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Abstract 

Honeywell and its teammates (PredictDLI, Knowledge 
Partners of Minnesota, the Georgia Institute of 
Technology, York International, and WM Engineering) 
have developed a distributed shipboard system to 
perform diagnostics and prognostics on mechanical 
equipment (e.g. engines, generators, and chilled water 
systems) for the Office of Naval Research (ONR).  This 
Condition Based Maintenance (CBM) system (called 
MPROS for Machinery Prognostics/Diagnostics 
System) consists of MEMS and conventional sensors on 
the machinery, local intelligent devices (called Data 
Concentrators), and a centrally located subsystem 
(called the PDME for Prognostics, Diagnostics, 
Monitoring Engine) which is designed so that it can run 
under shipboard monitoring systems such as ICAS 
(Integrated Condition Assessment System).  The system 
uses an open, object-oriented approach with a well-
defined API so that additional diagnostic and 
prognostic algorithms can be incorporated in a “plug 
and play” manner. 

MPROS includes and augments periodic vibration 
analysis by collecting data continuously from vibration 
and other sensors, including temperature, pressure, 
current, voltage, and others.  These data streams are 
integrated as necessary in the Data Concentrators (data 
fusion).  Individual prognostic and diagnostic 
algorithms can reside in either the Data Concentrators 
or the PDME.  A second level of integration 
(Knowledge Fusion) occurs in the PDME.  At this 
level, using both Dempster Shafer Evidence 
Combination and a mechanism to fuse time-to-failure 
estimates, the conclusions of the diagnostic and 
prognostic reasoning algorithms are fused to yield the 
best possible analysis. 

The authors gratefully acknowledge the support of the 
Office of Naval Research, grant number N00014-96-C-
0373. 

1. INTRODUCTION 

The ONR CBM system, called MPROS (for Machinery 
Prognostics and Diagnostics System), is a distributed, open, 
extensible architecture for hosting multiple on-line 
diagnostic and prognostic algorithms.   

Since these algorithms have overlapping areas of expertise, 
they may sometimes disagree about what is wrong with the 
machine.  They may also reinforce each other by reaching 
the same conclusions from similar data.  In these cases, 
another subsystem, called Knowledge Fusion (KF), is 
invoked to make some sense of these conclusions.   

MPROS is distributed in the following sense: Devices called 
Data Concentrators (DC) are placed near the ship’s 
machinery.  Each of these is a computer in its own right and 
has the major responsibility for diagnostics and prognostics.  
The prognostic and diagnostic algorithms run on the DC.  
Conclusions reached by these algorithms are then sent over 
the ship’s network to a centrally located machine containing 
the other part of our system – the 
Prognostic/Diagnostic/Monitoring Engine (PDME).  KF is 
located in the PDME.  Also in the PDME is the Object 
Oriented Ships Model (OOSM).   

The MPROS program had two phases.  The first phase had 
MPROS installed and running in the lab.  During the second 
phase, we extended MPROS’s capability somewhat and 
installed it on the Navy Hospital Ship, the USNS MERCY, 
in San Diego. 

Mission – Our central mission in this project was to design 
a shipwide CBM system to predict remaining life of all 
shipboard mechanical equipment.  However, implementation 
of such a system in its entirety would have been much too 
ambitious.  In light of this, we chose to illustrate the general 
principles of our design by implementing it in a specific way 
on the Centrifugal Chilled Water System.  The result of this 
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philosophy is that occasionally we chose a more general way 
of solving a problem over a “centrifugal chiller-specific” 
solution. 

Why Centrifugals? – There were two main reasons for 
our choice of centrifugal chillers: System complexity and 
commercial applicability.  These A/C systems combine 
several rotating machinery equipment types (i.e. induction 
motors, gear transmissions, pumps, and centrifugal 
compressors) with a fluid power cycle to form a complex 
system with several different parameters to monitor.  This 
dictated the requirement for a correspondingly complex and 
versatile monitoring system.  Dynamic vibration signals 
must be acquired using high sampling rates and complex 
spectrum and waveform analysis.  Slower changing 
parameters such as temperatures and pressures must also be 
monitored, but at a lower frequency and can be treated as 
scalars rather than vectors as with vibration spectra.  All of 
these monitored parameters and analysis techniques are 
combined using a versatile diagnostic system.  The final 
product has the inherent capability of diagnosing not just the 
whole A/C system, but each of its parts as well, making it a 
potentially very useful tool for monitoring any pump, motor, 

gearset, or centrifugal compressor in the fleet. 

Secondly, the selection of A/C system as the subject will 
provide a high probability of commercial applicability of the 
resultant monitoring system.  There are a great deal of 
facilities industrial, military, commercial, and institutional 
that use large centrifugal chiller based A/C systems 
throughout the US and the world. 

2. SOFTWARE 

Figure 1 shows a diagram of the MPROS system.  Here we 
describe the various parts. 

PDME Software 

The Prognostic, Diagnostic, Monitoring Engine (PDME) is 
the logical center of the MPROS system.  Diagnostic and 
prognostic conclusions are collected from DC-resident 
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Figure 1 The MPROS System 

 



algorithms as well as PDME-resident algorithms. Fusion of 
conflicting and reinforcing source conclusions is performed 
to form a prioritized list for the use of maintenance 
personnel. 

The PDME is implemented on a Windows NT platform as a 
set of communicating servers built using Microsoft’s 
Component Object Model (COM) libraries and services. 
Choosing COM as the interface design technique has 
allowed us to build some components in C++ and others in 
Visual Basic, with an expected improvement in development 
productivity as the outcome.  Some components were 
prototyped using Microsoft Excel and we continue to use 
Excel worksheets and macros to drive some testing of the 
system.  Communications between DC components and 
PDME components depend on Distributed COM (DCOM) 
services built into Microsoft’s operating systems.  

User interface – As shown in Figure 2, an interface to the 
MPROS conclusions has been built.  The sample screen 
shown indicates that for machine A/C Compressor Motor 1, 
six condition reports from four different knowledge sources 
(expert systems) have been received, some conflicting and 
some reinforcing. 

After these reports are processed by the Knowledge Fusion 
component, the predictions of failure for each machine 
condition group are shown at the bottom of the screen.  

This display is updated as new reports arrive at the PDME 
and are accumulated in the OOSM.   

Object Oriented Ship Model – Entities in the OOSM 
are modeled as objects with properties and relationships to 
other entities.  Some of the OOSM objects represent 
physical entities such as sensors, motors, compressors, 
decks, and ships while other OOSM objects represent more 
abstract items such as a failure prediction report or a 
knowledge source.  Some common properties include name, 
manufacturer, energy usage, capacity, and location.  
Common relationships include part-of, kind-of, connected-
to, and energy flow.  

Diagnostic and prognostic conclusions are stored in the 
OOSM – both those of the individual algorithms and those 
reached by KF.  It also serves as blackboard by providing a 
means of communication among the individual algorithms. 

Knowledge Fusion – Knowledge fusion is the 
coordination of individual data reports from a variety of 
sensors.  It is higher level than pure “data fusion” which 
generally seeks to correlate common-platform data.  
Knowledge fusion, for example, seeks to integrate reports 
from acoustic, vibration, oil analysis, and other sources, and 
eventually to incorporate trend data, histories, and other 
components necessary for true prognostics. 

The knowledge fusion components must be able to 
accommodate inputs that are incomplete, time-disordered, 
fragmentary, and that have gaps, inconsistencies, and 
contradictions.  In addition, knowledge fusion components 
must be able to collate, compare, integrate, and interpret 
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Figure 2 MPROS User Interface 



data from a variety of sources.  To do this, it must provide 
both inference control that accommodates a variety of input 
data and fusion algorithms with the ability to deal with 
disparate inputs. 

Knowledge fusion follows this procedure: 

1. New reports arriving to the PDME are posted in the 
OOSM. 

2. New reports posted in the OOSM generate “new data” 
messages to the knowledge fusion components. 

3. The knowledge fusion components access the newly 
arrived data from the OOSM.  They perform knowledge 
fusion of diagnostic reports and knowledge fusion of 
prognostic reports. 

4. Conclusions from the knowledge fusion components are 
posted to the OOSM and presented in user displays in 
the graphical user interface. 

To date, two levels of knowledge fusion have been 
implemented: one for diagnostics and an extension for 
prognostics (remaining life). 

Our approach for implementing knowledge fusion for 
diagnostics uses Dempster-Shafer belief maintenance for 
correlating incoming reports.  This is facilitated by use of a 
heuristic that groups similar failures into logical groups.  

Dempster-Shafer theory is a calculus for qualifying beliefs 
using numerical expressions.  For example, given a belief of 
40% that A will occur and another belief of 75% that B or C 
will occur, it will conclude that A is 14% likely, B or C is 
64% likely, and assign 22% of belief to unknown 
possibilities.  This maintenance of the likelihood of 
unknown possibilities is both a differentiator and a strength 
of Dempster-Shafer theory.  It was chosen over other 
approaches (e.g., Bayes nets) because the others require 
prior estimates of the conditional probability relating two 
failures – data not yet available for the shipboard domain. 

The system was augmented by heuristically collecting 
similar failures into logical groups.  This facilitates 
processing and streamlines operation because Dempster-
Shafer analysis looks at each failure in light of every other 
possible failure and is required to produce the likelihood of 
unknown possibilities.  In the MPROS case, this is 
inadequate because it would assume mutual exclusivity of 
failures.  However, this is not a realistic assumption.  There 
can, in fact, be several failures at one time, and two or more 
of them might be independent of one another.  Thus, we 
developed the concept of logical groups of failures.  Failures 
that are all part of the same logical groups are related to 
each other (for example, one group might be electrical 
failures, while another group would be lubricant failures, 
etc.). Moreover, failures within a group might be mistaken 
for one another, so any two of them are logically related and 
should share probabilities when they are both under 
consideration.  Note that this does not preclude multiple 
failures within a group all being suspected concurrently; it 

simply ensures that they are tracked and weighted correctly. 

The second level of knowledge fusion combines time to 
failure estimates.  Time to failure is represented in our 
system as a list of one or more time points, probability pairs, 
called the ‘prognostic vector’.  For example, the prognostic 
vector with the single member ‘((3 months, .1))’ indicates 
that the system has a 10% likelihood of failure within 3 
months.  The prognostic vector ‘((2 weeks, .1) (1 month, .5) 
(2 months, .9))’ indicates a likelihood of failure of 10% 
within 2 weeks, 50% within 1 month, and 90% within 2 
months.  

Our approach to the fusion of prognostics information is to 
combine the lists, taking the most conservative estimate at 
any given time period, interpolating a smooth curve from 
point to point, and extrapolating the worse case from the 
entry with the longest interval.  For example, suppose we 
have a prognostic for a given component that indicates it 
will perform well for 3 months, and then experience some 
trouble making it as likely to fail as not by 4 months and 
almost surely to fail within 5 months.  The prognostic vector 
for this case is ((3 months, .01) (4 months, .5) (5 months, 
.99)).  Suppose further that we need to combine this with 
another report showing that the same component will 
experience some small trouble at 4-1/2 months.  This 
prognostic vector is ((4.5 months, .12)).  Under our current 
approach, we ignore the second report and stick with the 
first, which is more conservative.  If, however, the second 
report indicates a much higher likelihood of failure, say 
((4.5 months, .95)), then this report would dominate and the 
extrapolation of the curve beyond this point would indicate 
an even earlier demise of the component than the first 
prognostic vector. 

Interfaces provided. One of the goals of the MPROS 
system is to encourage the incorporation of the appropriate 
set of algorithms supplying diagnostic and prognostic 
conclusions based on similar, overlapping, or entirely 
disjoint sensor readings.  At the same time, we recognized 
that these diverse results must be unified into a meaningful 
report to the system’s users. To this end, a standard protocol 
has been defined for reporting failure predictions to the 
PDME for fusion and display. 

The general incoming report format may contain the 
following data fields (not all reports need use all fields): 

1. KnowledgeSourceID: The unique MPROS object ID 
for the instance of the diagnostic/prognostic algorithm 
generating the report. 

2. SensedObjectID: The unique MPROS object ID for the 
sensed object to which this report applies. 

3. MachineConditionID: The unique MPROS object ID 
for the diagnosed machine condition (usually a failure 
mode). 

4. Severity: Numeric value in the range 0.0 to 1.0 
indicating relative severity of machine condition to 
operation.  Maximal severity is 1.0. 



5. Belief: Numeric value in the range 0.0 to 1.0 indicating 
belief that this diagnosis is true.  Maximal belief is 1.0. 

6. Explanation: An optional text string providing a human-
readable description of the diagnosis.  

7. Recommendations: An optional text string providing a 
human-readable description of the recommended 
actions to take.  

8. Timestamp: The timestamp for when this report should 
be considered effective. 

9. Additional Information: An optional text string 
providing human-readable additional information. 

10. Prognostic vector: A vector of time point, probability 
pairs indicating projected likelihood of failure (as 
described above). 

Diagnostic knowledge fusion generates a new fused belief 
whenever a diagnostic report arrives for a suspect 
component. This updates the belief for that suspect 
component and for every other failure in the logical group 
for that component.  It also updates the belief of ‘unknown’ 
failure for the logical group for that component. 

Prognostic knowledge fusion generates a new prognostic 
vector for each suspect component whenever a new 
prognostic report arrives. 

Future directions for knowledge fusion. Several high-
level control extensions are under consideration for future 
extensions.  First, multilevel data are represented by the 
OOSM. We are not currently exploiting this fully. For 
example, we could reason about the health of a system based 
on the health of a constituent part. Currently, only the parts 
are tracked. Second, spatial reasoning using the OOSM 
could lead us to fuse information about spatially related 
components. One example of a spatial relation is proximity. 
For example, a device might be vibrating because a 
component next to it is broken and vibrating wildly. Another 
example is flow. Flows are relationships that represent fluid 
flow through the system (one component passing fouled 
fluids on to other components downstream), electrical flow, 
or mechanical flow of physical energy. Third, temporal 
reasoning components could be implemented to scrutinize 
failure histories and provide better projections of future 
faults as they develop. 

Two other future directions for knowledge fusion are the 
refinement of specific knowledge fusion components for 
diagnostics and for prognostics.  For example, Bayes nets 
seem to be a promising approach to diagnostic knowledge 
fusion when causal relations and a priori relationships can 
be teased out of historical data.  Prognostic knowledge 
fusion could be improved with the addition of techniques 
from the analysis of hazard and survival data.  These 
approaches scrutinize history data to refine the estimates of 
life-cycle performance for failures, and the refined inputs to 
the prognostic analysis should yield better projections of 
future failures. 

Resident Algorithms – As the reader can see from 
Figure 1, the PDME has the capability to host prognostic 
and diagnostic algorithms.  Some reasons for placing the 
algorithms in the PDME rather than the DC include: the 
algorithm requires data from widely separate parts of the 
ship, the algorithm can reason from PDME resident 
components (a model-based diagnostic and prognostic 
system, for instance, might use only the OOSM), and so on. 

Although we provide this capability in our general 
architecture, our system as currently implemented does not 
place any diagnostic/prognostic algorithms in the PDME – 
all of them run in the data concentrators. 

Data Concentrator (DC) Software 

Scheduler – At the heart of the DC software is an event 
scheduler.  This software component runs the show by 
organizing all necessary events.  For example, the standard 
vibration test and analysis is executed routinely by the 
scheduler.  To do a standard vibration test, the scheduler 
first triggers execution of vibration data acquisition 
component, and when that operation is complete the 
scheduler fires off the vibration analysis component and then 
triggers communication of the results.  In similar fashion, the 
scheduler conducts wavelet and neural network testing and 
analysis and state based feature recognition and fuzzy logic 
routines to collect and analyze process variables. 

Each of the components extracts information from and store 
data in the DC database, which is configured as a database 
server and can be accessed by client PC’s on the network.  
In this way, the PDME or any other client can command the 
scheduler to conduct another test and analysis routine. 

Data Base – Central to the operation of the DC is an open 
architecture ODBC compliant relational database designed 
to store all of the instrumentation configuration information, 
machinery configuration information, test schedules, 
resultant measurements, diagnostic results, and condition 
reports.  The database design is a commercially available 
database already field tested and proven effective in many 
industrial facilities.   

Prognostic/Diagnostic Algorithms – The current 
version of MPROS has four sets of prognostic/diagnostic 
algorithms: the PredictDLI Expert System, Wavelet Neural 
Networks, Fuzzy Logic, and State Based Feature 
Recognition.  A brief description of each of these follows: 

PredictDLI’s (a company in Bainbridge Island, Washington 
that has a Navy contract to do CBM on shipboard 
machinery) vibration based expert system has been adapted 
to run in a continuous mode.  These algorithms excel when 
the Chiller is performing in steady state. 

Wavelet-Neural Network (WNN) diagnostics and 
prognostics developed by Professor George Vachtsevanos 



and his colleagues at Georgia Tech.  This technique is, like 
PredictDLI’s, aimed at vibration data, however, 
complementing the PredictDLI algorithm, their algorithm 
excels at drawing conclusions from transitory phenomena 
rather than steady state data. 

Fuzzy Logic diagnostics and prognostics also developed by 
Georgia Tech which draws diagnostic and prognostic 
conclusions from non-vibrational data.  

State Based Feature Recognition (SBFR), a Honeywell-
developed embeddable technique that facilitates recognition 
of time-correlated events in multiple data streams.  
Originally developed for Space Station Freedom, this 
technique has been used in a number of NASA related 
programs. 

3. VALIDATION 

One question we are often asked is “How are you going to 
prove that your system does what you say it does?”  This 
question, as it turns out, is a quite difficult one.  The 
problem is that we are developing a system that we claim 
will predict failures in devices, and that in real life, these 
devices fail relatively rarely.  In fact, for any one failure 
mode, it is entirely possible that the failure mode (although 
valid) may never have occurred on any piece of equipment 
on any ship in the fleet!  We have a number of answers to 
the question: 

• We are still going to look for the failure modes.  We 
have a number of installed data collectors both on land 
and on ships.  In addition, PredictDLI is collecting time 
domain data for a number of parameters whenever their 
vibration-based expert system predicts a failure on 
shipboard chillers.  This will give us data that we can 
use to test our system. 

• As Honeywell upgrades its air conditioning systems to 
be compliant with new non-polluting refrigerant 
regulations, older chillers become obsolete.  We have 
managed to acquire one of these chillers that Honeywell 
replaced.  It was shipped to York, and we have 
completed a program to collect data from this chiller 
through a carefully choreographed set of destructive 
tests. 

• Seeded faults are worth doing.  Our partners in the 
Mechanical Engineering Department of Georgia Tech 
are seeding faults in bearings and collecting the data.  
These tests have the drawback that they might not 
exhibit the same precursors as real-world failures, 
especially in the case of accelerated tests. 

• Honeywell, York, PredictDLI, NRL, and WM 
Engineering have archives of maintenance data that we 
will take full advantage of in constructing our 
prognostic and diagnostic models. 

• Similarly, these partners have human expertise that we 
are able to tap in building our models. 

Although persuasive, these answers are far from conclusive.  
The authors would welcome any input on further validation 
of a failure prediction system. 

4. MERCY INSTALLATION 

Our system is complete and has been installed in two places: 
in the basement of Honeywell Laboratories on a Carrier 
19DK chiller and in San Diego on the USNS MERCY’s (T-
AH-019) #1 AC plant – a York 363 Ton chiller.  The system 
has detected and reported a number of problems including a 
bad bearing on one of the seawater pumps.  MPROS also 
diagnosed a problem on one of the chilled water pumps that 
led to the discovery of a previously unknown failure mode – 
an electrical path through the bearings that led to pitting. 

The Mercy was chosen for a number of reasons: 

1. It is in a climate that was more likely to require cooling 
during the winter shipboard test phase of our centrifugal 
chiller prognostics and diagnostics system. 

2. It was likely to stay stationary and not put out to sea (as, 
for instance, a carrier would). 

3. It contains pieces of equipment that are the target of our 
prognostics and diagnostics efforts. 

4. We have a good working relationship with the crew. 

Earlier versions of our system were installed on the 
following ships: the USNS COMFORT (T-AH-020), the 
USS CONSTELLATION (CV-64), and the USS 
ABRAHAM LINCOLN (CVN-72). 
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