From: AAAI Technical Report SS-02-04. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

A Hybrid Hierarchical Schema-Based Architecture
for Distributed Autonomous Agents

Matthew Gillen, Arvind Lakshmikumar, David Chelberg, Cynthia Marling,
Mark Tomko and Lonnie Welch
School of Electrical Engineering and Computer Science
Ohio University, Athens, OH 45701 USA

Abstract

The advent of inexpensive computers has spurred interest in
distributed architectures, in which a cluster of low-cost com-
puters can achieve performance on the same scale as expen-
sive super-computers. The goal of research in distributed sys-
tems is to take a highly decomposable problem solution, and
put that solution into a framework that allows the system to
take full advantage of the solution’s decomposability. An ar-
chitecture that allows additional processors to be taken ad-
vantage of with little or no manual reconfiguration would be
ideal.

Artificial Intelligence (Al) algorithms for planning in non-
trivial domains are typically resource-intensive. We believe
that a framework for developing planning algorithms that al-
lows an arbitrary level of decomposition and provides the
means for distributing the computation would be a valuable
contribution to the Al community.

We propose a general, flexible, and scalable hierarchical ar-
chitecture for designing multi-agent distributed systems. We
developed this architecture to facilitate the development of
software for soccer-playing robots. These robots will com-
pete in the international robot soccer competition RoboCup.
All of our software, from the high-level team strategy plan-
ning down to the control loop for the motors on our robots fits
into this architecture.

We build on the notion of deliberative and reactive agents,
forming a hierarchy of hybrid agents. The hierarchy covers
the entire continuum of hybrid agents: agents near the root of
the hierarchy are mostly deliberative, while agents near the
leaves are almost purely reactive.

Introduction to Multi-Agent Systems

A multi-agent system can be thought of as a group of inter-
acting agents working together to achieve a set of goals. To
maximize the efficiency of the system, each agent must be
able to reason about other agents’ actions in addition to its
own. A dynamic and unpredictable environment creates a
need for an agent to employ flexible strategies. The more
flexible the strategies however, the more difficult it becomes

Copyright © 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to predict what the other agents are going to do. For this rea-
son, coordination mechanisms have been developed to help
the agents interact when performing complex actions requir-
ing teamwork. These mechanisms must ensure that the plans
of individual agents do not conflict, while guiding the agents
in pursuit of the goals of the system.

Agents themselves have traditionally been categorized
into one of the following types (Woolridge and Jennings
1995):

o Deliberative
e Reactive
e Hybrid

Deliberative Agents

The key component of a deliberative agent is a central rea-
soning system (Ginsberg 1989) that constitutes the intelli-
gence of the agent. Deliberative agents generate plans to
accomplish their goals. A world model may be used in a
deliberative agent, increasing the agent’s ability to generate
a plan that is successful in achieving its goals even in un-
foreseen situations. This ability to adapt is desirable in a
dynamic environment.

The main problem with a purely deliberative agent when
dealing with real-time systems is reaction time. For simple,
well known situations, reasoning may not be required at all.
In some real-time domains, such as robotic soccer, minimiz-
ing the latency between changes in world state and reactions
is important.

Reactive Agents

Reactive agents maintain no internal model of how to predict
future states of the world. They choose actions by using the
current world state as an index into a table of actions, where
the indexing function’s purpose is to map known situations
to appropriate actions. These types of agents are sufficient
for limited environments where every possible situation can
be mapped to an action or set of actions.

The purely reactive agent’s major drawback is its lack of
adaptability. This type of agent cannot generate an appro-
priate plan if the current world state was not considered a



Purely Deliberative Agent

More Deliberative Agents

More Reactive Agents

Purely Reactive Agents

Figure 1: Agent Hierarchy

priori. In domains that cannot be completely mapped, using
reactive agents can be too restrictive (Mataric 1995).

Hybrid Agents

Hybrid agents, when designed correctly, use both ap-
proaches to get the best properties of each (Bensaid and
Mathieu 1997). Specifically, hybrid agents aim to have the
quick response time of reactive agents for well known sit-
uations, yet also have the ability to generate new plans for
unforeseen situations.

We propose to have a hierarchy of agents spanning a con-
tinuum of deliberative and reactive components. At the root
of the hierarchy are agents that are mostly deliberative, while
at the leaf nodes are agents that are completely reactive.
Figure 1 shows a visual representation of the hierarchy.

A Hybrid Hierarchical Architecture
The Test Domain for the Architecture

This architecture was developed for the Robobcats (Chel-
berg et al. 2000; 2001) to cope with the demands of compet-
ing in the small-size RoboCup robot soccer league (Robocup
Federation 2001). As such, examples and analogies will
relate to that domain. The key features in the domain of
RoboCup as it relates to this architecture are as follows:

¢ One or more overhead cameras provide the world view

o All robots on the field must be untethered (e.g., use wire-
less communication)

e Any number of computers off the field may provide com-
puting power

e Once the game starts, no human interaction may help or
guide any robot

e The exact state of the world is not obtainable, nor is it
possible to entirely predict the opponent’s future actions,
making long-term planning difficult

We believe that this domain incorporates many of the issues
present in real world planning problems, and therefore is an
ideal testbed for our architecture.

A domain like RoboCup requires coordination to achieve
the full benefit of applying multiple agents to the problem.
In addition to the regular hardware/software problems faced
by mobile robotic systems, soccer playing robots also need
to cope with communication delays, and vision system im-
perfections and inconsistencies. Within such systems, each
agent has a responsibility to carry out tasks that must benefit
the whole team. When a team fails to perform well, it be-
comes difficult to assess and analyze the source of the prob-
lem. The agents might have incorrect individual strategies
or the overall team strategy may not be suitable. (Mataric
1998) and (Boutilier 1996) have suggested communication
as a possible solution to resolve these problems in certain
multi-agent environments. For our domain, extensive com-
munication would result in unacceptable delays between
changes in the world state and appropriate responses. Our
architecture is designed to minimize communication among
agents to keep the required bandwidth low.

The Schema

We use the term goal to mean a desired world state. A goal
could imply a partial world state that is desired, for example:
some goal may be accomplished if the ball reaches some po-
sition on the field irrespective of where all the players are.
According to Webster’s dictionary, a schema is “a mental
image produced in response to a stimulus, that becomes a
framework or basis for analyzing or responding to other re-
lated stimuli”. We will use the term schema in the same
spirit, but define it more concretely by saying that it is a strat-
egy for achieving one or more goals. An ideal schema gen-
erates a plan, based on the current world state, that has the
highest desirability for achieving some subset of the goals
the schema was designed to accomplish. Desirability is a
function of the utility of the goals and the probability of suc-
cess of the plan. We care about the probability of success,
because even an ideal strategy producing an optimal plan
cannot guarantee success in a world that cannot be com-
pletely modeled.

The Hierarchy of Schemas

The plan a schema generates consists of either a sim-
ple action or a sequential execution of other schemas’
plans. Schemas are designed hierarchically; the lowest level
schemas perform simple actions such as moving a robot to
a specified destination. A higher level schema may use any
schema that falls strictly below it in the schema hierarchy in
order to generate a plan. For example, a higher level schema
might use the ‘move to destination’ schema several times
sequentially to maneuver a robot around an obstacle.

When a parent schema tells a child schema (that is part
of the parent’s plan) to start executing its plan, a new thread



of control is started for the execution of that plan. The par-
ent’s thread of execution does not stop, however. The parent
must continue to monitor the world state, in case the plan
it began executing becomes non-optimal. Thus, the higher
level ‘avoid obstacle’ schema may interrupt the execution
of ‘move to destination’ if the obstacle moves unexpectedly.
Continual monitoring of a plan’s optimality at all levels of
the hierarchy is a key part of this architecture.

Given this hierarchy of schemas (strategies), each schema
is only responsible for optimality with respect to its own
goals. The goals of the parent schema need not be consid-
ered, since it is assumed that the parent is optimizing its own
goals. The only goals any given schema needs to consider
are its own goals and the goals of its children.

This encapsulation helps to make the system manageable.
If any one schema A seems to do too much, its goals could
be split into smaller pieces, and the schema divided into two
levels: a high level Ay that keeps the same parents of A and
manages the more abstract goals, and a'lower level Ay, that
keeps the same children as A, but has Ay as a parent. A
sanity check of Ay’s parents to ensure that Ay is still being
used correctly should not be necessary, since Ay provides
the same functionality that A did, and Ag’s parents didn’t
depend on anything that A used in its implementation (e.g.,
A’s children).

An Agent can be composed of one or more schemas. What
constitutes the boundaries of an agent in this system is still
an open question. We use the agent to represent a process,
an atomic unit that may be distributed among the available
resources. How many schemas a given agent contains is up
to the designer. For maximum flexibility, a designer may
decide that each schema is an agent. Or, if distributing the
computation is not as important, the designer may group the
top half of the hierarchy into one agent and the rest of the
hierarchy into a set of agents.

The first implementation of our RoboCup system provides
a concrete example. We grouped all schemas considering
multiple robots into a single Meta-agent (e.g., formations,
passing). Schemas that only dealt with one robot (e.g., roles
in a formation) were grouped into a Player-agent. Finally,
all schemas for interfacing with the hardware on the robots
composed the Robot-agent. There was an instantiation of
Player-agent and Robot-agent for each of our five physical
robots.

Decision Making and its Role in the Architecture

‘When schemas have to make decisions in a dynamic envi-
ronment, they have to to take into account the fact that their
actions may have several outcomes, some of which may be
more desirable than others. They must balance the poten-
tial of a plan achieving a goal state against the risk of pro-
ducing an undesirable state and against the cost of perform-
ing the plan. Decision theory (French 1988) provides an
attractive framework for weighing the strengths and weak-
nesses of a particular course of action, with roots in probabil-

ity theory and utility theory. Probabilistic methods provide
coherent prescriptions for choosing actions and meaningful
guarantees of the quality of these choices. While judgments
about the likelihood of events are quantified by probabilities,
Jjudgments about the desirability of action consequences are
quantified by utilities.

Given a probability distribution over the possible out-
comes of an action in any state, and a reasonable utility
(preference) function over outcomes, we can compute the
expected utility of each action. The task of the schema then
seems straightforward — to find the plan with the maximum
expected utility (MEU).

Desirability Analysis: An Example

Intuitively, the goals of a schema can be thought of as having
a context-free utility that is the same across all schemas with
that goal, and some context-dependent utility that is specific
to the particular schema implementation. The context-free
utility is used to imply that in general, pursuing some goal
with a high context-free utility is better than some other goal
(with a lower context-free utility). It can also be interpreted
as a way for expressing heuristics about the relationships
between goals. For example, if we take the old adage that
“the best defense is a good offense” as a general heuristic for
accomplishing the goal of winning, then the goal of scoring
would have a higher context-free utility compared to the goal
of preventing opponent scores.

The context-dependent utility refers to the utility of the
goal in the context of the strategy that the schema was de-
signed to implement. A strategy may be implemented to
achieve some set of goals H. As a by product of achieving
those goals, it may achieve some other set of goals L. How-
ever, since the main focus of the strategy is H and not L, the
goals within H will have a context-dependent utility much
greater than those goals which are a part of L. There are
also other ways of ordering the relative context-free utilities
of the set of all goals that a schema achieves. This is just one
example.

The important notion is that the ordering of context-
dependent utilities does not matter outside of the context
of the schema. All context-dependent utilities are local to
the schema that defines them, and are never propagated to
parents or children. So how does a parent decide whether
a child schema is an appropriate strategy for accomplishing
its goals?

An example is instructive. Assume a schema, Ag, is at the
root node in the hierarchy, and that Ag’s children are repre-
sented by the set Css = {Cs1,Cs2} (s denotes a schema,
ss denotes a set of schemas). G(Ag) will represent Ag’s
goals, and G(Csg) will represent the union of the goals of
the elements of C'sg. Each child’s goals represent some sub-
set of the possible ways of achieving one or more elements
of G(Ag). Assume G(Ag) has one element: win the game
of soccer. Then G(Csg) could consist of score and prevent
opponent score , which could be thought of as components



of the goal win. For Ag to determine the best way of achiev-
ing G(Ag), it must decide which child will be permitted to
execute its plan. Ag ranks its children based on the desir-
ability of each strategy. Desirability is a function of the wutil-
ity of achieving elements of G(C'ss) with respect to G(As)
and the feasibility of the instantiated plan achieving G(As).

We’ve discussed what the utility of a goal represents, so
we’ll move on to the feasibility. Feasibility is a measure
of how achievable a goal is given the current situation, ir-
respective of how useful accomplishing that goal would be.
To estimate how achievable a goal is in the current situation,
it is necessary to have a plan already instantiated. The fea-
sibility is dependent on three things: a plan, a goal, and a
current world state.

So, to rank the elements of Csg in Ag, As asks each
element of Cgg the feasibility of its accomplishing each el-
ement of G(Cgg). For any child to compute the feasibility
of achieving a given goal, the child must have a plan. Each
child in turn develops a plan by asking its children about
the feasibility of accomplishing their goals. This recursive
structure allows accurate prediction of feasibility. Once the
feasibility of a child's plan achieving each goal (F(c;(p), 9))
is determined, a ranking of the children according to desir-
ability is possible.

We will now describe one way of computing desirability,
although other algorithms are certainly possible. Given the
utility of each goal in G{Cgss), U(gn), and a feasibility for
each {child, goal} pair F(c;, g;), we could define desirabil-
ity of a given child ¢; as

D(cj) =) _U(g:) * Flc;, 9:) ¢}

=0

‘We will call the most desirable child ¢p. If we now assume
that Ag is not the root node, when asked about the feasibility
of each element k of G(Ag) by one of Ag’s parents, Ag
would return a value computed by considering the feasibility
of ¢p accomplishing g;.

Related Work

Choosing the best plan for a given strategy entails select-
ing child schemas (actions) that are appropriate to the cur-
rent situation. Many action selection mechanisms for robot
control have been discussed in the literature. At the high-
est level, these mechanisms could be divided into two main
categories, arbitration (Ishiguro et al. 1995) and command
Jusion (Rosenblatt 1995). Arbitration mechanisms can be di-
vided into: priority-based, state-based and winner-take-all.
The subsumption architecture (Brooks 1986), is a priority-
based arbitration mechanism, where behaviors with higher
priorities are allowed to subsume the output of behaviors
with lower priority. State-based arbitration mechanisms in-
clude Discrete Event Systems (DES) (Kosecka and Bajcsy
1993), a similar method called temporal sequencing (Arkin
1992), and action selection based on Bayesian decision the-

ory (Hager 1990). The advantage of the DES and the tempo-
ral sequencing approaches is that they are based on a finite-
state machine formalism that makes it easy to predict future
states from current ones. However, this modeling scheme
is known to be NP-hard. Finally, in winner-take-all mecha-
nisms, action selection results from the interaction of a set of
distributed behaviors that compete until one behavior wins
the competition and takes control of the robot. An example
is the activation network approach (Maes 1990), where it is
shown that no central bureaucratic module is required.

Command fusion mechanisms can be divided into voting,
Juzzy and superposition approaches. Voting techniques in-
terpret the output of each behavior as votes for or against
possible actions. The action with the maximum weighted
sum of votes is selected. Fuzzy command fusion methods
are similar to voting. However, they use fuzzy inferencing
methods to formalize the voting approach. Superposition
techniques combine behavior recommendations using linear
combinations.

Conclusions

We have presented an architecture employing a hierarchy of
hybrid agents. The advantages of this architecture are many.
It allows the planning process to be distributed across any
available computing platforms. Additionally, the required
communication among agents is minimized by communicat-
ing feasibilities of plans, not plan details. This architecture
allows an arbitrary decomposition of the planning problem,
while introducing minimal overhead. This architecture fa-
cilitates the integration of middle-ware based resource man-
agers, like DeSiDeRaTa (Welch et al. 1998), to ensure opti-
mal use of resources in dynamic environments.

We will implement this architecture as part of our
RoboCup effort this year. We expect to achieve low com-
munications latencies while utilizing several off-field plat-
forms to control a group of five robots playing soccer. This
uniform architecture provides an ideal framework to build
planning agents at different levels of abstraction, from team-
level strategy to robot-level motor control. The uniformity
of our approach to distributed hierarchical planning lends it-
self to rapid software development, and the ability to more
easily integrate the efforts of our team of programmers.

Acknowledgments

This work has been partially supported by the NASA
CETDP grant *“Resource Management for Real-Time Adap-
tive Agents” and by the Ohio University 1804 Research
Fund. The authors would like to thank the entire Robob-
cats team without whose support and contributions this work
would not be possible.

References

Arkin, R, 1992. Integrating behavioral, perceptual, and
world knowledge in reactive navigation. Robotics and Au-



tonomous Systems 6(1):105-122.

Bensaid, N., and Mathieu, P. 1997. A hybrid architecture
for hierarchical agents.

Boutilier, C. 1996. Planning, learning and coordination
in multiagent decision processes. In Proceedings of the
6th Conference on Theoretical Aspects of Rationality and
Knowledge, 195-210. San Mateo, CA: Morgan Kaufmann.

Brooks, R. A. 1986. A robust layered control system for
a mobile robot. /EEE Journal of Robotics and Automation
RA-2(1):14-23.

Chelberg, D. M.; Gillen, M.; Zhou, Q.; and Lakshmiku-
mar, A. 2000. 3D-VDBM: 3D visual debug monitor for
RoboCup. In IASTED International Conference on Com-
puter Graphics and Imaging, 14-19.

Chelberg, D. M.; Welch, L.; Lakshmikumar, A.; Gillen,
M.; and Zhou, Q. 2001. Meta-reasoning for a distributed
agent architecture. In Proceedings of the Southeastern
Symposium on System Theory, 377-381.

Cooper, G. 1990. The computational complexity of proba-
bilistic inference using bayesian networks. Artificial Intel-
ligence 42(2-3):393—405.

French, S. 1988. Decision Theory. Ellis Horwood, Chich-
ester, West Sussex, England.

Ginsberg, M. 1989. Universal planning: An (almost) uni-
versally bad idea. Al Magazine 10(4):40-44.

Hager, G. D. 1990. Task directed sensor fusion and
planning: A computational approach. The Kluwer In-
ternational Series in Engineering and Computer Science.
Boston: Kluwer Academic Publishers.

Ishiguro, A.; Kondo, T.; Watanabe, Y.; and Uchikawa, Y.
1995. Dynamic behavior arbitration of autonomous mo-
bile robots using immune networks. In IEEE International
Conference on Evolutionary Computing(ICEC), 722-727.

Kosecka, J., and Bajcsy, R. 1993. Discrete event systems
for autonomous mobile agents. In Workshop on Intelligent
Robot Control, 21-31.

Maes, P. 1990. How to do the right thing. Connection Sci-
ence Journal, Special Issue on Hybrid Systems 1(3):291-
323,

Mataric, M. 1995. Issues and approaches in the design of
collective autonomous agents. Robotics and Autonomous
Systems 16(2-4):321-331.

Mataric, M. 1998. Using communication to reduce locality
in distributed multiagent leaming. Journal of Experimental
and Theoretical Artificial Intelligence 10(3):357-369.

Noda, I., and Matsubara, H. 1996. Learning of coopera-
tive actions in multi-agent systems: A case study of pass
play in soccer. In Working notes for the AAAl Symposium
on Adaptation, Co-evolution and Learning in Multiagent
Systems, 63-67.

10

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, Cali-
fornia: Morgan Kaufmann.

Robocup Federation. 2001. Robocup Overview. World
Wide Web site, http://www.robocup.org/overview/2.html.

Rosenblatt, J. 1995. Damn: A distributed architecture
for mobile navigation. In AAAI Spring Symposium on
Lessons Learned from Implemented Software Architectures
Jor Physical Agents.

Welch, L.; Shirazi, B.; Ravindran, B.; and Bruggeman, C.
1998. DeSiDeRaTa: QoS management technology for dy-
namic, scalable, dependable real-time systems. In Proceed-
ings of The 15th IFAC Workshop on Distributed Computer
Control Systems.

Woolridge, M., and Jennings, N. 1995. Intelligent agents:

Theory and practice. Knowledge Engineering Review
10(2):115-152.





