late as possible.

The Medium. It prefers the meetings to be around noon.

49

The Extreme. It prefers to have meetings early in the mom-
ing or late in the afternoon.

Figure 1 shows examples of these roles with four arbitrary
eight-slots calendars.

L:-—__-::

-

_IESLZIED:]f

Figure 1: Four basic agent roles with eight-slots calendars.
Black bars represent arbitrary busy slots.

Player’s strategies are rules that tell them what actions
to choose at each decision point. Strategies can take into
account only the own player’s preference profile or they can
even use models about the others. In the subsequent sections
we will define several different strategies.

Since a combination of a role and a strategy de-
fines a player’s preferences and behavior, the conjunction
role/strategy of a player is seen as his personality in the
MSG.

Each player proposes a slot taken from his own calendar
composed of a working day with eight hours. Each player’s
calendar is set at a specific calendar density which is the pro-
portion of busy hours in the calendar. The goal of a player
in the MSG is to accumulate more points than his competi-
tors in the game. A game consists of a predefined number of
rounds and each player tries to accumulate points after each
round.

There is a referee who ensures that all the players obey the
rules of the game. He is also responsible for accumulating
points for each agent after each round in an individual point
counter for each player through the whole game.

After each round, each player’s calendar is randomly re-
set, scrambling free and busy slots, maintaining the same
predefined calendar density. Then, another round is started
and the process is repeated until the predefined number of
rounds is accomplished. Note that this implies we are not
really “schedulling” any meetings, as the winning slots does
not stand from a round to the next.

In each round, every player simultaneously proposes a
slot according basically to his own individual strategy and
role. However, the players’ proposals are not completely de-
termined by their own personalities because some slots can
be busy in their calendars. In the first round, each player
randomly proposes an available slot. These initial random
proposals are needed as a "bootstrap” for the collaborative
strategy defined in the following section. The other strate-
gies are not affected by this initial round, since this is the
only round where nobody accumulate points.

After all the players make their proposals, several teams
are formed. Each team is composed of all those players who

proposed the same calendar slot. Then, each team joint util-
ity is calculated, summing up all the team members’ calen-
dar utilities:

TJU(t)= Y Unm(s:)
vYmet

Here, t is a team, ™ is a member of the team, s; is the slot
proposed by members in t, Up, is the slot utility of member

m. Finally, the round is won by the team which accumulates

the greatest team joint utility.

Once the winning team is selected, each agent earns
points according to the following predefined scoring proce-
dure: all the players outside the winning team accumulate
zero points for that round and each agent a in the winning
team ¢ accumulates his own slot utility plus the team joint
utility:

Ga(s) = TIU(t) + Ua(se)
The purpose of this mixed procedure is to promote a balance
between selfish and collaborative attitudes. Finally, the win-
ner of the whole game is who gets the highest accumulated
points at the end of the last round.

Basically, this game is a competitive one, since each
player’s goal is to accumulate more points than his com-
petitors over a series of independent meetings (i.e. rounds).
However, each player needs to collaborate by joining in a
team that will eventually make him win, Furthermore, some-
times some meetings agreements are more convenient than
others from a collective point of view, in the sense that the
collective utility is greater, but that can not be necessarily
true from the individual point of view of some players.

Although this game is based on the general distributed
meeting scheduling problem, it resembles only some of its
characteristics.

Basic strategies

We set a framework for characterizing all the possible strate-
gies in the MSG, ranging from a least-informed to the most-
informed one. This allows us to place every given strategy
in a framework where it can be better compared to others,
and in particular to place modelling strategies in context.

The lower and upper limits of our framework are given by
the following strategies:

Indifferent Strategy: An agent using this strategy chooses
his next proposal among his action set using an uniform
(equiprobable) distribution.

Oracle Strategy: An agent using this strategy can see in
advance the others’ next move because he knows the other
agents’ calendars, roles and strategies. For each free slot
s in his calendar, he calculates his possible gain G,(s),
if he proposed that slot. Then, he finds the agent m who
would earn the maximum gain G,,,(s) among the rest of
the players, if he proposed that slot. Then, he calculates
the utility of each slot s as his gain with respect to the
profit of agent m:

U(s) = Gols) — Grm(s)

After checking all his free slots, he proposes the slot with
the highest utility: arg max, U(s).

50

An indifferent agent does not take into account any infor-
mation about the other agents. He does not even take into
consideration his own preferences. However, he must pro-
pose a free slot in his calendar, as must do all the other strate-
gies as well. This strategy is considered as the lower limit
for every “reasonable” strategy, since a strategy performing
worse than the random is hardly worth considering.

An oracle agent knows the roles and strategies of the
other agents (i.e. he has the correct models about the others).
Furthermore, he even knows the others’ calendars. So that
an oracle agent is able to see in advance the others’ moves
and then he just chooses to propose the slot that maximizes
his utility in each round of the game. Although an oracle
agent has the best chances of winning each round, he can not
always win! This is because of his random calendar avail-
ability, according to the fixed calendar density.

In order to have additional points of reference, we have
also defined the following two heuristic strategies:

Self-Centered Strategy: This strategy tells the agent al-
ways to choose the free slot which just maximizes his own
calendar slot utility.

Collaborative Strategy: Using this strategy, the agent
chooses the free slot that was proposed by the biggest
team (greatest number of members) at the previous round.
In case of ties, the agent ranks them according to his own
calendar slot utility.

These strategies were motivated by the observation of real
human beings playing the MSG. A self-centered agent does
not consider information about the other agents but he takes
into account his role. A collaborative agent also takes into
account the agent’s own role. However, it also takes into
consideration information about the previous round, trying
to join in the biggest observed team.

Modeling strategies

~ Let us first introduce our term model about another agent.

We just see it as a vector which records a probability distri-
bution of the actual character of the modeled agent. In the
context of the MSG, each agent has two basic models about
each other agent a. The first one is the role model:
7o & (71,00 ,7n) |
Where each r; is the probability that agent a has the par-
ticular role i and n is the amount of different predefined
roles. The notation r, (%) refers to the probability r; of role
i. The second model used in the MSG is the strategy model:
5 ¥ (51,02 18m)
Where each s; is the probability that agent a has strategy
i and m is the amount of different predefined strategies. The
notation s, (z) refers to the probability s; of strategy i.
Since we are assuming independence between roles and
strategies in the MSG (section), it is easy to construct a
new combined model for each other agent: the personality
model. This model is just a two-dimensional matrix, r'3,,
where each element rs,(%, j) is just calculated as follows:

73a(i,§) = ra()sa(4)

Now, let us define an decision-theoretic strategy that take
explicit advantage of knowing the others’ models:
Semi-Modeler Strategy: This strategy tells the agent to

choose the slot which maximizes his expected utility

based on predefined fixed models about the other agents.

It is assumed that a semi-modeler agent already have

models about the others and his strategy just uses these prob-
abilistic models to choose the action that maximizes his ex-
pected utility. The models are given to the semi-modeler
agent at the beginning of the game and they never change
during all the game. It is also important to note that the
given models are not necessarily correct models about the
others.
The detailed semi-modeler’s strategy is as follows:

1. For each other agent a, generate his personal-
ity model 3, and generate a set O all the pos-
sible opponent scenarios that the semi-modeler
could face. Each possible opponent scenario
o € O is just a possible particular combination
of the possible personalities of the other agents.

2. Foreacho € O:

(a) Assuming that this possible opponent scenario
o represents the actual personalities of the
other agents, run the oracle strategy in order
to get the best slot s, and its utility U(s,), to
propose under this assumption. Let us call r
the outcome due to the action of choosing slot

So-

{b) Calculate the probability P(r|s,) which is in-
deed equal to the probability of this possible
scenario o: just the product of the probabili-
ties in 73, corresponding to each agent a's per-
sonality involved in this opponent scenario o.
On the other hand, the utility of this outcome,
U(r), is precisely the utility U(s,) that was ob-
tained in the previous step.

(c) In order to incrementally get the expected util-
ity of s,:

EU(s,) = ZP(Tilsa)U(ri)

Caiculate the product P(r|s,)U(r) and accu-
mulate it to previous products in other previous
possible scenarios where the slot s, had been
chosen.
3. Propose the slot s, with maximum expected
utility: arg max, EU(s,|o)

In order to build a modeler agent, model construction
is required. Let us define a modeler strategy that uses an
Bayesian updating mechanism in order to build the others’
models in an incremental and iterative way:

Bayesian-Modeler Strategy: An agent using this strategy
incrementally builds models about the others using a
Bayesian belief updating approach and chooses the action
which maximizes his expected utility:

51

A Bayesian-modeler agent does not have any information
about the others. However, as stated in section , the set of
predefined roles and strategies are public knowledge. At the
beginning, the modeler agent can behave as a semi-modeler
agent with equiprobable models about the others. That is,
with no other knowledge about the others, it is reasonable to
start with equiprobable probability distributions of the pos-
sible traits about the others. Then, the modeler agent can
start to update those models based on the others’ behavior.

This agent builds models about the other agents in an
incremental and iterative way, updating those models after
each round during the whole game. All the probabilities of
each model are incrementally updated, trying to reach the
actual character of the agent being modeled.

The detailed Bayesian-modeler strategy is as follows:

1. At the first round, start with equiprobable mod-
els about the others, run the semi-modeler strat-
egy, and propose the resulting slot.

2. At the next round, for each other agent a:

(a) Observe what was the a's proposal, s,, in
the previous round and update a’s personality
model, 3,, using a Bayesian updating mech-
anism to obtain the corresponding posterior
probabilities of the a's personality, per,(s,),
given that a proposed slot s,, pro,(ss), in the
previous round:

r84(i,7) = P(peru(i:j)lp'roa(sa))

(b) Decompose the updated a's personality model
in order to build two new separated role and
strategy models. That is, update each element
in 7, and 5,:

ra(i) = _ rsa(i,)
vj

8a(j) =) _ 78a(i,5)
Vi

3. Using the new updated models about the oth-
ers, run the semi-modeler strategy and propose
the slot s,,, with the maximum expected utility.

4. If it was the last round, the game is over. Other-
wise go to step 2.

The model-updating mechanism is based on the well
known Bayes’ rule. The simplest form of this rule is in the
case of boolean random variables:

P(A|B)P(B)
P(A)

Where A and B are random variables with boolean do-
main. Bayes’ rule provides us a way of calculating a pos-
terior probability based on known prior probabilities and a
conditional probability. From basic probability axioms and
algebra is it easy to see that:

P(A) = P(A|B)P(B) + P(A|~B)P(-B)

Combining the two last equations and taking into account
multi-valued random variables we can get a more general

P(B|A) =

form of Bayes’ rule. Let us rewrite it using the probability
P notation:

p(YIX) = PEIVPE)

Lvyer P(XY)P(Y)

Here, P denotes probability distributions and this last for-
mula actually denotes a set of equations relating individual
entries in the probability distributions (it does not denote
matrix or vector multiplications).

In the case of our Bayesian-modeler agent, we indeed
have muiti-valued random variables: the personality mod-
els. In fact, a personality model 75 represents a probability
distribution of personalities. So that the probability that an
agent a has the personality resulting from combining role i
and strategy j, P(per,(i, 7)), is precisely the value rs,(i, j)
in matrix r3, and the equation used to update each person-
ality model (step 2.1) can be rewritten as follows:

P(proa(sa)lpera(i, 5)) P(pera(i, 1))

r8a(1,5) = .

The prior probabilities P(per, (%, j)) are taken from the
last recorded value rs4(%,7) in matrix 73,. On the other
hand, the conditional probabilities P(pros(s.)|pera(i,j))
can be calculated from the known calendar density and the
known agent behavior due to the personality perq, (3, j).

Let us see a simple example in order to see how this con-
ditional probabilities can be calculated. Suppose you have
an agent a which is being considered to have the personal-
ity resulting of combining the early-rising role and the self-
centered strategy (i.e. per,(early,self)). Now, suppose
that the calendar density has been predefined and is equal
to 0.5. Furthermore, suppose also that we have eight-slots
calendars from slot sg to s7. In this case, the conditional
probabilities for each slot s;, for i = 0, ..., 7, given this per-
sonality are:

P(proa(s;)lpera(early, self)) = 1/2°+1

It is easy to see that the conditional probability of choos-
ing slot so given pery(early, self) is 1/2 (because this
value is precisely the calendar density and it is the most pre-
ferred slot of a early-rising agent), the probability of choos-
ing slot s; is 1/22 (the probability that the first slot is busy
and the second one is free), the probability of choosing slot
s2 is 1/23, and so forth.

Thus, going back to step 2.1, the Bayesian-modeler is
able to get all the posterior probabilities from the calculated
conditional probabilities and the known prior probabilities.
Then, this 73 matrix is updated with these new probabili-
ties in order to be used as prior probabilities in the following
round.

Experimental results

Here, what we call an experiment is a series of games with
the same characteristics and groups of different and related
experiments are called experimental scenarios. At the be-
ginning of each game, all the agents are initialized with ran-
dom roles taken from a set of two opposite roles (the early-
rising and night-ow! roles presented in section) and eight-
slots calendars with the calendar density fixed at 50%. All

52

2wy P(proa(sa)lpera(z, y)) P(pera(z,y))

the games are composed of ten rounds (the fourth and fifth
experimental scenarios are the exceptions). Also in all these
experiments, we run three agents (the exception is the sec-
ond experimental scenario). Furthermore, when we run a
Bayesian-modeler agent, he is always learning the models
about the others and playing the game at the same time.

We have set up series of games in order to measure how
agent performance is affected by different strategies. Once
a game is completed, we call it a “success”, if the strategy
under consideration wins. Otherwise it is considered a “fail-
ure”. Our experiments are composed of 500 independent
games and we have calculated that the results obtained in
these experiments has a 95% confidence of getting an error
not greater than about 0.05. In all tables presented here, we
show the performance of each strategy as the percentage of
success.

The goal of the first scenario is to compare the perfor-
mance of the non-modeling strategies discussed in section
. Thus, we run here an indifferent agent first against self-
centered agents, then against a collaborative ones, and fi-
nally against both:

Experimental Scenario 1
i Strategles
Expe ts Indifferent | Self-Centered | Collaborative
Experiment 1.1 7.59% 9241% —
Experiment 1.2 18.15% —_ 81.85%
Experiment 1.3 3.86% 80.59% 15.45%

As expected, the performance of the indifferent strategy
is always the worst, giving us a lower-limit performance to
compare other reasonable strategies. We intuitively thought
that the performance of the collaborative agents shouid be
better because they can team each other. However, as we can
see, in the first two experiments, the self-centered strategy
appears to be better than the collaborative one against the
indifferent agent. In the last, experiment, we can see that the
self-centered strategy clearly outperforms the collaborative
one, while the indifferent’s performance is very low.

As it is shown elsewhere (Garrido, Brena, & Sycara
1998), when incrementing the number of agents, the col-
laborative’s performance increases, outperforming the self-
centered.

The goal of the second experimental scenario is to charac-
terize the performance of the oracle and modeling strategies
presented in section . Here we run four experiments with
a self-centered agent, a collaborative one, and we vary the
strategy of the third agent in each experiment. In the first ex-
periment we run an oracle agent who has the correct models
about the others. In the second one, we run a semi-modeler
agent who uses fixed equiprobable models. In the third ex-
periment, we again run a semi-modeler agent but now with
fixed opposite models about the others. In the last one, we
finally run a Bayesian-modeler who is learning the models
and playing at the same time during the ten rounds of each
game:

Experimental Scenavio 2
Exp Strategies Modeling
Self-Centered | Collaborative | Models Perform.
2.1 20.58% 10.88% Correct 68.54%
22 33.13% 11.31% Equiprobable 55.56%
23 51.96% 20.19% Opposite 21.85%
24 3031% 1.61% Learning 62.02%

In the first experiment, we get the empirical upper-limit
performance given by the oracle strategy. On the other hand,
running a semi-modeler with the incorrect fixed opposite
models, we expect to have a lower-limit performance. We
can see, in the third experiment, that this limit is indeed so
low, being even the self-centered strategy the winner. The
second experiment, shows a new more refined lower-limit
performance, given by a semi-modeler with fixed equiprob-
able models. So that, our expectations for a good modeler
performance is to get a performance somewhere between the
upper-limit given by the oracle and the lower-limit given by
the semi-modeler with fixed equiprobable models. As we
can see, our expectations were confirmed in the last experi-
ment.

The goal of the third scenario is to evaluate the per-
formance of the Bayesian-modeler, varying the number of
rounds needed to learn the models about the others in each
experiment:

Experimental Scenario 3
Strategies

Exp | #Rounds Self-C. T Collabarar: rY)

31 1 40.21% 15.90% 43.89%
32 3 35.60% 16.75% 47.65%
33 5 33.40% 14.63% 51.97%
34 7 29.92% 12.35% 51.73%
3.5 9 29.02% 941% 61.57%
3.6 11 25.15% 10.40% 64.45%
3.7 13 25.61% 8.836% 65.53%

In the first experiment, we can observe how the Bayesian-
modeler performance is very low after the first round but it
is not as bad as the semi-modeler with fixed opposite models
(previous scenario). Looking at the results of all the experi-
ments, it is also clear how his performance improves as the
number of rounds increases. As we can see, after eleven or
thirteen rounds the performance is indeed already very close
to the oracle performance.

In figure 2, we show a summary of the Bayesian-modeler
performance. Here, we can directly compare the different
performances we have obtained with the indifferent, oracle,
semi-modeler, and Bayesian-modeler strategies when play-
ing against the self-centered and collaborative ones. As we
can observe in games with only one round, the Bayesian-
modeler strategy performance starts with a performance be-
tween the limits of the semi-modeler strategies using fixed
opposite and equiprobable models. This performance in-
creases when we increase the number of rounds in the
games, trying to reach upper-limit given by the oracle strat-

cgy.
The group perspective

So far the modeller performance has been measured in terms
of the individualistic utility it obtains from the modelling ac-

53

(learning

. Oracle (knowing the models)
Remi-Madaler famisinrahahl

TR

QP

Qami-Madeler i delc)

... Indifferent (random strategy)
1 2345678 910111213 Rounds

Figure 2: Graphical summary of the Bayesian-modeler strat-
egy performance.

tivity. In this paragraphs we examine how the group’s utility
is affected by a modelling activity carried out by one of the
agents in the group.

In this scenario we had 3 agents, one self-interested, one
collaborative, and the third which is the modeller. Actu-
ally we used, instead of the Bayesian modeller itself, the
two extreme cases of it, which are the oracle (representing
a case when the modelier has learned correct models), and
the semi-modeller, with equiprobable models (representing
a case when the modeller is about to start learning, thus can-
celling the modelling activity).

We ran two experiments, each one of 500 games with 10
rounds each. In them we measured the group utility by sim-
ply adding the utilities of the group members.

In the first experiment, with the oracle, the group joint
utility was 333.292,

In the second experiment, with the semi-modeler with
equiprobable models, the joint utility was 326.912.

We can see that the group performance was not, in this
case, very much affected by the modelling activity.

Conclusions

We presented our Bayesian-modeler agent which is capable
of building probabilistic models of its competitors in an in-
cremental and iterative way. The modeling mechanism used
by the Bayesian-modeler has two main characteristics:

e The decision-theoretic approach chooses the rational de-
cision at each round of the game maximizing the mod-
eler’s utility with respect to the gain of the most danger-
ous opponent.

o The Bayesian updating mechanism is capable of building
models about the others in an ijterative and incremental
way after each round.

We have used a collection of reference points for the char-
acterization of the modeler agent’s performance. The indif-
ferent and oracle strategies provide the extremes of the spec-
trum, ranging from least- to most-informed strategies. We
have also obtained other more refined performance limits
given by the semi-modeler strategy with fixed opposite and
equiprobable models. Our experimental results have shown
how the Bayesian-modeler strategy performance is indeed
better than the empirical lower-limits we have obtained and,
in fact, we have also observed how this performance in-
crease as the number of rounds increases. Our experiments

have also shown that after thirteen rounds the modeler per-
formance is really close to the oracle one.

QOur experiments also showed that, though the individual-
listic performance is greatly raised, the group utility is not
really affected by the modelling activity of one of its mem-
bers. Of course, having just one modeller could not be as
effective as if each member of the group is a modeller, but in
this case we would need to recursively model the other mod-
ellers, using methods like RMM (Gmytrasiewicz & Durfee
1995). Though this is in principle possible, the computa-
tional complexity of the simulations would be increased far
too much, even for off-line simulations like ours.

We conjecture that our Bayesian modelling methods are
optimal with respect to the use of the available informa-
tion. This means that no other learner could outperform our
Bayesian learner in getting correct models as fast as pos-
sible. This conjecture has been strengthen after compar-
isons with other learning methods, like reinforcement learn-
ing (Singh, Norvig, & Cohn 1997) (this comparison is re-
ported in a forthcoming report), but we also intend to estab-
lish a formal proof of this optimality.

References

Bratman, M. E. 1987. Intentions, Plans, and Practical
Reason. Cambridge, MA, USA: Harvard University Press.

Carmel, D., and Markovitch, S. 1996. Opponent mod-
elling in a multi-agent systems. In Weiss, G., and Sen, S.,
eds., Lecture note in Al, 1042: Adaptation and Learning
in Multi-agent Systems, Lecture Notes in Artificial Intelli-
gence. Springer-Verlag.

Durfee, E. H. 1991. The distributed artificial intelligence
melting pot. [EEE Transactions on Systems, Man and Cy-
bernetics 21(6):1301-1306.

Garrido, L., and Brena, R. 1998. The meeting schedul-
ing game: A multiagent testbed. Technical Report CIA-
RI-037, Center for Artificial Intelligence, ITESM-Campus
Monterrey, Monterrey, N.L., México.

Garrido, L.; Brena, R.; and Sycara, K. 1998. Towards
modeling other agents: A simulation-based study. In Sich-
man, J.; Conte, R.; and Gilbert, N., eds., Multi-Agent Sys-
tems and Agent-Based Simulation, volume 1534 of Lecture
Notes in Artificial Intelligence. Springer-Verlag. 210-225.

Gmytrasiewicz, P. J., and Durfee, E. H. 1995. A rigor-
ous, operational formalization of recursive modeling. In
Lesser, V., and Gasser, L., eds., Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-
95). San Francisco, CA, USA: AAAI Press.
Gmytrasiewicz, P.; Noh, S.; and Kellogg, T. 1998.
Bayesian update of recursive agents models. Journal of
User Modeling and User-Adapted Interaction 8(1/2):49-
69.

Gmytrasiewicz, P. 1996. On reasoning about other agents.
In Intelligent Agents II, Lecture Notes in Artificial Intelli-
gence (LNAI 1037). Springer Verlag.

Han, K., and Veloso, M. 1999. Automated robot behavior
recognition applied to robotics soccer. In IJCAI-99 Work-
shop on Team Behavior and Plan Recognition.

o4

Mor, Y.; Goldman, C.; and Rosenschein, J. 1996. Learn
your opponent’s strategy (in polynomial time)! In Weiss,
G., and Sen, S., eds., Lecture note in Al, 1042: Adapta-
tion and Learning in Multi-agent Systems, Lecture Notes
in Artificial Intelligence. Springer-Verlag.

Nadella, R., and Sen, S. 1997. Correlating internal param-
eters and external performance: Learning soccer agents.
In Weiss, G., ed., Distributed Artificial Intelligence Meets
Machine Learning - Learning in Multiagent Environments,
Lecture Notes in Artificial Intelligence. Springer-Verlag.
137-150.

Sen, S., and Arora, N. 1997. Leaming to take risks. AAAI-
97 Workshop on Learning Agents.

Singh, S.; Norvig, P.; and Cohn, D. 1997. Agents and
reinforcement learning. Dr. Dobb’s Journal of Software
Tools 22(3):28-32.

Stone, P.; Veloso, M.; and Riley, P. 1999. The cmunited-
98 champion simulator team. In Asada, and Kitano., eds.,
RoboCup-98: Robot Soccer World Cup 11. Springer Verlag.
61-76.

Suryadi, D., and Gmytrasiewicz, P. 1999. Learning mod-
els of other agents using influence diagrams. In IJCAI-99
Workshop on Agents Learning About, From, and With other
Agents. John Wiley and Sons.

Tambe, M., and Rosenbloom, P. 1996. Architectures for
agents that track other agents in multi-agent worlds. In In-
telligent Agents II, Lecture Notes in Artificial Intelligence
(LNAI 1037). Springer Verlag.

Vidal, J., and Durfee, E. 1996. Using recursive agent mod-
els effectively. In Intelligent Agents II, Lecture Notes in
Artificial Intelligence (LNAI 1037). Springer Verlag.

Vidal, J., and Durfee, E. 1997a. Agents learning about
agents: A framework and analysis. In AAAI-97 Workshop
on Multiagent Learning.

Vidal, J. M., and Durfee, E. H. 1997b. Analyzing agents
that learn about agents. In Proceedings of the 14th National
Conference on Artificial Intelligence and 9th Innovative
Applications of Artificial Intelligence Conference (AAAI-
97/IAA1-97), 849-849. Menlo Park: AAAI Press.
Wooldridge, M., and Jennings, N. R. 1995. Intelligent
agents: Theory and practice. Knowledge Engineering Re-
view 10(2):115-152.

Zeng, D., and Sycara, K. 1998. Bayesian learning in nego-
tiation. Internation Journal in Human-Computer Systems
48:125-141.

