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Abstract

Multiagent systems offer a new paradigm to organize AI Ap-
plications. We focus on the application of Case-Based Rea-
soning to Muitiagent systems. CBR offers the individual
agents the capability of autonomously learn from experience.
In this paper we present a framework for collaboration among
agents that use CBR. We present explicit strategies for case
bartering in order improve individual case bases and reduce
bias is the ease’bases. We also present empirical results illus-
trating the robustness of the case bartering process for several
configurations of the multiagant system.

Introduction
Multiagent systems offer a new paradigm to organize AI ap-
plications. Our goal is to develop techniques to integrate
CBR into applications that are developed as multiagent sys-
tems. CBR offers the multiagent system paradigm the capa-
bility of autonomously learn from experience. In this paper
we present a framework for collaboration among agents that
use CBR and some experiments illustrating how they can
improve its performance using case bartering strategies.

The individual case bases of the CBR agents are the main
issue here, if they are not properly maintained, the overall
system behavior will be suboptimal. In a real system, there
will be agents that can very easily obtain certain kind of
cases, and that will very costly obtain other types of cases,
and for sure that other agents in the system will be in the
inverse situation. It will be beneficial for both agents if they
reach an agreement to trade cases. This is a very well known
strategy in the human history called bartering. Using case
bartering, agents that have a lot of cases of some kind will
give them to another agents in return to more interesting
cases for them.

Our research focuses on the scenario of separate case
bases that we want to use in a decentralized fashion by.
means of a multiagent system, that is to say a collection of
CBR agents that manage individual case bases and can com-
municate (and collaborate) with other CBR agents. In this
paper we focus on case bartering. We present two protocols
for case bartering that improve the overall performance of
the system and of the individual CBR agents without com-
promising the agent’s autonomy. This protocols will try to
Copyright (~ 2002, American Association for Artificial Intelli-
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minimize the individual case base bias (how far is a case
base of being a good sample of the overall distribution).

The structure of the paper is as follows. First, we present
the collaboration scheme that the agents use, then the indi-
vidual case base bias measurement is introduced. After that,
the case bartering mechanism, including the bartering pro-
tocols is presented. Finally, The experiments are explained
and the paper closes with related work and conclusion sec-
tions.

Collaboration Scheme
A multiagent CBR (.MAC) system .M = ~(Ai, Ci)]i=l...n
is composed on n agents, where each agent AI has a case
base Ci. In the experiments reported here we assume that
initially case bases are disjunct ~A~, Aj E .M : C~ t3 Cj =
0), i.e. initially there is no case shared by two agent’s case
bases. In this framework we restrict ourselves to analytical
tasks, i.e. tasks (like classification) where the solution 
achieved by selecting from an enumerated set of solutions
K = {$1...Sg}. A case base C~ = {(Pj,Sh)}j=I..N is a
collection of pairs problem/solution.

When an agent Ai asks another agent Aj help to solve
a problem the interaction protocol is as follows. First, AI
sends a problem description P to Aj. Second, after Aj
has tried to solve P using its case base Cj, it sends back
a message that is either :sorry (if it cannot solve P)
or a solution endorsement record (SER). A SER has the
form ({ (Sk, E~)}, P, Aj), where the collection of endorsing
pairs (Sk,E~) mean that the CBR method of the agentAj
has found E]c cases in case base Cj endorsing solution Sk--
i.e. there are a number E~ of cases that are relevant (similar)
for endorsing Sk as a solution for P. Each agent Aj is free
to send one or more endorsing pairs in a SER record.

Voting Scheme
The voting scheme defines the mechanism by which an
agent reaches an aggregate solution from a collection of
SERs coming from other agents. The principle behind the
voting scheme is that the agents vote for solution classes de-
pending on the number of cases they found endorsing those
classes. However, we want to prevent an agent having an
unbounded number of votes. Thus, we will define a normal-
ization function so that each agent has one vote that can be
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for a unique solution class or fractionally assigned to a num-
ber of classes depending on the number of endorsing cases.

Formally, let.At the set of agents that have submitted their
SERs to the agent As for problem P. We will consider that
At E .At and the result of At trying to solve P is also reified
as a SER. The vote of an agent Aj 6 .At for class Sk is

Vote(sk, 
c + E,=I...K EJ

where c is a constant that on our experiments is set to 1. It
is easy to see that an agent can cast a fractional vote that
is always less than 1. Aggregating the votes from different
agents for a class Sk we have ballot

Ballott(S,,At)= E Vote(S,,Aj)
AjE~t

and therefore the winning solution class is the class with
more votes in total, i.e.

Solt (p,.At) = at# kma..x.x Ballot(Sk, .At)

This voting scheme can be seen as a variation of Ap-
proval Voting (Brains & Fishburn 1983). In Approval Vot-
ing each agent vote for all the candidates they consider as
posible solutions without giving any weight to its votes. In
our scheme, Approval Voting can be implemented making
Vote(Sk, Aj) - 1 if E]~ # 0 and 0 otherwise.

There are two differences between the standard Approval
Voting and our voting scheme. The first one is that in our
voting scheme agents can give a weight to each one of its
votes. The second difference is that the sum of the votes
of an agent is bounded to 1. Thus we can call it Bounded-
Weighted Approval Voting (BWAV). In the experiments sec-
tion we will show some experiments illustrating the effect of
changing the voting scheme.

We will show now the Committee collaboration policy
that uses this voting scheme (see (Ontafi6n & Plaza 2001)
for a detailed explanation and comparison of several collab-
oration policies).

Committee Policy
In this collaboration policy the agent members of a .MAC
system .A4 are viewed as a committee. An agent At that has
to solve a problem P, sends it to all the other agents in .M.
Each agent Aj that has received P sends a solution endorse-
ment record ({(Sk, E~)}, P, Aj) to At. The initiating agent
As uses the voting scheme above upon all SERs, i.e. its own
SER and the SERs of all the other agents in the multiagent
system. The problem’s solution is the class with maximum
number of votes.

Notice that the agents participating in the Committee Pol-
icy have no reason or incentive to lie when providing a SER.
First of all, it is rational for an agent to participate in the
Committee Policy because it improves the accuracy of the
agent itself in classification. Secondly, once an agent has
joined the Committee Policy there is no incentive to cheat
the others (there is no benefit in the others being worse). 
the contrary, if agents start to cheat causing the Committee

Policy accuracy to diminish, the agents would decide sim-
ply to leave the Committee Policy. Thus, it is rational to
participate in the Committee Policy and cheating provides
no immediate or long term benefit.

Notice that the agents have no incentive to lie in its SERs,
since their only goal is to improve accuracy by cooperating.
When an agent At asks counsel of another agent Aj, Aj has
no incentive to lie because the outcome of the voting scheme
will only be used by As. Moreover, Aj in the future may
need the help of As expecting a sincere answer from him.
Therefore, the agents will only obtain some benefit of the
collaboration with other agents if all them are sincere.

Case Base Bias

In a previous work (Ontafi6n & Plaza 2001) we showed how
agents can obtain better results using the Committee collab-
oration policy that working alone. However, in those ex-
periments we assumed that every agent had a representative
sample of cases in its ease base. When an agent has a case
base that is not representative of the overall distribution, we
say that the agent has a biased case base.

In this section we are going to define a measure of the
degree of biasing of an individual case base (ICB bias or
Individual Case Base bias), then we will show how the per-
formance of the Committee degrades as the ICB bias of the
agents grow. Later sections introduce bartering policies to
improve the Committee performance.

Individual Case Base Bias

Let be dt = {d~,..., d~} the individual distribution of
cases for an agent As, where d~ is the number of cases with
solution Sj in the the case base of As. Now, we can estimate
the overall distribution of cases D = {D1,..., D/c} where
Di is the estimated probability of the class St,

oJ=
~"~4= 1 dt

To measure how far is the case base Ci of a given agent Ai
of being a representative sample of the overall distribution
we will define the Individual Case Base (ICB) bias, as the
square distance between the distribution of cases D and the
(normalized) individual distribution obtained from di:

rcB(ct) = 
1=1 j=l

In order to see how the ICB bias affects the performance
of the system, Table I shows the accuracy of several multia-
gent systems with increasing ICB bias (the .MAO ICB bias is
calculated as the mean of all the ICB bias of the agents in the
system). There we can see that when the agents have case
bases that are not representative (those with a high ICB) the
agents using the Committee policy obtains lower accuracies.
In the following sections, we will show how case bartering
improves accuracy by lowering the individual biases.
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MAC ICB 3 Ag. 5 Ag. 8Ag. 10 Ag.
0.O 88.36% 88.12% 87.50% 86.75%
0.1 86.07% 87.50% 85.35% 85.00%
0.2 81.46% 83.53% 83.00% 82.00%

Table 1: Classification accuracy for the marine sponge clas-
sification problem for systems with several mean Individual
Case Base bias.

Case Bartering

In the physical world, bartering involves the interchange of
two goods. But as our agents will barter with cases (that are
just information) they will only send a copy of the cases to
the other agents without losing them. It’s a matter of the
internal case deletion policy of each agent if a case must be
forgotten or not. Deletion policies have been studied (Smyth
& Keane 1995) but we will not be considering them in these
experiments.

In this section, we are going to present the Case Bartering
protocol that the agents use in order to improve the overall
performance.

Case Bartering Mechanism

To reach a bartering agreement for bartering between two
agents, there must be an offering agent Ai that sends an of-
fer to another agent Aj. Then Aj has to evaluate whether
the offer of interchanging cases with A~ is interesting, and
accept or reject the offer. If the offer is confirmed, we say
that Ai and Aj have reached a bartering agreement, and they
will interchange the cases in the offer.

Formally an offer is a tuple o = ( A~, A j, Ski, Sk2 ) where
A~ is the offering agent, Aj is the receiver of the offer, and
St~ and Sk2 are two solution classes, meaning that the agent
AI will send one of its cases with solution Sk2 and Ai will
send one of its cases with solution 5kl.

Making and accepting offers

The Case Bartering Protocol is not restrictive in how many
offers can an agent send at a time. So, many strategies can
be used here, but in our experiments, the agents use a very
simple one to choose which are the most interesting offers,
as follows for a given agent Ai:

¯ For each solution class Ski E {Sx ...SK}

¯ Ai looks if increasing by one its number of cases with
solution Stc, will decrease its ICB bias.

¯ If so, Ai chooses which agent Aj of the others is the best
one to ask for cases of solution Skt (Currently the chosen
Aj is the one with more cases of the solution class Sk~).

¯ Now A~ determines which is its best class St,2 (the class
for which it has more cases), and makes the offer o 
(Ai, Aj, Skt, Sk~), i.e. Ai offers to Aj a case of solution
Sk2 if Aj gives one of solution Ski to Ai.

When an agent receives a set of offers, it has also to
choose which of these offers to accept and which not. In
our experiments the agents use the simple rule of accepting

every offer that reduces its own ICB bias. Thus, we will de-
fine the set of interesting offers Interesting(O, A~) of a set of
offers O for an agent Ai as those offers that will reduce the
ICB bias of A~. Moreover, an agent cannot send twice the
same case to the same agent. So, the agents will only accept
those interesting offers that can satisfy (i.e. can provide 
new case for interchanging).

Case Bartering Protocol
We are going to present two different protocols for Case Bar-
tering, both synchronous (i.e. there are preestablished stages
("rounds") where the agents can send their offers, then the
protocol moves to the next stage, etc). The first one is called
the Simultaneous Case Bartering Protocol, and the second
one the Token-Passing Case Bartering Protocol.

When an agent member of the .MAG wants to enter in the
bartering process, is sends an initiating message to all the
other agents in the A4AC. Then all the other agents answer
whether or not they enter the bargaining process. This initi-
ating message contains a parameter tR, corresponding to the
time that each round of the protocol will last.

Simultaneous Case Bartering Protocol In this proto-
col,in every round all the agents send their offers simulta-
neously. When all the offers have been sent, all the agents
send a message for the offers they accept.

1. Each agent Ai broadcasts its individual distribution d~.

2. Each agent computes the overall distribution estimation
D.

3. The agents send their bartering offers.

4. Each agent chooses a subset of accepted offers from the
set of received offers from the other agents and sends ac-
cept messages.

5. When the maximum time tR is over, all the unaccepted
offers are considers! as rejected.

6. Each agent that has some bartering agreements sends the
cases to interchange to the corresponding agents.

7. Each agent broadcasts its new individual distribution d~.

8. If there have been no interchanged cases, the Case Barter-
ing Protocol ends, otherwise go to 3.

Token-Passing Case Bartering Protocol The main dif-
ference between this protocol and the previous one is the in-
troduction of a Token-Passing mechanism, so that only the
agent who has the Token can make offers to the others.

Each agent broadcasts its local statistics d~.

Each agent computes the overall distribution estimation
D.

Each agent computes the ICB bias of all the agents tak-
ing part in the bartering (including itself), and sorts them.
This defines the order in which the Token will be passed
through.

The agent with higher ICB bias is the first to have the
Token.

The agent who has the Token sends its bartering offers.

.

2.

,

4.

5.
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Figure 1: Accuracy comparison of systems where the agents
use nearest neighbor with and without using case bartering
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Figure 2: Accuracy comparison of systems where the agents
use 3-nearest neighbor with and without using case bartering

6. Each agent chooses a subset of accepted offers from the
set of received offers from owner of the token and sends
accept messages.

7. When the maximum time tR is over, all the unaccepted
offers are considered as rejected.

8. Each agent that has some bartering agreements sends the
cases to interchange to the corresponding agents.

9. Each agent broadcasts its new individual distribution dl.

10. If the Token belongs to the last agent, go to 1 l, otherwise
the Token is given to the next agent and we go to 5.

1 I. If there have been no interchanged cases, the Case Barter-
ing Protocol ends, otherwise go to 3.

Protocol discussion

In both protocols, if an offer is not accepted neither rejected
within the period time tR, the offer is considered as rejected,
and the protocol moves to the next round.

To ensure the convergence of both protocols, we have
only to have in mind the only restriction that we have im-
posed: an agent cannot send twice the same case to the same
agent. With this restriction it’s easy to see that both proto-
cols cannot run indefinitely, because each agent has a lim-
ited number of cases to trade with. So, we can say that in a
bounded number of rounds both protocols will end.

Comparing the protocols, we can see that the Siraultane-
ous protocol has the problem that an agent has to decide if
accept offers or not without knowing if its own offers are
going to be accepted. The Token-Passing protocol tries to
solve this problem by letting only one agent to send offers at
a time.

Experimental results
In this section we want to show how the classification ac-
curacy of the agents improve using the case bartering pro-
tocols with respect to systems where the agents do not use
them. We also show results concerning case base sizes after

¯ .
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i
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Figure 3: Accuracy comparison of systems where the agents
use LID with and without using case bartering

the bartering and the number of rounds needed to converge
to a stable case distribution.

We use the marine sponge identification (classification)
problem as our test bed ----this data set was also used to as-
sess the relational inductive method!NDIE in (Armengol 
Plaza 2000). Sponge classification is interesting because
the difficulties arise from the morphological plasticity of
the species, and from the incomplete knowledge of many
of their biological and cytological features. Moreover, ben-
thology specialists are distributed around the world and they
have experience in different benthos that spawn species with
different characteristics due to the local habitat conditions.

In order to show the improvements obtained in the system
when the agents use case bartering, we have designed an ex-
perimental suite with a case base of 280 marine sponges per-
taining to three different orders of the Demospongiae class
(Astrophorida, Hadromerida and AxineUida). In an experi-
mental run, cases are randomly distributed among the agents
(e.g. if the training set is composed of 252 cases and we have
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.MAG ICB bias 3Ag. 5 Ag. 8 Ag. lO Ag.
Before 0.2 0.2 0.23 0.15

After SCBP 0.00004 0.0003 0.0004 0.0004
After TPCBP 0.00003 0.0002 0.0002 0.0003

Table 2: MAC ICB biases of the multiagent systems used in
the experiments before and after the case battering process.

3 Agents 5 Agents 8 Agents l O Agents
SCBP 79.4 24.9 14.0 12.9

TPCBP 212.0 101.1 97.2 99.4
SCBP*n 238.2 124.5 112.0 129.0

Table 3: Number of rounds need to converge in the case
bartering protocols.

Figure 4: Comparison of the case base size before and after
the bartering process

a 4 agents system, each agent will receive about 63 cases).
In the testing phase, problems arrive randomly to one of the
agents. The goal of the agent receiving a problem is to iden-
tify the correct biological order given the description of a
new sponge. Once an agent has received a problem, he will
use the Committee collaboration policy to obtain the predic-
tion.

For experimentation purposes, we force biased case bases
in every agent. Specifically, we increase the probability of
each agent to have cases of some classes and decrease the
probability to have cases of some other classes. For exam-
ple, in the 3 agent scenario, the 70% of the cases for the
class Astrophorida in the training set are in the individual
case base of Agent 1, and the other two agents only have
a 15% of them. Analogously, the 70% of the cases for the
classes Hadromerida and Axinellida are in the case bases of
the Agents 2 and 3 respectively. This process increases the
individual case-base bias of the agents in the .MAC; the first
row of Table 2 shows the average over Individual Case-Base
(ICB) biases for the agents in the experiments.

Table 2 also shows the average ICB biases for the agents
in the experiments after the bartering process. We can see
that both protocols ate able to reduce the ICB bias to very
small values. This shows that the bartering protocols effec-
tively interchange cases until all agents drastically reduce
their 1CB bias; only then the process ends and the overall
accuracy has indeed improved to the level we expected. Fi-
nally, notice that when agents have a greater volume of cases
to barter (e.g. in the 3 agents scenario) the ICB bias ob-
tained after bartering is one order of magnitude lower than
when the agents have fewer cases (from 0.00003 in 3 agents
scenario to 0.0003 in the 10 agents scenario).

In order to test the generality of the protocols, we have
tested them using systems with 3, 5, 8 and up to 10 agents,
and using several CBR methods: nearest neighbor, 3-nearest
neighbor and LID (Armengol & Plaza 2001). The results
presented here are the average of 5 10-fold cross validation
runs.

The figures 1, 2 and 3 show the results of applying the
two case bartering protocols. Three bars are shown for each
scenario, the biased results represent the average accuracy
obtained by the .MAC without using case-bartering with bi-
ased individual case bases; and the SCBP and TPCBP results
represent the average accuracy obtained by the .MAC after
using the Synchronous Case Bartering Protocol and Token-
Passing Case Bartering Protocol respectively. We can see in
those figures that in all the scenarios, the .MAC systems us-
ing case bartering obtain a significative gain in accuracy than
those systems that do not use case bartering. This shows
the independence of the bartering protocols from the CBR
method used by the individual agents. Those figures also
show that case bartering is robust even when the size of the
case bases decreases and the number of cases an agent can
barter is very small, as we can see for the 10 agents scenario
where each agent has only about 25 cases (i.e. less than 
cases per class).

Comparing the accuracy obtained by the two protocols
SCBP and TPCBP we see that both have nearly the same ac-
curacy in all the scenarios. We can see that there is never a
difference greater than 1% between the results of the Simul-
taneous protocol and the results of the Token-Passing pro-
tocol. Therefore no bartering protocol is significantly better
than another but both are significantly better than using no
bartering protocol.

Figure 4 shows the case base sizes reached after case
bartering. We see that the agents stop interchanging cases
before each agent acquires all known cases in the system.
Moreover, except in the 3 agents scenario, the case base
sizes do not increase very much. The 3 agents scenario
is special because the initial case bases of the agents are
quite big, and to repair their ICB biases the number of cases
needed to be bartered is much greater than in the 5, 8 or 10
agent scenarios. We also see that the case base sizes ob-
tained using the Token-Passing protocol are slightly smaller
than the ones obtained using the Simultaneous protocol.

Concerning to the convergence of the protocols, they al-
ways converge. Table 3 shows the average number of rounds
need to converge in both protocols. We can see that the Si-
multaneous protocol is much faster than the Token-Passing
one (taking only in consideration the number of rounds need

81



Figure 5: Comparison between Bounded.WeightedApproval
Voting and standard Approval Voting for agents using LID.

to converge). This is as expected, since in the Token-Passing
protocol only one agent can make offers each round, so
TPCBP needs about n times more rounds (being n the num-
ber of agents in the system) than the Simultaneous proto-
col. The third row of table 3 shows the number of rounds of
the Simultaneous protocol multiplied by n. We see that the
number of rounds needed by the Token-Passing protocol is
always a bit less than those numbers.

For comparison purposes Figures 5 and 6 show some re-
sults where the agents use standard Approval Voting instead
of the Bounded-Weighted Approval Voting. These figures
show a comparison between the two voting schemes for two
different scenarios: in the first one the agents do not use
case-bartering, and in the second one they use the SCBP.
The results show the accuracy for LID and 3-Nearest Neigh-
bour (since in l-Nearest Neighbour agents vote for only one
class, there is no difference between AV and BWAV). Figures
5 and 6 show that there is no significant difference between
the two voting schemes. When the agents use LID BWAV
works better for systems where there are fewer agents (and
thus more cases per case-base). But when the agents use
3-Nearest Neighbour this difference is not so clear. When
the case-bases are biased, standard AV is worse than BWAV
with 3-Nearest Neighbour (specially in the 3 and 8 agents
scenario). However, after the bartering process (when ICB
bias is low), both voting schemes obtain nearly the same re-
suit. Sumarizing, both voting schemes behave similarly, but
BWAV is more robust with higher biased conditions.

Related Work
Several areas are related to our work: multiple model learn-
ing (where the final solution for a problem is obtained
through the aggregation of solutions of individual predic-
tors), case base competence assessment, and negotiation
protocols. Here we will briefly describe some relevant work
in these areas that is close to us.

A general result on multiple model learning (Hansen 
Salamon 1990) demonstrated that if uncorrelated classifiers

VotingScheme comparison using
3-Nearest Nelghbout

91

83

Figure 6: Comparison between Bounded-Weighted Approval
Voting and standard Approval Voting for agents using 3-
nearest neighbour.

with error rate lower than 0.5 are combined then the result-
ing error rate must be lower than the one made by the in-
dividual classifiers. The BEM (Basic Ensemble Method)
is presented in (Perrone & Cooper 1993) as a basic way
to combine continuous estimators, and since then many
other methods have been proposed: Stacking generalization
OVolpert 1990), Cascade generalization (Gama 1998), Bag-
ging (Breiman 1996) or Boosting (Freund & Scbapire 1996)
are some examples. However, all these methods do not deal
with the issue of "partitioned examples" among different
classifiers as we do--they rely on aggregating results from
multiple classifiers that have access to all data. Their goal is
to use multiplicity of classifiers to increase accuracy of exist-
ing classification methods. Our intention is to combine the
decisions of autonomous classifiers (each one corresponding
to one agent), and to see how can they cooperate to achieve
a better behavior than when they work alone. A more simi-
lar approach is the one proposed in (Vuurpijl & Schomaker
1998), where a MAS is proposed for pattern recognition.
Each autonomous agent being a specialist recognizing only
a subset of all the patterns, and where the predictions were
then combined dynamically.

Learning from biased datasets is a well known prob-
lem, and many solutions have been proposed. Vucetic and
Obradovic (Vucetic & Obradovic 2001) propose a method
based on a bootstrap algorithm to estimate class probabili-
ties in order to improve the classification accuracy. How-
ever, their method does not fit our needs, because they need
the entire testset available for the agents before start solving
any problem in order to make the class probabilities estima-
tion.

Related work is that of case base competence assessment.
We use a very simple measure comparing individual with
global distribution of cases; we do not try to assess the aeras
of competence of (individual) case bases - as proposed 
Smytb and McKenna (Smyth & McKenna 1998). This work
focuses on finding groups of cases that are competent.
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In (Schwartz & Kraus 1997) Schwartz and Kraus discuss
negotiation protocols for data allocation. They propose two
protocols, the sequential protocol, and the simultaneous pro-
tocol. These two protocols can be compared respectively to
our Token- Passing Case Bartering Protocol and Simultane-
ous Case Bartering Protocol, because in their simultaneous
protocol, the agents have to make offers for allocating some
data item without knowing the other’s offers, and in the se-
quential protocol, the agents make offers in order, and each
one knows which were the offers of the previous ones.

Conclusions and Future Work

We have presented a framework for cooperative Case-Based
Reasoning in multiagent systems, where agents use a market
mechanism (bartering) to improve the performance both 
individuals and of the whole multiagent system. The agent
autonomy is maintained, because if an agent do not want
to take part in the bartering, he just has to do nothing, and
when the other agents notice that there is one agent not fol-
lowing the protocol they will ignore it during the remaining
iterations of the bartering process.

In this article we have shown a problem arising when data
is distributed over a collection of agents, namely that each
agent may have a skewed view of the world (the individual
bias). Comparing empirical results in classification tasks we
saw that both the individual and the overall performance de-
creases when bias increases. The process of bartering shows
that the problems derived from distributed data over a col-
lection of agents can be solved using a market-oriented ap-
proach. Each agent engages in a barter only when it makes
sense for its individual purposes but the outcome is an im-
provement of the individual and overall performance.

The naive way to solve the ICB bias problem could be
to centralize all data in one location or adopt a completely
cooperative multiagent approach where each agent sends its
cases to other agents and they retain what they want (a "gift
economy"). The problem with the completely cooperative
approach is that the outcome improves but redundancy also
increases and there may be scaling up problems; the barter-
ing approach tries to interchange cases only to the amount
that is necessary and not more.

In the experiments reported in this paper, the agents use
strategies for choosing which offers to generate and send to
other agents and for choosing which offers to accept from
other agents. Currently, both strategies try to minimize the
ICB bias measure. The ICB bias estimates the difference
between the individual and global case distribution over the
classes. However, we plan to study other kinds of biases
that may characterize the individual agents’ case base. In
order to compute these new bias measures, the agents may
need to make public more information. Thus, a modification
in the bartering protocols would be needed to manage the
information required.

We have focused on bartering for agents using lazy learn-
ing but future work should address the usefulness of barter-
ing for eager (inductive) learning techniques.
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