
Retrieval as Synthesis: Feature-Based Retrieval and Adaptation

Architectures

Perry Alexander, Cindy Kong and Brandon Morel

ITTC -The University of Kansas
Nichols Hall

2335 Irving Hill Rd
Lawrence, Kansas 66045

{ alex,ckong,morel } ~ittc.ku.edu

Abstract
One mechanism for achieving efficient component
synthesis is retrieval and adaptation of existing solutions
and architectures. This paper outlines two techniques,
feature-based retrieval and adaptation arehite~n’es, that
that support this synthesis technique. Feature-based
retrieval is a cue-based reasoning derivative used to
efficiently retrieve potential solutions from a component
database. Adaptation architectures are small architectures
used to efficiently package components for reused in a
black-box fashion. Together these techniques provide an
effective, rigorous synthesis technique for component-based
systems.

Introduction

If we assume that software system construction parallels
the conslraction of traditional systems, retrieving, adapting
and reusing components in standard configurations may
help address substantial numbers of design problems.
Given a problem specification and a collection of
components and system architectures, it should be possible
to reuse both existing components and problem solving
architectures. Additionally, high assurance of correctness
in the resulting system can be obtained if the retrieval and
instantiation of components can be achieved using formal,
sound techniques. We propose that combining
specification matching and adaptation architectures can be
used to achieve such an end.
Specification matching enhanced by feature-based
retrieval provides a mechanism for classifying and
retrieving components in a rigorous manner. Ontologies
for classifying components are constructed using formally
defined features that are derived from component
specifications. These features are used to select potential
matches for consideration by a specification matching
engine from a component database. By eliminating
mismatches prior to specification matching, feature-based
retrieval can substantially reduce the amount of time
necessary to search a component database.
Adaptation architectures are special purpose architectures
that allow a component to be reused by building a reuse

infrastructure around a retrieved component. The
adaptation architecture situates the component in a
subsystem that can be customized in well defined ways to
solve a problem. By associating adaptation architectures
with differences in desired and achieved specification
matches, components that do not completely match a
problem can be adapted and reused. Adaptation
architectures provide quick, standard mechanisms for
adapting existing components to new problems.

Feature-Based Retrieval

Formal component retrieval centers on establishing a
relationship between a problem specification and a
component that assures the component will be useful in
addressing the problem. Because most components are
implemented using operational representations that are not
suitable for formal analysis, this relationship is typically
established between a problem and a formal specification
of a component. Appropriately, this process is frequently
referred to as specification matching.
Abstractly, specification matching is implemented by: (i)
defining a problem specification (%); (ii) defining
collection of component specifications (S¢); and (iii)
searching for elements of S¢ that satisfies a Boolean
matching condition (M(%, s~)). Thus, the problem becomes
finding the set {So ~ S~ I M(sp, s~)}, the of specifications
from Se that satisfy the match criteria. Although
appealingly elegant, implementing specification matching
in a brute force fashion is computationally impractical.
Decision procedures must be designed that attempt to
establish the match criteria between components. As
typical components involve higher-order logic
specifications, such decision procedures typically involve
computationally expensive formal inference. The problem
is further complicated because inference tends to be most
expensive when the match condition cannot be proven. In
a component database of reasonable size, failed cases will
dominate resource consumption during the establishment
of the match criteria.

35

From: AAAI Technical Report SS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Researchers have proposed several techniques to address
the complexity of specification matching. For example,
Penix and Alexander (Penix and Alexander 1999) have
proposed necessary filters in the form of feature-based
retrieval that removes the majority of components that
cannot match the problem from the component database.
Fischer (Fischer and Schumann 1997) has proposed the
use of competing matching engines to allow simultaneous
application of multiple property verification approaches.
The underlying principle behind feature-based retrieval is
the use of traditional, indexing techniques to apply
necessary conditions as a pre-filter for specification
matching (Pearl 1984, Smith 1990). Given a collection
search spaces and a search goal, a sufficient condition
identifies subspaces where a solution will be found, if one
exists. Mathematically, if M is a match condition and ¥ is
sufficient condition, then we know ¥=~M and if ¥ holds,
M must hold. A necessary condition indicates search paths
that cannot yield a solution by specifying a weaker
condition than the match condition. Mathematically, if M
is a match condition and ~ is a necessary condition, then
M=~b. If~b holds nothing can be inferred about M, but if~b
does not hold, M cannot hold. The necessary condition
does not identify the subspace that should be searched, but
does avoid subspaces that cannot yield solutions. An
excellent example of a necessary condition check occurs
when specifications or programs are checked for interface
compatibility. If the interface of a component is
compatible with a specification, there is no guarantee of
the suitability of the component. However, if the interface
of the component is not compatible with the specification,
it can be guaranteed that the component will not satisfy the
specification, negating the need for additional checking.
Feature-based retrieval defines a collection of necessary
conditions that filter the component database.
Unfortunately it is not always possible to structure a search
space in a manner that supports defining sufficient
conditions. Because the time complexity of specification
matching is dominated by failed attempts, eliminating non-
matching components has the potential to make
specification matching a feasible component retrieval
strategy. This result has been demonstrated empirically by
preliminary work by the authors (Penix and Alexander
1999, Patil and Alexander 2000) and others (Fischer and
Schumann 1997).
The implementation of necessary conditions as features is
best understood by examining a commonly used matching
criterion for software components called satisfies match.
Given a problem specification Sp and a component
specification so defined in the classical axiomatic style with
preconditions ip and i¢ and post-conditions Op and oo
respectively, we say that so satisfies Sp if the following
condition holds:

so satisfies Sp - (ip =:~ i~) ̂ (io ̂ o~ =:,
The satisfies condition is true when: (i) any legal input
the problem p is also a legal input to component c as
defined by their respective preconditions (ip=~io); and (ii)
when any legal output from c also a legal output from p as
defined by their postconditions (io ^ o~ ~ Op).

The structure of satisfies is a conjunction of implications,
each of which will have associated necessary conditions.
If ir-.-~io is being checked and ~b is a necessary condition for
the match, then (i~io)=~0~ must hold. By transitivity, ip=~b
must also be true if the condition is true. When checking
for ip ~io knowing that ~b is implied i~, c can be discarded if
ip=~b does not hold as the implication cannot hold because
transitivity is violated. The necessary condition ~b is called
a feature because it represents a property that is exhibited
by the problem and/or components. When checking the
condition ip=~io if the set of features associated with io is
not a subset of the features associated with ip then the
match condition cannot be satisfied. The same argument
follows for features associated with post-conditions and
features associated with components in general.
Necessary condition filtering can significantly reduce the
number of components involved in specification matching.
However, efficiency is gained only when the time required
to derive and compare features is less than the time
required to attempt matching over components filtered by
necessary conditions. Features associated with necessary
conditions must be derived using inference techniques,
putting at risk any gains from eliminating components
from the search. Fortunately, features defined for satisfies
depend only on one specification involved in the match.
Features associated with components can be derived prior
to component retrieval and used to index components in a
traditional database. Features associated with the problem
must of be derived at retrieval time, but represent only a
fraction of the total inference requirements. (i) calculating
problem specification features; (ii) retrieving components
with matching features; and (iii) performing specification
matching over the collection of retrieved components.
Early prototypes indicate a significant gain in efficiency
with little loss of precision or recall in the retrieval process
(Penix and Alexander 1999, Patil and Alexander 2000).
Ongoing feature-based retrieval research includes: (i)
exploration of new matching criteria; (ii) development
ontologies for component classification; and (iii) the
investigation of efficient feature derivation and
specification matching techniques. Current feature-based
retrieval prototypes implement a limited collection of
match criteria. Although satisfies is an exceptionally
powerful criterion, other potential conditions must be
explored to support adaptation, partial matches and the
inclusion of heterogeneous components. The special
interaction of feature derivation and the satisfies match
condition must be extended to assure efficiency in other
retrieval metrics.
The quality of ontologies used to classify components can
profoundly affect retrieval efficiency, precision and recall.
The collection of feature definitions used to filter
components prior to retrieval defines an ontology for those
components. Existing retrieval prototypes define
primitive, at/ hoc ontologies. Systematic methods for
defining features and classifying components must be
developed and empirically evaluated for precision and
recall.

Specification matching efficiency is highly dependent on
the quality of feature derivation and specification matching
inference systems. Our current prototypes exclusively use
the PVS specification and verification system for
performing inference. Other inference tools including
resolution-based provers, model checkers, equivalence
checkers, and SAT algorithms must be explored in the
context of feature-based retrieval.

Configuration and Adaptation Techniques

Successful component retrieval and reuse involves two
tasks: (i) finding potential candidates; and (ii) adapting
those candidates to solve the current problem. In the ideal
case, every problem has an associated component in the
component database. In practice, this is rarely the case due
to the inability to predict the needs associated with new
problems and the sheer size and complexity of such
component databases. Retrieved components must be
adapted by configuring parameters, instantiating and
configuring architectures, and adapting component
implementations. The proposed adaptation and
configuration techniques will reuse "close" matches using
differences between the desired and achieved match to
guide configuration and adaptation processes.
Component adaptation techniques can be classified into
two broad categories borrowed from software testing: (i)
white box; and (ii) black box reuse. White box adaptation
examines and attempts to alter the implementation of a
component with the goal of achieving a different task.
White box adaptation ranges in complexity from simple
parametric adaptation through defining and setting
parameters to altering code in software components or
implementation in hardware components. Black box
adaptation attempts to reuse a component without
modification or knowledge of component implementation
by building infrastructure around the component. Black
box adaptation ranges in complexity from simple data
conversion to elaborate harnesses or environment
emulators.
Ongoing component adaptation research is investigating:
(i) parameterization; (ii) architecture instantiation; and (iii)
component adaptation through instantiation of adaptation
architectures. Parameterization involves configuring
predefined parameters to customize a retrieved component.
Architecture instantiation is a form of parameterization
where parameters represent components. To instantiate a
parameter, the retrieval system is invoked to retrieve a
component for the specific parameter based on its defined
task within the architectures. Special cases of traditional
architectures, adaptation architectures are special purpose
architectures that situate a component in a usage
environment. By instantiating other components in the
adaptation architecture, the retrieved component is reused
without structural modification. Differences between the
desired match and the match achieved by the retrieved
component will be used to: (i) specify parameter values;
(ii) instantiate architecture components; and (iii) select
instantiate adaptation architectures.

Current component retrieval prototypes based on use of
feature-based retrieval (Penix and Alexander 1999) and
specification matching (Fischer and Schumann 1997,
Zaremski and Wing 1995) use satisfies or plug-in for both
feature based retrieval and specification matching.
Moreover, these prototypes require an exact match
between components and problems. In practice, many
different matching criteria exist with satisfies representing
only a single criteria for reuse. Figure 1 shows a matrix of
various different specification matching criteria identified
and classified by Zaremski and Wing (Zaremski and Wing
1995) and modified by Penix and Alexander (Penix and
Alexander 1999). These matching criteria are organized in
a lattice where each arrow represents implication. For
example, achieving satisfies match implies that a plug-in
pre match is also achieved. Moving down the lattice,
matching criteria become increasingly weak and represent
decreasingly close matches.
Parametric configuration is a process of adjusting known
parameters to modify the behavior of a component. A
parameterized component in the match hierarchy
represents a family of behaviors resulting from specific
component configurations. When a parameterized
component is retrieved, the configuration system must
utilize techniques to determine appropriate settings for
adaptation parameters. Effectively, the configuration
system generates the desired component from the retrieved
component by instanfiating adaptation parameters.
Architecture instantiation is a process of selecting values
for components to form an aggregate problem solving
systems. An architecture (Shaw and Garlan 1996) is
aggregation of component requirements that decomposes a
problem into subsystems. Architectures describe each
included component as well as interface requirements,
interconnection requirements and how properties are
calculated for the aggregate system. Architectures are
populated by recursively retrieving components to
instantiate architecture components utilizing requirements
specified in the architecture. Configuration generates a
collection of retrieval problems associated with the
collection of components required to instantiate the
architecture.
Adaptation architectures are small, special purpose
architectures used to adjust the behavior of a component to
achieve specific tasks. They may generate new retrieval
problems, or they may use simple synthesis techniques to
generate new components. To utilize adaptation
architectures, the configuration system must know how he
desired component and the retrieved component differ.
The relative positions of the desired match and the
achieved match in the specification lattice provide
information about the difference that can be used by the
configuration process. By understanding where the
weaker match lies in the lattice with respect to the desired
match, differences between the retrieved and desired
components are defined. Adaptation architectures are
associated with paths through the lattice. Thus, by
knowing the path in the lattice between the desired and

37

achieved match, an adaptation architecture can be found
and instantiated.

Plug-in Post

Weak Plug-in Plug-in Post Pargal Post

/
Sdslfos Weak Post Feature Post

Plug-in Pre Feature

~gure l - Lattice of Specification Matching criteria
(Zaremski and Wing 1995, Penix and Alexander 1999)

As an example of an adaptation architecture, consider the
case where satisfies is the desired match result and the
obtained match is weak-post. Note that weak-post is
simply satisfies match with out the conjunct involving
preconditions - only the postconditions are required to be
compatible. Weak-post indicates that the retrieved
component produces the correct output, but its
precondition is violated by potential inputs to the desired
component. The standard means for solving this problem
is to design a converter that transforms problem inputs into
suitable inputs for the retrieved component. Thus, the
adaptation architecture associated with the link from weak
post to satisfies is a two component batch-sequential
architecture similar to the specification fragment in Figure
2. In this architecture, the retrieved component generates
outputs and is used as the second component in the flow.
The first component converts the input data to a form
satisfying the second component’s precondition. A
concrete example is using binary search as a general search
technique. Binary search does not match using satisfies,
but does using weak post because binary search requires a
sorted input and in the general case, this cannot be
guaranteed. Thus, a batch sequential architecture is used
and the configuration system attempts to find a sorting
component to place in front of the binary search
component.

To implement reuse architecture use, we will identify
standard mechanisms for addressing differences in
retrieved and desired components. Each arc in the
matching criteria lattice will be associated with an
adaptation architecture for addressing differences in
matching criteria. When a component is retrieved using a
weaker match criterion, this architecture is then employed
to adapt the retrieved component. We will identify useful
matching criteria; place them appropriately in the lattice
and associate reuse architectures with each lattice arc.
Within the adaptation architecture, necessary components
will either be retrieved in the same manner as traditional
component or automatically generated using code
synthesis techniques.

facet batch_seq(T::design type; x::input T;
z::output T; fl, f2::facet) is

a::meta.type(fl .z);
begin logic
cl :fl (x,a);
c2:f2(a,z);
tcl :M_type(a) <= M~type(f2.x);
tc2:T <= M__type(fl .x);
tc3:M__type(f2.z) <=

end facet batch_seq;

Figure 2 - Example batch-sequential architecture

Summary

Feature-based retrieval and adaptation provide mechanism
for efficiently finding and adapting existing components to
solve a new problem. Feature-based retrieval uses
necessary conditions to classify and filter potential
candidate solutions by eliminating components from the
specification matching process. The result is a more
efficient process that does not waste computational
resources on evaluating failed matches. Adaptation
architectures indexed by the match criteria lattice provide
mechanisms for adapting retrieved solutions in a black-box
fashion. Deep understanding of retrieved components is
not required as they are reused in the adaptation
architecture in a black-box fashion.

References

Alexander, P. and C. Kong. 2001. "Rosetta: Semantic
Support for Model-Centered Systems-Level Design," IEEE
Computer 34(I I):64-70.

Fischer, B., "Deduction-Based Software Component
Retrieval," Ph.D. Thesis submitted to Universitat PassAu.

Garlan, D., R. Monroe and D. Wile. 1997. "ACME: An
Architecture Description Interchange Language," Proc. of
CASCON’97, 169-183.

Patil, M. and P. Alexander. 2000. "A Component Retrieval
System Using PVS," Theorem Proving in Higher Order
Logics, Portland, OR 2000.

Pearl, J., Heuristics: Intelligent Search Strategies for
Computer Problem Solving, Addison-Wesley, 1984.

Penix, J. and P. Alexander. 1999. "Efficient Specification-
Based Component Retrieval," Automated Software
Engineering 6(2):139-170.

Fischer, B. and J. Schumann, "NORA/HAMMR: Making
Deduction-Based Software Component Retrieval

38

Practical," Proceedings of the CADE-14 Workshop on
Automated Theorem Proving in Software Engineering,
July 1997.

Shaw, M. and D. Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall,
1996.

D. Smith and Lowry, M., "Algorithm Theories and Design
Tactics", Science of Computer Programming 14:305-321.

Smith, D., "Constructing Specification Morphisms,"
Journal of Symbolic Computation 15: 571-606.

Smith, D., 1995. "Top-Down Synthesis of Divide-and-
Conquer Algorithms," Artificial Intelligence 27(1):43-96.

Zaremski, A. and J.M. Wing. 1995. "Specification
Matching of Software Components," 3rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering.

39

