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Abstract
There is no presumption that collective behavior of interacting
agents leads to collectively satisfactory results. How well
agents can adapt to their social environment is different to
how satisfactory a social environment they collectively create.
In this paper, we attempt to probe a deeper understanding of
this issue by specifying how agents interact by adapting their
behavior. We consider the problems of asymmetric
coordination, which are formulated as minority games, and
we address the following question: how do interacting agents
realize an efficient coordination without any central authority
through self-organizing macroscopic orders from bottom up?
We investigate several types of learning methodologies
including anew model, give-and-take learning, in which agents
yield to others if they gain and they randomize their actions if
they lose or do not gain. We show that evolutionary learning
is the most efficient in asymmetric strategic environments.
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evolutionary learning, give-and-take learning

1. Introduction
There are many situations where interacting agents can benefit

from coordinating their actions. Social interactions pose many

coordination problems for individuals. Individials face

problems of sharing and distributing limited resources in an

efficient way. Consider a competitive routing problem of

networks in which the paths from sources to destination have

to be established by multiple agents. In the context of traffic

networks, for instance, agents have to determine their route

independently, and in telecommunication networks, they have

to decide on what fraction of their traffic to send on each link

of the network.

Coordination implies that increased effort by some agents

leads the remaining agents to follow suit, which gives rise to

multiplier effects. We classify this type of coordination as

symmetric coordination [3]. Coordination is also necessary to

ensure that their individual actions are carried out with little

conflicts. We classify this type of coordination as asymmetric

coordination [7]. Consider the following situation: A collection

of agents have to travel using one of the route A or B. Each

agent gains a payoff if he chooses the same route what the

majority does. This type of coordination is classified as

symmetric coordination. On the other hand, each agent gains

a payoff if he chooses the opposite route what the majority

does. This type of coordination is classified as asymmetric

coordination.

Coordination problems are characterized with many

equilibria, and they often face the problem of coordination

failure resulting from their independent inductive processes

[ 1][4]. An interesting problem is then under what circumstances

will a collection of agents realizes a particular stable situation,

and whether they satisfy the conditions of social efficiency?

In recent years, this issue has been addressed by formulating

minority games (MG)[2][ 10]. However, the growing literature

on MG treats agents as automata, merely responding to

changing environments without deliberating about individuals’

decisions [13]. There is no presumption that the self-interested

behavior of agents should usually lead to collectively

satisfactory results [8][9]. How well each agent does in

adapting to its social environment is not the same thing as

how satisfactory a social environment they collectively create

for themselves. An interesting problem is then under what

circumstances will a society of rational agents realize social

efficiency? Solutions to these problems invoke the intervention

of an authority who finds the social optimum and imposes

the optimal behavior to agents. While such an optimal solution

may be easy to find, the implementation may be difficult to

enforce in practical situations. Self-enforcing solutions, where
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agents achieve optimal allocation of resources while pursing

their self-interests without any explicit agreement with others

are of great practical importance.

We are interested in the bottom-up approach for leading

to more efficient coordination with the power of more effective

learning at the individual levels [I 1]. Within the scope of our

model, we create models in which agents make deliberate

decisions by applying rational learning procedures. We explore

the mechanism in which interacting agents are stuck at an

inefficient equilibrium. While agents understand that the

outcome is inefficient, each agent acting independently is

powerless to manage decisions whci reflect collective activity.

Agents also may not know about what to do and also how to

make a decision. The design of efficient collective action is

crucial in many fields. In collective activity, two types of

activities may be necessary: Each agent behaves as a member

of society, while at the same time, it behaves independently

by adjusting its view and action. At the individual level, it

learns to improve its action based on its own observation and

experiences. At the same level, they put forward their learnt

knowledge for consideration by others. An important aspect

of this coordination is the learning rule adapted by individuals.

2. Formalism of Asymmetric Coordination and
Minority Games

The EL Farol bar problem and its variants provide a clean

and simple example of asymmetric coordination problems

[ 1 ][4]. Brian Arthur used a very simple yet interesting problem

to illustrate effective uses of inductive reasoning of

heterogeneous agents. There is a bar called El Farol in the

downtown of Santa Fe. In Santa Fe, there are agents interested

in going to the bar each night. All agents have identical

preferences. Each of them will enjoy the night at El Farol

very much if there are no more than the threshold number of

agents in the bar; however, each of them will suffer miserably

if there are more than the threshold number of agents. In

Arthur’s example, the total number of agents is N=IO0, and

the threshold number is set to 60. The only information

available to agents is the number of visitors to the bar in

previous nights.

What makes this problem particularly interesting is that it

is impossible for each agent to be perfectly rational, in the

sense of correctly predicting the attendance on any given

night. This is because if most agents predict that the attendance

will be low (and therefore decide to attend), the attendance

will actually be high, while if they predict the attendance wto

be high (and therefore decide not to attend) the attendance

will be low. Arthur investigated the number of agents attending

the bar over time by using a diverse population of simple

rules. One interesting result obtained was that over time, the

average attendance of the bar is about 60. Agents make their

choices by predicting ahead of time whether the attendance

on the current night will exceed the capability and then take

the appropriate course of action. Arthur examined the dynamic

driving force behind this equilibrium.

The Arthur’s "El Farol" model has been extended in the

form as Minority Games (MG), which show for the first time

how equilibrium can be reached using inductive learning [2].

The MG is played by a collection of rational agents

G = {At : 1 < i < N}. Without losing the generarity, we can

assume N is an odd number. On each period of the stage

game, each agent must choose privately and independently

between two strategies S = {SI, S2 }. We represent the action

ofagentA~ at the time period t by ai(t ) = 1 if he choosesSi.

and at(t ) = 0 if he chooses S2. Given the actions of all

agents, the payoff of agent Ai is given by

(i) u~(t)= l if a~(t)= and p(t)ffi Ea,(t)lN <0
I~i$N

(ii) ui(t ) = 0 if ai(t) = and p(t) > 0.5   (2.1)

Each agent first receives aggregate information p(t) which

represents all agents’ actions, and then he decides whether to

choose $1 or S,. Each agent is rewarded with a unitary payoff

whenever the side he chooses happens to be chosen by the

minority of the agents, while agents on the majority side get

nothing. All agents have access to public information on the

record of past histories on p(~r), Z" < t. The past history

available at the time period t is represented by /2(t). How

do agents choose actions under the common information

bt(t)? Agents may behave differently because of their personal
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beliefs on the outcome of the next time period p(t + 1),

which only depends on what agents do at the next time period

t+l, and the past history #(t) has no direct impact on it.

We analyze the structure of the MG to see what we should

expect. The social efficiency can be measured from the average

payoff of one agent over a long-time period. Consider the

extreme case where only one agent take one side, and all the

others take the other side at each time period. The lucky

agent gets a reward, nothing for the others, and the average

payoff per agent is 1/N. Equally extreme situation is that

when (N-I)/2 agents on one side, (N+1)/’2 agents on the other

side where the average payoff is about 0.5. From the society

point of view, the latter situation is preferable.

The MG game is characterized with many solutions. It is

easy to see that this game has (N- I)/2 asymmetric Nash

equilibria in pure strategies in the case where exactly (N-I)~2

agents choose either one of the two sides. The game also

presents a unique symmetric mixed strategy Nash equilibrium

in which each agent selects the two sides with un equal

probability. With this mixed strategy, each agent can expect

the payoff 0.5 on each time period, and the society payoff

follows a binomial distribution with the mean equal to N/2

and the variance N/4. The variance is also a measure of the

degree of social efficiency. The higher the variance, the higher

the magnitude of the fluctuations around N/2 and the

corresponding aggregate welfare loss. Several learning rules

have been found to lead to an efficient outcome when agents

learn from each other [2][15].

How exactly does an agent’s utility depend on the

number of total participants? We now show the MG can be

represented as 2x2 games in which an agent play with the

aggregate of the society with payoff matrix in Table 1. Let

suppose each agent plays with all other agents individually

with the payoff matrix in Table 1. The average payoffs of

agent Ai from the play S~ and S2 with one agent are given:

Ui(Sl) ffi 1 - ~ai(t)/N
Isi:gN

U,(S,,) ~,a,(t)lN (2.2)
I<I¢,N

p(t) = ~ a~ (t) represents the proportion of agents who
l<i<N

choose S~ at the time period t.

Table 1 The payoff matrix of the minority games

~ mhzfs
S1 82

stramgy (go) (stay)

Si
(go)

82

(stay)

N=50

N=50

Figure I Local Matchings with 8 neighbours

The matching methodology also plays an important role in

the outcome of the game. The uniform matching, random

matching, or local matching are used as the matching

methodologies in many literatures [3][6]. Agents interact with

all other agents, which is known as the uniform matching.

Agents are not assumed to be knowledgeable enough to

correctly anticipate all other agents’ choices, however they

can only access information about the aggregate behavior of

the society. The optimal solution of the MG depends on the

matching methodology. As shown in Figure 2, if each agent

is matched with all other agents (uniform matching), he receives

0.5 as the optimal payoff. As shown in Figure 2, if each agent

is matched with their eight neighbors (local matching), 

receives 0.75 or 0.5 as the optimal payoff, depending on how

they split into two groups of choosing S, (dark circle) or 2
(white circle).
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o
(a) Average payoff: 0.75 (b} Average payoff: 0.5

(c) average payoff: 0.5

Figure.2: The optimal payoffs per agent with different
matehings: (a) (b) Local matching with 8 neighbours, 
Uniform or random matching

3. Learning Models in Strategic Environments

Game theory is typically based upon the assumption of rational

choice. In our view, the reason for the dominance of the

rational-choice approach is not because scholars think it is

realistic. Nor is game theory used solely because it offers

good advice to a decision maker, because its unrealistic

assumptions undermine much of its value as a basis for advice.

The real advantage of the rational-choice assumption is that it

often allows deduction. The main alternative to the assumption

of rational choice is some form of adaptive behavior.

Adaptation may be expected at the individual level through

learning, or it may be at the population level through differential

survival and reproduction of the more successful individuals.

Either way, the consequences of adaptive processes are often

very hard to deduce when there are many interacting agents

following rules that have nonlinear effects.

We specify how agents adapt their behavior in response to

others’ behavior in strategic environments. Among the adaptive

mechanisms that have been discussed in the learning literature

are the following [5][6][12][ 14]. An important issue in strategic

environment is the learning strategy adapted by each individual.

(1) Reinforcement learning

Agents tend to adopt actions that yielded a higher payoff in

the past, and to avoid actions that yielded a low payoff. Payoff

describe choice behavior, but it is one’s own past payoffs that

matter, not the payoffs of the others. The basic premise is

that the probability of taking an action in the present increases

with the payoff that resulted from taking that action in the

past [6].

(2) Best response learning

Agents adopt actions that optimize their expected payoff given

what they expect others to do. In this learning model, agents

choose best replies to the empirical frequencies distribution

of the previous actions of the others.

(3) Evolutionary learning

Agents who use high-off payoff strategies are at a productive

advantage compared to agents who use low-payoff strategies,

hence the latter decrease in frequency in the population over

time (natural selection). In the standard model of this situation

agents are viewed as being genetically coded with a strategy

and selection pressure favors agents that are fitter, i.e., whose

strategy yields a higher payoff against the population.

(4) Social learning

Agents learn each from other with social learning. For instance,

agents may copy the behavior of others, especially behavior

that is popular to yield high payoffs (imitation). In contrast 

natural selection, the payoffs describe how agents make

choices, and agents’ payoff must be observable by others for

the model to make sense. The crossover strategy is also another

type of social learning.

These learning models can be represented on the spectrum

in Figure 3. The reinforcement learning and social learning

based on give-and-take take limiting cases representing at the

right-most and left-most points of the spectrum, models.

reinforcement best-response give&take evolution:crossover

Figure.3 : The spectrum of learning
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4. Best-Response Learning

With the assumption of rationality, agents are assumed to

choose an optimal strategy based on a sample of information

about what others agents have done in the past. Agents are

able to calculate best replies and learn the strategy distribution

of play in a society. Gradually, agents learn the strategy

distribution in the society. With best-response learning, each

agent calculates his best strategy based on information about

the current distributional patterns of the strategies [5]. At

each period of time, each agent decides which strategy to

choose given the knowledge of the aggregate behavior of the

population. Each agent thinks strategically, knowing that

everyone else is also making a rational choice given its own

information.

An important assumption is how agents receive knowledge

of the current strategy distribution. For simplicity we assume

that there is no strategic interaction across time; an agent’s

decision depends only on current information and not on any

previous actions. The dynamics for collective decision of agents

are described as follows: Letp(O be the proportion of agents

who have chosen Ss at time t. Let U/Sk) be the expected payoff

to Ai when he chooses Sk, k=l,Z The best-response of agent

is then given as follows:

If Ui(Si) > U/S2) then choose Sl

If U~(S:) < U/S2), then choose $2 (4.1)

The expected payoffs of agentAs are obtained as

U,(S,) = e(l p(t)), u,(s2) = (1O)p(t (4.2)

The best-response adaptive rule of agent Ai is then obtained

as follows:

(i) If p(t)<q, then choose SI

(ii) If p(t)> q, then choose S: (4.3)

Aggregate informationp(0, the current status of the collective

decision, has a significant effect on agents’ rational decisions.

The result of the learning with the global best-response

strategy is simple. Starting from any initial condition p(O), it

cycles between the two extreme situations where all agents

choose S~ or S2. Under this cyclic behavior, no agent gains

resulting in a huge waste. This result has a considerable intuitive

appeal since it displays situations where rational individual

action, in pursuit of well-defined preferences, lead to

undesirable outcomes.

5. Collaboraive Learning with Give-and-Take

In this section, we propose the give-and-take learning which

departs from the conventional assumption such that agents

update their behaviors in order to improve their measure

functions such as payoffs. It is commonly assumed that agents

tend to adopt actions that yield a higher payoff in the past,

and to avoid actions that yield a low payoff. With the give

and take learning, on the contrary, agents are assumed to

yield to others if they receive a payoff by taking the opposite

starategy at the next time period, and they choose randomly

if they do not gain the payoff. Each agent gets the common

information p(t) which aggregate all agents’ actions of the

last time period, and then he decides whether to choose Ss or

S2 at the time periodt+l by considering whether he is rewarded

at time t: He is rewarded a unitary payoff whenever the side

he chooses happens to be chosen by the minority of the agents.

I1[

i

Figure 4 (a) The number of agents to choose S~ and 2 with

the mixed strategy.
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Figure 4 (b) The proportion of agents with the same average

payoff with the mixed strategy

We formalize give-and-take learning as folows: The

action ai(t + 1)of agent i at t he next t ime period t+ Iis

determined by the following rule:

(i) ai(t + 1) = 0 (Choose 82) ai(t) = 1 anp(t) <0.5

(Gain)

(ii) ai(t + 1) = 1 (Choose S,) ai( ) - 0 and p(t)> 0.5

(Gain)

(iii) ai(t + 1) = RND(x) if ai(t) = 1 and p(t) > 0.5

(No gain)

(iv) ai(t + 1) "- RND(x) if a~(t) -" 0 and p(t) < 0.5

(No gain) (5.1)

the payoff and the average payoff is 0.5, which is the maximum

payoff. With the corraborative learning, every agent receive

the payoff and the majority of agents receive 0.35..

~E

:,~.~ ̄ .... ~. ................................................ I "*,,s d~

.~q 4~ lO IO TUG

Fig.5(a): The number of agents to choose t and S2, with

give-and-take learning

rl= ........ ? ....

n,°

........................ ./, ...

Fig.5(b): The proportion of agents with the same average

payoff with give-and-take learning

where RND(x) represents the mixed starategy x=(x, l-x) of

chossing S~ with the probability x and S2 with 1-x.

We evaluate the performace by comparing the average

payoff of an individual. The expected payoff of agents who

choose S1 is given l-p, and those of who choose S2 is p,

where p denotes the proportion of agents who choose SI
.Therefore the average payoff oer individual is given by

2p(1 - p), which takes the maximum value 0.5 atp=0.5. If

the exact number N=50 attends the bar, they receive 1 as

6, Evolutionary Learning with Local Matching

In this section, we investigate evolutionary learning where

agents learn from the most successful neighbours, and they

co-evolve their strategies over time. Each agent adapts the

most successful strategy as guides for their own decision

(individual learning). Hence their success depends in large

part on how well they learn from their neighbours. If the

neighbour is doing well, its strategy can be imitated by all

others (collective learning). In an evolutionary approach, there
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is no need to assume a rational calculation to identify the best

strategy. Instead, the analysis of what is chosen at any specific

time is based upon an implementation of the idea that effective

strategies are more likely to be retained than ineffective

strategies [15]. Moreover, the evolutionary approach allows

the introduction of new strategies as occasional random

mutations of old strategies. The evolutionary principle itself

can be thought of as the consequence of any one of three

different mechanisms. It could be that the more effective

individuals are more likely to survive and reproduce. A second

interpretation is that agents learn by trial and error, keeping

effective strategies and altering ones that turn out poorly. A

third interpretation is that agents observe each other, and those

with poor performance tend to imitate the strategies of those

they see doing better.

In this section we consider the local matching as shown

in Figure l, where each agent is modeled to be matched with

his 8 neighbours. Each agent is modeled to be matched several

times with the same neighbour, and the rule of the strategy

selection is coded as the list as shown in Figure 6. A part of

the list is replaced with that of the most successful neighbour.

An agent’s decision rule is represented by the N binary string.

At each generation gen, gent[1 .... lastgen], agents

repeatedly play the game for T iterations. An agent A~.,

i ~ [1...N], uses a binary string i to make a decision about

his action at each iteration t, t ~ [l...T]. A binary string consists

of 22 positions (genes). Each position PI’J~[I,22]" is

represented as follows. The first and second position, P] and

P2, encodes the action that the agent takes at iteration t = 1

and t = 2. A position p], j ~ [3,6], encodes the history of

mutual hands (cooperate or defect) that agent i took at iteration

t - 1 and t - 2 with his neighbor (opponent). A position p j,

j ~ [7, 22], encodes the action that agent i takes at iteration

t > 2, corresponding to the position pj, j ~ [3,6].

Meus-rule of interaction

--7
-’’

Figure 6: The representation of the meta-rule as the list of

strategies

We consider two types of evolutionary learning, mimicry

and crossover. Each agent interacts with the agents on all

eight adjacent squares and imitates the strategy of any better

performing one. In each generation, each agent attains a success

score measured by its average performance with its eight

neighbours. Then if an agent has one or more neighbours

who are more successful, the agent converts to the strategy of

the most successful of them or crosses with the strategy of

the most successful neighbour. Neighborus also serve another

function as well. If the neighbor is doing well, the behaviour

of the neighbour can be shared, and successful strategies can

spread throughout a population from neighbour to neighbour

[111.

Significant differences were observed between the mimicry

and the crossover. As shown Figure 7, the case with the

mimicry strategy, each agent acquires a payoff of

approximately 0.35, and with the cross-over, each agent

acquires a payoff of approximately 0.7. Consequently, we

can conclude that evolution learning leads to a more efficient

situation in the strategic environments.

payoff
1 ...................................................................................

c~mmovcr

°"i ................. .................................................-1 ....................

0.40’6

~ ...........................................................................-.............. .................... ..............
O

1 50 I00 150 200 250 300 350 400 450

~n~lnion

Figure 7: The average payoff with the evolutionary learning:

crossover and mimicry
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7. Conclusion

The interaction of heterogeneous agents produces some kind

of coherent, systematic behavior. We investigated the

macroscopic patterns arising from strategic interactions of

heterougeneous agents who behave based on the local rules.

In this paper we address the questions such as: 1) how 

society of selffish agents self-organizes, without a central

authority, their collective behavior to satisfy the constraints?

2) How does learning at individual levels generate more

efficient collective behavior? 3) How does co-evolution in 

society put its invisible hands to promote seif-oranization of

emerging collective bahaviors?

In previous work on collective behavior, the standard

assumption was that agents use the same kind of adaptive

rule. In this paper, we departed from this assumption by

considering a model of heterogeneous agents with respect to

their meta-rule of making decisons at each time period. Agents

use ad hoc meta-rules to make their decision based on the

past performance. We also consider several types of learning

rules agents use to update their meta-rule for making decisions.

We consider specific strategic environments in which a large

number of agents have to choose one of two sides indepenently

and those on the minority side win, which is knon as a minority

game. A rational approach is helpless in our minority game

as it generates large-scale social inefficiency. We intrduced

a new learning model at the individual level, give-and-take

learning where every agent should make his decison based on

the past history of collective behavior. It is shown that emegent

collective behavior is more efficient than that generated from

the mixed Nash equilibrium strategies. We also proposed

collaborative learning based on a Darwinian approach.. It is

shown that in strategic environments where every agent has

to keep improving his meta-rule for making decisons in order

to survive, if agents learn from each other, then the social

efficiency is realized without a central of authority.
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