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Abstract

This abstract suggests that some of the unusual findings
in the primate learning literature may reflect evolved
solutions to the problem of safe learning in intelligent
agents. We also propose a research program for trying
to model this learning, and incorporate it into agent ar-
chitectures and development methodology.
This extended abstract is actually a summary of a re-
search proposal we have submitted for funding. If we
don’t actually wind up being funded to do this work,
we will probably withdraw this paper from your sym-
posium, unless you are very interested and we can find
travel funding elsewhere!

Introduction
Biological intelligence is fascinating because it performs so
well with so many constraints. Any agent embedded in the
real world must be able to make decisions under time pres-
sure, nearly always with incomplete information. As Artifi-
cial Intelligence (AI) has moved to consider the problems of
real-time agents in complex dynamic environments, it has
been forced to abandon the search for provably-optimal or
even provably-correct plans to govern decision making.

Instead, real-time AI agents now generally rely onreac-
tive planning: a process whereby the next action is chosen
by a look-up indexed on the agent’s perception of the cur-
rent environment. For well-ordered behavior in complex
agents (e.g. those capable of pursuing multiple, potentially-
conflicting goals), the agent generally also uses stored state
on recent decisions to focus attention on a subset of possible
actions.

This abstract proposes research to examine how to safely
incorporate new behavior into established reactive plans. We
are particularly concerned with modelinghowplans are up-
dated, andwhen. Existing primate research shows that al-
though an animal may possess a skill that is applicable in a
situation, it may never attempt to apply it, preferring estab-
lished solutions even if they are reliably failing. On the other
hand, particular learning situations can result in the animals
changing these preferences. We intend to build functioning
AI models of these situations to test several current theories
of specialized learning for action-selection control.
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The primary expected benefit of this research is a set of
new idioms for agent architectures which allow for safe,
autonomous extension by the agent of its existing reactive
plans. Notice that in order to assure safety, we expect that,
like the monkeys, these agents will sometimes fail to exploit
potentially useful behaviors. However, we hope to develop
a framework for helping an agent determine when new be-
haviors are likely to be useful.

The remainder of this abstract is in two parts. We will first
discuss the primate research which we wish to model. We
will then describe our proposed approach.

Primate Learning
Why Model Primates?
Having adaptable artificial agents is an obvious and signif-
icant goal for AI. We would like agents to be able to learn
from experience, adapt to individual users, correct their own
software, and so forth. Unfortunately, the qualities ‘safe’
and ‘adaptive’ are generally in opposition. Behavior that
can change is, almost definitionally, less reliable than behav-
ior that cannot. Extensive research in constraints on animal
learning indicate that:

• learning is a relatively easy adaptation to evolve (Marler,
1991), however,

• it is used only sparingly, and with severe constraints, even
in mammals (Roper, 1983; Gallistelet al., 1991).

In general, although individual adaptation can be a useful
mechanism for allowing a species to move between niches,
evolution tends to favor hardcoding solutions of high general
utility, because this guaranteeseveryindividual finding the
solution (Baldwin, 1896; Turney, 1996; Belew & Mitchell,
1996).

Primates are truly exceptional in their capacity of indi-
vidual adaptation, a fact that no doubt facilitates the incred-
ible cultural development of our own species. But even
within human and non-human primates, there are signifi-
cant restrictions on learning. There is some evidence that the
reason for primates’ unique intelligence is actually social /
sexual selection (Byrne & Whiten, 1988; Whiten & Byrne,
1997). That is, primate intellectin itself may not be partic-
ularly ‘fit’ in terms of general-purpose survival, but rather
an attribute of sexual selection. In proposing this research,
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we are hypothesizing that the still existent restrictions on
primate learning may have significant utility in allowing the
agent to adaptive, yet safe and reliable in dangerous, dy-
namic environments.

Specific Research to be Modeled

These are tasks we have selected for modeling. All of these
tasks involve an agent discovering the way to reliably re-
trieve a desired object. The research of this tasks is reviewed
by Hauser (1999), further references can be found in that ar-
ticle.

Boxed-Object Task In this task (originally designed by
Diamond (1990)) an agent is exposed to a clear box with
food inside of it and only one open side, which is facing the
left or right. Human infants under a particular age and some
adult primates will repeatedly reach straight for the food,
despite repeated failure due to contact with the transparent
face of the box. More mature children and some other pri-
mate species succeed in this task by finding the open face
of the box. For a short intermediate period of human de-
velopment and for mature cotton-top tamarins (one of the
species in our lab) subjects learn the task if they are first ex-
posed to an opaque box, and then transferred to the transpar-
ent one. This shows that some tasks are easier to learn than
others, and that knowledge about some tasks can be relevant
to learning others, but that both of these factors are age and
species dependent.

We intend to model the tamarins’ performance on this
task. In this case, the high salience of the visible reward
blocks the exploratory behavior thatmight find another so-
lution, but does not block the adoption of a relatively cer-
tain solution that had been learned in a different frame-
work. Modeling this requires first modeling the interaction
between perceptually driven motivation and the operation of
control plans and the operations of a meta-learning behav-
ior that provides both for exploration and for incorporating
discoveries into the behavior repertoire. We hope to develop
a parameter-based model of these interactions and attempt
to match individual tamarin learning profiles to account for
individual differences as well as gross behavior.

Cloth-pulling Task In this task, tamarins learn to discrim-
inate relevant cues as to whether a cloth can be used to re-
trieve a piece of food. The primary relevant cue is whether
the food is on a piece of cloth within grasp of the tamarin —
distractors include color, texture, shape and so forth. Here
tamarin can fully learn the task, but still be persuaded to
try ineffective strategies by a particularly tempting reward
stimulus. This research will provide further testing of the
motivation integration model described in the boxed-object
task.

Tube-Following Task When a piece of food is launched
down an opaque, s-shaped tube, tamarins incorrectly ex-
pect it to land directly beneath the release point if the test
apparatus is standing upright. However, tamarins can eas-
ily learn to trace the tube path in the case where the food
moves through a horizontal apparatus. In the vertical case,
the learning seems biased by a strong prior expectation (of

either experiential or genetic origin) for the effect of grav-
ity. This research will provide further testing of the behavior
integration model described in the boxed-object task.

Analysis: The Safe Incorporation of New Behavior
There are two reasons an agent might apply an appropriate
behavior rather than an inappropriate one:

1. it might not know the appropriate behavior, or

2. it might fail to inhibit the inappropriate one.

Similarly, there are two reasons why an agent might fail
to inhibit an inappropriate behavior:

1. there may be a general failure of the inhibition mecha-
nism, or

2. it may be incorrectly assigning the inappropriate behavior
higher priority in the present behavioral context.

Notice that the process of exploring (searching for a new
appropriate behavior) is itself a behavior.

These latter two options will be the primary focus of
our research: we will use standard machine learning (e.g.
Bishop, 1996) for developing new categories of perception
and high-level abstractions in Artificial Life (ALife) simu-
lations for the mechanics of newly learned behaviors. What
we consider key is how a new behavior comes to be inte-
grated into ordered action selection.

A Safe Adaptive Artificial Agent Architecture
Specialized Learning in AI
The central problem of AI is search. An agent must find a
way to behave that reliably increases the probability of its
goals being met (Albus, 1991). This search includes find-
ing ways to act, finding appropriate situations in which to
act, and finding the correct information to attend to for de-
termining both situation and action.

Unfortunately, the problem of search is combinatori-
ally explosive, and thus cannot be solved optimally by
a resource-bounded agent (Chapman, 1987; Gigerenzer &
Todd, 1999). Consequently, the intelligence of an agent is
dependent on what knowledge and skills can be provided
to it at its inception. The less search an agent has to per-
form itself, the more likely it is to succeed. For an animal,
this information is provided either genetically or, for a few
species, culturally (that is, from other agents.) In an artificial
agent, this information is provided by the programmer. Pro-
viding for an adaptive agent requires focusing (also called
constrainingor biasing) search in such a way that it is both
likely to succeed and unlikely to interfere with other, estab-
lished behavior patterns. Such provisions are currently best
performed in an artifact via state-of-the-art software engi-
neering, incorporating modular design and specialized rep-
resentations.

Our Agent Engineering Approach
We intend to use and possibly extend Behavior-Oriented De-
sign (BOD) (Bryson & Stein, 2001a; Bryson, 2001), which
incorporates a modular agent architecture in the tradition of
Behavior-Based AI (e.g. Brooks, 1991; Arkin, 1998). BOD
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Figure 1: BODbehaviors(b1 . . .) generateactions(a1 . . .)
based on their own perception (derived fromsensing, the
eye icon). Actions which affect state external to their behav-
ior (e.g. expressed acts, the hand icon), may be subject to
arbitration byaction selection(AS) if they are mutually ex-
clusive (e.g. sitting and walking). (Bryson & Stein, 2001b)

exploits Object-Oriented Design (e.g Parnas, Clements, &
Weiss, 1985; Coad, North, & Mayfield, 1997), currently the
leading software development paradigm. BOD has explicit
reactive plans which support action selection when that ac-
tion selection requires arbitration between different behav-
ior modules. However, unlike some more restricted ‘hy-
brid’ behavior-based and planning architectures (Georgeff &
Lansky, 1987; Bonassoet al., 1997, e.g.), behavior modules
in BOD are not mere primitives controlled by the planning
structures. Rather, BOD utilizes a truly modular architecture
based around specialized representation (see Figure 1).

In BOD, the state and representations necessary for adap-
tation and dynamic control are in the heart of the modules,
which are coded as objects. Plan primitives are an interface
to the actions (methods) of these modules. Where arbitra-
tion is necessary, a reactive plan determineswhenactions
happen. But the behavior modules determinehow. They
also process the sensory information and maintain the state
relevant to performing those actions.

Expected Architectural Development
To date, the emphasis of the BOD methodology has been
that adaptation required by the agent should be allocated a
specialized representation embedded in a behavior module
charged with learning that adaptation. This approach may
seem overly constrictive, but is supported by the existing an-
imal learning literature mentioned above (Roper, 1983; Gal-
listel et al., 1991). Also, it limits the amount of damage to
critical control that adaptation might accidently inflict. It
can easily be used to model such phenomena as imprinting,
map learning, kin recognition and perceptual categorization.
In other words, BOD currently facilitates modification of ex-
isting behavior, but not the creation ofnewbehavior.

Learning a completely new behavior is the kind of combi-
natorially implausible search discussed in the introduction.
Primates learnpartially new behaviors, by exploiting and
adapting behaviors they already possess, and biasing search
to reasonable representations for the reorganization. We pro-
pose to model this process by extending BOD to allow the

learning of new reactive plan structures in combination with
specialized behaviors for supporting perceptual and control
modifications specific to the new context.
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