
A Distributed Control Architecture for Guiding a Vision-based Mobile
Robot

Pantelis Elinas, James J. Little
Computer Science Dept.

University of British Columbia
Vancouver, BC, Canada V6T 1Z4

(elinas,little) @es.ube.ca

Abstract
In this paper, we propose a human-robot interface based

on speech and vision. This interface allows a person to in-
teract with the robot as it explores. During exploration the
robot learns about its surrounding environment building a
2D occupancy grid map and a database of more complex
visual landmarks and their locations. Such knowledge en-
ables the robot to act intelligently. It is a difficult task for a
robot to autonomously decide what are the most interesting
regions to visit. Using the proposed interface, a human oper-
ator guides the robot during this exploration phase. Because
of the robot’s insufficient on-board computational power, we
use a distributed architecture to realize our system.

1 Introduction
We wish to implement robots to help people, especially

the disabled and elderly, in performing daily tasks. It is naive
to assume that someone is familiar with the use of computers
or has the time and patience to learn how to use one. We want
to build robots that are easy and intuitive to use. So our focus
is on developing an interface based on vision and speech, the
way people engage in inter-personal communication.

The robot must perform robustly and intelligently in dy-
namic environments such as those designed and occupied
by humans. It is often challenging to devise algorithms to
achieve complicated tasks such as speech recognition and
people tracking, but it is even harder to make them run ef-
ficiently and without exhausting the robot’s computational
resources. Since a robot is usually equipped with a single on-
board computer, it does not have the computational power to
run many complicated tasks. A robot control architecture is
a system that allows a programmer to define the tasks, if and
how they exchange information and which computer they
run on.

There are many different robot control architectures,
[6, 15]. In recent years, behavior-based architectures, [1, 3],
have gained wide popularity for several reasons. One is
the highly parallel nature of the architecture that allows the
workload to be distributed among many CPU’s within the
same workstation or spread over multiple workstations in lo-
cal area networks. It also allows the modularization of the
system as each task can be developed, debugged and im-

Figure 1: Eric, the robot.

proved mostly independently of all others. These modules
are called behaviors and each is designed to solve a specific
problem. Often, more than one behavior must be active at
a time to solve complex problems that a single behavior can
not solve by itself.

Although our long term goal is to build a general interface
for robots that can achieve multiple tasks, in this paper we
present a first system that allows a person to guide the robot
during exploration.

This paper is structured as follows. Section 2 describes
the hardware we use. Section 3 discusses the hierarchical
organization of the behaviors and gives a brief description of
each with emphasis to the ones most directly involved with
human-robot interaction. Section 4 explains how a person
can get the robot’s attention and direct it to a specific area to
explore. In section 5 we give an example of a user directing
the robot. We conclude in section 6.

2 The Robot
Our work is centered around a Real World Interfaces

(RWI) B-14 mobile robot named Eric (see Figure 1).
is equipped with an Intel PIII-based computer running the
Linux operating system. He senses the surrounding environ-
ment with his numerous on-board sensors. These include
built-in sonar, infrared and tactile (bump) sensors.

Eric can see in 3D using a Triclops stereo vision system
from PointGrey Research and in color with a SONY EVI-
(320 camera. Triclops is a real-time trinocular stereo vision
system that we have used extensively in our lab for tasks

11

From: AAAI Technical Report SS-02-04. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Figure 2: Diagram of the robot control architecture.

such as robot navigation, mapping and localization, [9, 10,
12].

Erics’s on-board computer communicates with the rest of
the workstations in our lab using a 10Mbps wireless Compaq
modem.

The color camera is necessary for detecting human skin
tone in images, as described in section 4.3, since the Tri-
clops system uses gray scale cameras. The color and Tri-
clops reference camera are calibrated so that their images
match. Currently we do the calibration manually as we are
in the process of upgrading to a color Digiclops stereo sys-
tem that will eliminate the need for a separate color camera.

Lastly, we have added three microphones attached to the
top of the the robot’s body. Two of the microphones are
used for sound localization and the third is used for speech
recognition. The data from each microphone are wirelessly
transmitted to two workstations. The maximum range of the
transmitters is 50 meters. One workstation is dedicated to
sound localization where the received signal is input to a
SoundBlaster Live sound card. The second workstation is
dedicated to speech recognition.

3 Robot Control Architecture
Eric is driven by a behavior-based control architecture.

The entire system consists of a number of different programs
working in parallel. Some are always active producing out-
put available across the system while others only run when
triggered. The behaviors are hierarchically organized in low,
middle and high levels (Figure 2). We have used the same ar-
chitecture with a small variation on the behavior set to build
an award winning robotic waiter, [4].

Behaviors that need direct access to the robot’s hardware
operate at the lowest level. These modules are responsible
for controlling the robot’s motors and collecting sensor data.
Data are made available to other modules through a shared
memory mechanism on the on-board computer. This forces
all low-level behaviors to run on the local computer.

Figure 3: The finite state diagram for the supervising behav-
ior.

The middle-level behaviors fall into two groups: mobility
and human-robot interaction. The first group, mobility, con-
sists of those behaviors that control Eric’s safe navigation
in a dynamic environment. There are behaviors for 2D occu-
pancy grid mapping using stereo information, navigation, lo-
calization and exploration. The second group, human-robot
interaction, consists of all the behaviors needed for Eric to
communicate with people. These include speech recognition
and synthesis, user head/gesture tracking, sound localization
and user finding. Inputs to the middle level behaviors are the
outputs of other behaviors from all levels of the hierarchy.
Depending on the input requirements, i.e., if they need ac-
cess to the sensor data, of each middle-level behavior, they
run either on-board the robot or on a remote workstation.

At the highest level of this hierarchy exists the super-
vising behavior (also referred to as the supervisor.)
performs high-level planning. It satisfies Eric’s high-level
goals by coordinating the passing of information among
the middle-level behaviors and also by selectively activat-
ing/deactivating the middle-level behaviors as needed. It
communicates with all others using UNIX sockets.

Research of others has focused on the coordination of be-
haviors and the extension of a robot’s abilities by dynam-
ically and autonomously adding new behaviors. Our sys-
tem is an exercise to developing the behavior set needed for
natural human-robot interaction and so we have not added
the ability for the supervisor to learn with experience. The
supervisor’s structure and abilities are pre-programmed and
hence fixed. The supervising behavior’s finite state diagram
is shown in Figure 3.

4 Human-Robot Interaction
For Eric to function in a dynamic environment, he must

first gather information about the environment’s static fea-
totes. We place Eric in this space and let him explore using
his exploration behavior. Eric decides which areas to visit
first using an algorithm that evaluates all possible locations
based on the available resources i.e., battery power remain-
ing, while trying to maximize information gain. These are

12

Figure 4: The geometry for the sound localization problem
in 2D using two microphones. The two microphones are mx
and m2 separated by distance b. a is the angle of incidence
and rx, r2 are the distance of each microphone to the sound
SOUlCe.

constraints that are difficult to satisfy and so we provide an
interface for a person to interrupt the robot and guide it to
the best location to explore.

When Eric hears his name, he responds by moving out of
exploration mode and turning toward the caller. Eric turns
to look at the person and applies his vision algorithm for
locating people in images. Once Eric successfully locates
the person, she can optionally point to a location where she
wants Eric to explore. Eric navigates to that location and
resumes exploration.

Eric locates and tracks a person that he is communicating
with. There are three middle-level behaviors responsible for
these tasks. We continue to briefly describe each of these
behaviors. Then we give an example of the system at work.
4.1 Speech Recognition

We use IBM’s ViaVoice speech recognition engine for in-
terpreting speech heard by Eric. ViaVoice is programmable
to operate with either a speech-and-control or a dictation
grammar. We use the former. We have specified a simple
grammar that allows about 25 sentences to be spoken.

We programmed the speech recognition behavior using
the JAVA Speech API (JSAPI) under the Microsoft Windows
operating system. This behavior outputs a unique integer for
each sentence in the grammar, when that sentence is heard.
The input is the voice signal received over a wireless micro-
phone. For efficiency we have dedicated a workstation just
for speech recognition.
4.2 Sound Localization

Eric gets an approximate idea of where a person talking
to him is, by localizing on the person’s voice. Sound local-
ization is the process of determining the location of a sound
source using two or more microphones separated in space.

We use two microphones at a distance of 20cm. The mi-
crophones are mounted on top of the robot. The signal cap-
tured by each of them is input to a sound card and both are
processed to compute the direction to the sound source. With
two microphones we can only determine the direction on the
plane parallel to the floor. The sound localization algorithm
we use is described in [Ill. The geometry for the problem
in 2D is shown in Figure 4. Since our robot operates in a 3D

0.35 ̄

03.

025 .

02,
11
11

0.15"

01

0

/
/
/
/

/
/

J

Figure 5: The sound localization error function given by
Equation 2.

world, using the simplified 2D case for sound localization
might at first appear inadequate; however, our experiments
have shown that sound localization in this simple form per-
forms adequately enough for the task at hand. The algorithm
computes the time delay,n, between the signals captured by
the two microphones. The direction to the sound source as a
function of this delay is given by:

ensin(,,) = f-b O)

where e is the speed of sound, n is the time delay in samples,
f is the sampling frequency and b is the distance between the
microphones. The range of discernible angles ranges from
a = 0 for (n = 0) to a = 90 for (n = 14). The situation
is symmetric for a user to the left or right of the robot. Our
setup allows for a total of 27 angles in the range [-90, 90]
degrees.

The localization error can be computed by differentiating
Equation 1. It is given by:

¯ --1cn b-~6a---- ~nn (2)

Figure 5 shows a plot of Equation 2. One notices that the
localization error increases rapidly for angles larger than
70(n = 10) degrees.

The output of this behavior is the direction to the sound
source. It localizes on all sounds with power above a cer-
tain environmental noise threshold determined during a cal-
ibration phase at start. The supervisor monitors the output
of the sound localization behavior and it only interrupts the
robot (stops exploration) when there is a valid sound direc-
tion and the speech recognition behavior returns the name of
the robot.
4.3 People Finding

When Eric hears his name and has an estimate of the di-
rection his name was spoken from, he turns to look at the

13

Figure 6: A simple model of a human including the dimen-
sions of the head, shoulders, arms and overall height.

user. He must then locate the user precisely in the images
captured with his two cameras.

We start with the estimate of the user’s head location
guided by the sound localization results. If sound localiza-
tion had no error then the user would always be found in the
center of the images. Since this is not the case, we use our
estimate of the localization error to define a region around
the center of the image where it is most likely to find the
user. This region grows as the localization error grows and it
reaches maximum at angles larger than 60 degrees.

We then proceed to identify candidate face regions in the
image. We segment the color image searching for skin tone,
[5, 13, 14]. We transform the color image from the Red-
Green-Blue (RGB) to the Hue-Saturation-Value (HSV) color
space. During an offline calibration stage we determine the
hue of human skin by selecting skin colored pixels for sev-
eral different people. Figure 7 (a) and (b) show the original
image and the skin pixels detected. We then apply a 3x3 me-
dian filter to remove noise pixels and fill-in the regions of the
face that are not skin color such as the eyes and the mouth.
Finally, we perform connected component analysis, [7], on
the binary image resulting from the skin color segmentation.

Once all the connected components have been identified
we compute a score for each component being a user’s face.
The component with the higher score is selected as the user.
This score is a function of three variables: a face template
match cost, an expected head size functional and an expected
distance of the person to the robot penalty term. Finally, the
entire score is multiplied with the value of a linear function
with slope that depends on our confidence to the sound lo-
calization results. Equation 3, below express this more for-
really:

s(ci) = Fi x (wl x & +w2 x St +ws x D~(i)) (3)

where ci is the i-th component, wj is the weight of the j-th
attribute, Fi is a linear function determined by the localiza-
tion error and the location of the component in the image, Sa
is the size attribute, St is the matching cost of the component
gray scale image and a template of the user’s face and finally
Dz(i) is a penalty term for components that are too close or
too far from the camera. The three weights are determined
beforehand experimentally to yield the best results.

St is the standard normalized cross-correlation cost com-
puted using the image and templates of the user’s face. The
user provides a full frontal view of his/her face and images
are captured for use as templates. We center and scale the

template to the component’s location and size respectively
and then we compute:

s, = E n--1 EL-1 g[k, t]f[k, t] <4)
 /E7=1 E?_-x f2[k, z]

where g denotes the m × n face template and f denotes the
m x n face region in the gray scale image.

The second term, Ss, is a function of the size of the com-
ponent and the expected size at the component’s distance
from the robot. It is given by:

8iZeeffipe©ted Size,ctu,t >iZ~aclualS, = ~iz, ,
Size,,pect,d

size..,~,.d otherwise
(5)

where Sizeaauat is the area of the component in pixels and
Sizeezpeeted is determined using a model of a person’s
head at the compouent’s distance. The model is shown in
Figure 6.

The last term, we refer to as the distance penalty and we
define it as:

D~(i) = ~ ifz < 3.0mandz > 5.0m
c~ × z otherwise (6)

t.

where a is set to -0.5. So, we penalize a component the
further away from the camera that it is.

Figure 7 shows an example of finding the user. Notice that
the user need not be standing. Our approach can distinguish
between the face and the two hand components even though
they have similar sizes.

4.4 User Head/Gesture Tracking
Once we identify the user’s head location in the image,

we keep this location current by tracking the head over time.
We also need to be able to tell where the user is pointing
for Eric to move there. In the following two sections, we
describe how we solve these two problems.

4.4.1 Head Tracking

We employ a head tracker very similar to the one pre-
sented by S. Birchfield in [2]. Birchfield’s is a contour-based
tracker with a simple prediction scheme assuming constant
velocity. The contour tracked is the ellipse a person’s head
traces in the edge image, [8].

We make one addition to the algorithm to increase robust-
ness by taking advantage of the stereo information available
at no significant computational cost. We begin by selecting
the skin colored pixels in a small region around each hypoth-
esized head location. Then, we compute the mean depth of
these pixels and we use this value to depth segment the im-
age using our stereo data. This allows us to robustly remove
the background pixeis. The tracking algorithm can run in
real-time (30fps) but we limit it to running at 5fps for com-
putational reasons especially since our experiments reveal
that this is sufficiently fast.

14

(a) (b)

(c) (d)

Figure 7: Example of finding the user in images. (a) The color image, (b) the skin regions, (c) the connected components
(d) the Triclops image annotated with the location of the user’s head shown with a square.

(a) Co)

Figure 8: Example of gesture tracking showing two of the steps in the algorithm, (a) the selected foreground pixels in the
gray scale image and (b) the final result showing the direction selected, and the location of the user’s head and shoulders.

4.4.2 Gesture Recognition Person :
The user points to a location on the floor and instructs Eric :

Eric to move there. Eric computes this location and reports
the results waiting for the user’s confirmation. Person:

The process is guided by the already known location of Eric :
the user’s head taking advantage of color and stereo infor-
mation along with our model of the body of a human (see
Figure 6). We proceed as follows: Person:

Eric :
1. Get the gray, color and stereo images denoted Ig, Ic and Person:

I, respectively. These are the input data along with the Eric :
last known location of the user’s head, lhead.

2. Select the skin pixels in the neighborhood of]head, and Person :
generate the set of skin pixels N. Eric :

3. Compute the average depth, dN, of the pixels in N.

4. Segment the color and gray images using dN as a guide,
Figure 8 (a).

S. Select the skin pixels in the segmented image forming
the set of foreground pixels M.

6. Compute the connected components in M.

7. Select the component closest to the last known head lo-
cation as the face.

.

9.

10.

11.

Classify the remaining components as being to the left
or right of the face component. Consuuct the sets L, R
respectively.

Remove the components from L, R that are too far or
too close to the face component using the model in Fig-
ure 6 as a guide.

From the components remaining select the dominant di-
rection using a heuristic based on the angle that each
arm makes with respect to the person’s body. Define a
vector from the shoulder to the hand. This is the direc-
tion, f, the user is pointing, Figure 8 (b).

Compute the point on the floor using direction f and
return.

If Eric fails to detect any hands, most often because of
failure during the skin detection, he reports this to the user.

5 Example of HRI
Eric can only understand a small number of spoken sen-

tences. He also has a limited vocabulary i.e., he can only
speak a limited number of sentences. We have kept the num-
ber of the possible sentences that Eric can recognize and
speak to be small in order to speed-up speech processing
and also keep his interaction with people a straightforward
process. The dialog mostly consists of the user giving com-
mands to Eric and Eric responding by confirming the heard
command and/or by reporting the results of a computation.
In general two-way communication may proceed as follows:

(loudly) Eric!
(stops motion and turns towards
the person)

Find me!
I can see you. You are 4 meters
away and 1.6 meters high. Is
this correct?
Yes!
Confirmed!
(Points with finger) Go there!
You are pointing 2 meters ahead
and 4 meters to my left. Do
you want me to go there?
Yes!
I am on my way! (Eric moves to
that location and enters
exploration mode)

This is only one instance of the possible dialogs a user can
have with Eric. At any time during the interaction, the user
can simply ins~uct the robot to return to exploration. Addi-
tionally, the user may request status information about Eric’s
mechanical status. Eric might also fail in one of the tasks of
finding and tracking the user. In that case, Eric reports this
and waits for new instructions.

6 Conclusions
In this paper we presented a distributed system for nat-

urai human-robot interaction. It is designed to perform in
real-time by distributing the workload among several work-
stations connected over a local area network. People can
communicate with the robot using speech and hand gestures
to direct it to specific locations to explore.

We are currently working on improving the interaction
process by allowing more sentences to be understood and
spoken by the robot. We are also adding to the number of
gestures that can be understood and finally more software for
modeling the user’s emotional state by analyzing his facial
expressions.

Acknowledgments
Special thanks to Jesse Hoey for reviewing this paper and

Don Murray for his help with programming the robot.

References
[1] R. C. Arkin. Behavior-Based Robotics. Intelligent Robots

and Autonomous Agents. The MIT Press, 1998.
[2] S. Birchfield. An elliptical head tracker. 31stAsilomar Can-

ference on Signals, systems and Computers, pages 1710-
1714, November 1997.

[3] R. Brooks. A robust layered control system for a mobile
robot, lEEE Journal of Robotics and Automation, 2(1):14-
33, 1986.

[4] P. Elinas, .I. Hoey, D. Lahey, D. J. Montgomery, D. Murray,
S. Se, and J. J. Little. Waiting with jose, a vision-based mo-
bile robot. In Proceedings of lEEE International Conference
on Robotics and Automation (ICRA ’02), Washington D.C.,
May 2002.

16

[5] B. Funt, K. Barnard, and L. Martin. Is machine colour con-
stancy good enough. 5th European Conference on Computer
Vision, pages 445-459, 1998.

[6] B. Hayes-Roth. A blackboard architecture for control. Artifi-
cial lmelligence, (26):251-321, 1985.

[7] R. Jain, R. Kasturi, and B. Schunck. Machine Vision. MIT
Press and McGraw-Hill, Inc., 1995.

[8] D. Mart and E. C. Hildreth. Theory of edge detection. Proc.
R. Soc. Lond. B, 207:187-217, 1980.

[9] D. Murray and C. Jennings. Stereo vision based mapping and
navigation for mobile robots. In Proc. 1CRA, Albuquerque
NM, 1997.

[10] D. Murray and J. Little. Using real-time stereo vision for mo-
bile robot navigation. In Proceedings of the IEEE Workshop
on Perception for Mobile Agents, Santa Barbara, CA, June
1998.

[11] G. L. Reid and E. Milios. Active stereo sound localiza-
tion. Technical Report CS-1999-09, York University, 4700
Keele Street North York, Ontario M3J IP3 Canada, Decem-
ber 1999.

[12] S. Se, D. Lowe, and J. Little. Vision-basad mobile robot lo-
calization and mapping using scale-invariant features. In Pro-
ceedings of the 1EEE International Conference on Robotics
and Automation (1CRA), pages 2051-2058, Seoul, Korea,
May 2001.

[13] K. SobotLka and I.Pittas. Segementation and tracking of faces
in color images. Poroc. of the Second International Con-
ference on Automatic Face and Gesture Recognition, pages
236-241, 1996.

[14] J.-C. Terrillin and S. Akamatsu. Comparative performance
of different chrominance spaces for color segmentation and
detection of human faces in comples scene images. Vision
Interface, pages 1821-1828, 1999.

[15] J. K. Tsotsos. Intelligent control for perceptually attentive
agents: The S* proposal. Robotics and Autonomous Systems,
5(21):5-21, January 1997.

17

