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Abstract 
The scalability of evolutionary synthesis is impeded by its 
characteristic discrete landscape with high multimodality. It 
is also impaired by the convergent nature of conventional 
EAs. A generic framework, called Hierarchical Fair 
Competition (HFC), is proposed for formulation of 
continuing evolutionary algorithms. This framework 
features a hierarchical organization of individuals by 
different fitness levels. By maintaining repositories of 
intermediate-fitness individuals and ensuring a continuous 
supply of raw genetic material into an environment in which 
it can be exploited, HFC is able to transform the convergent 
nature of current EAs into a sustainable evolutionary search 
framework. It is also well suited for the special demands of 
scalable evolutionary synthesis. An analog circuit synthesis 
problem, the eigenvalue placement problem, is used as an 
illustrative case study. 

1.  Introduction 
In recent decades, evolutionary algorithms have found 
increasingly successful applications in many automated 
system synthesis problems, such as analog and digital 
circuit design and control system synthesis (Koza 1994; 
Sripramong and Toumazou 2002), neural network 
synthesis (Yao 1996), mechatronic system synthesis (Seo 
et al. 2002), evolvable hardware (Yao & Higuchi 1996), 
etc. While human designers are strongly constrained by 
their limited domain knowledge and incomplete 
understanding of the physical process itself, evolutionary 
synthesis turns out to be an especially useful tool in 
exploring many under-exploited design domains such as 
adaptive systems, fault-tolerant systems, and poorly 
specified and unstructured systems. 
 However, just as many EAs may produce results that are 
surprising initially, but not much later on, evolutionary 
system synthesis has not generated the expected significant 
results in terms of the complexity of the evolved solutions. 
With automatically synthesized analog circuits with a 
hundred or so components (Koza 1999) and some 
evolvable hardware circuits with simple functions, 
evolutionary synthesis seems to be strongly limited by 
some inherent difficulty, especially considering the huge 
computing power of a 1000-PC cluster available to Koza 
(Koza 1999). It is clear that there are some critical issues 
other than the computational power that need to be handled 
before the ambition for automated Darwinian invention 

can be realized to automatically evolve startling results in 
some “killer” application areas.  
 The limited scalability of evolutionary synthesis 
techniques comes from two aspects. One limitation arises 
from the scalability of the evolutionary algorithm 
framework. Actually, due to the convergent nature of the 
conventional EA framework (Thierens 2000), many 
existing EAs suffer from the phenomenon of premature 
convergence, which has been extensively studied for a 
long time (Carter & Park 1994; Ryan 1996; Cantupaz & 
Goldberg 1999). The second limitation comes from the 
compositional mechanism for topology and parameter 
search including topology-encoding scheme, topology 
modifying operators, etc. Scalability in this aspect has been 
discussed in (Torreson 2000; Yao & Higuchi 1998). The 
”biological developmental model” is regarded as a 
potential technique to improve the scalability of topology 
synthesis (Gordon & Bentley 2002). It appears that the 
divide-and-conquer strategy, modularity, parametric 
abstraction, and hierarchical organization are all important 
principles that need to be observed to improve the 
fundamental scalability of evolutionary synthesis systems.  
 This paper examines the convergent nature of current 
EAs and its effect on the scalability of evolutionary 
synthesis involving simultaneous topology and parameter 
search. We then propose a generic framework named 
Hierarchical Fair Competition (HFC) for continuing 
evolutionary algorithms. This framework features a 
hierarchical organization of individuals by fitness levels. 
By maintaining repositories of intermediate-fitness 
individuals and ensuring a continuous supply of raw 
genetic material, HFC is able to transform the convergent 
nature of current EAs into a sustainable evolutionary 
search framework. An analog circuit synthesis problem 
(the eigenvalue placement problem) is used as the 
illustrative case study. 

2.  Premature Convergence, Diversity and 
Sustainable Evolutionary Synthesis 

As one of the main topics of EAs, the premature 
convergence problem has been addressed by both 
theoretical and empirical studies. The term “premature 
convergence” is used to refer to the clustering of the 
population about a single (or a few) genotypes, resulting in 
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a stagnation of the search process.  (Note that if the 
globally optimal individual is in that population, the 
convergence is not premature, and if the EA allows the 
population, although composed of very similar individuals, 
to continue to make steady (or at least not infrequent) 
progress toward the global optimum, it is not considered to 
be prematurely converged.  Without stagnation of search, 
premature convergence has not occurred.)  Among these 
diversified efforts, premature convergence has been 
attributed primarily to:  
� loss of population diversity  
Loss of diversity is the most popular explanation of 
premature convergence of EAs (Ryan 1996; Leung et al. 
1997; Burke 2002; Ursem 2002). Many related approaches 
to maintaining or increasing diversity have been proposed, 
including canonical fitness sharing, crowding, and some 
explicit diversity-controlled GAs (Ursem 2002). However, 
in the opinion of the present authors, lack of population 
diversity is only a symptom of premature convergence. The 
more direct cause is the loss of exploratory capability. 
Analyzing how the exploratory power gets lost and 
devising corresponding strategies to maintain it is more 
fundamental to avoiding premature convergence than is 
simply maintaining diversity in any form. In this aspect, 
although diversity-management-oriented approaches can 
achieve some improvement, generally they are somewhat 
misguided and won’t result in scalable EAs (Thierens 
2000). A simple example may help to illustrate the 
relationship between premature convergence and lack of 
diversity.  Consider a population that has prematurely 
converged around a single, extremely high-fitness (but not 
optimal) individual.  Now replace all but one copy of that 
individual with randomly generated individuals (hence, 
typically having low fitnesses).  Such a population has 
enormous diversity, but its ability to explore is extremely 
limited, as it has none of the “intermediate-level” building 
blocks that are alternatives to those contained in the single 
best individual. It is likely that such a population will 
quickly be overtaken by (identical or slightly altered) 
copies of the best individual, or at least that it will not 
perform well in continuing the search for a global optimum 
individual.  So, although its diversity is high, it may be 
considered to be “waiting only to meet the convergence 
criterion” to be labeled prematurely converged. 
� failure of building block mixing in the race of 

selection and mixing  
Evolutionary search has been vividly modeled as a race 
between the converging process of selection and the 
exploratory process of building block mixing (Goldberg 
2002; Thierens 2000). On the one hand, some kind of 
convergence is needed to allocate more computing efforts 
to promising areas of the search landscape. On the other 
hand, it is necessary to maintain a continuing exploratory 
capability to find new promising search areas to avoid 
being trapped in local optima. A family of building-block-
mixing-oriented GAs has been designed which has proved 
to be competent on some bounded difficulty problems 

(Goldberg 2002). Unfortunately, they are usually limited to 
binary coded GAs.  
� “founder effect”  
According to the building-block-oriented explanation of 
the “founder” effect in GA (Holland 2000), an early-
discovered schema tends to occupy most of the population 
and thus prevent any other incompatible schemata from 
being incorporated into these individuals. Thus, no other 
incompatible schemata may be tested and the exploratory 
capability gets lost. Langdon (1998) provided another 
macroscopic observation of “founder” effect in the case of 
GP: deceptive partial solutions discovered early in the 
evolution of the population with relatively high fitness 
tend to produce clones at high rates, thus reducing the 
variety of the population. This is the well-known 
dominance phenomenon. 
 In the following subsections, we will examine the 
characteristics in the search process of evolutionary 
synthesis and examine how the exploratory capability gets 
lost.  

2.1 Characteristics of the Fitness Landscape in 
Evolutionary Synthesis 
One of the major characteristics of evolutionary synthesis 
is the inclusion of simultaneous topology search and 
parameter search. Contrary to the knowledge-based 
evaluation of design candidates by human designers, the 
goodness of a topology can only be evaluated in the 
context of a concrete instance of the topology, with 
whatever parameters that instance may have. As a result, 
an effective and fair evaluation of the quality of a 
particular topology is possible only after sufficient 
parameter search in the framework of that topology.  
 Good performance of a solution is the result of the 
concordance of its topology and its parameter, so the 
fitness landscape of evolutionary synthesis is extremely 
multimodal. Each topology typically has multiple fitness 
peaks over its parameter space. Different topologies 
comprise a second level of fitness peaks (where each peak 
is the highest fitness of one topology). Among these peaks 
there are a huge number of low-fitness valleys, created by 
the parameter space of the topologies. What this means to 
evolutionary search is an increasing difficulty of moving 
from one topology peak to another topology peak in the 
fitness landscape. The reason is, after topology 
modification either by crossover or mutation, the offspring 
usually have very low fitness and they need a considerable 
amount of time to adjust their parameters before the 
potential performance of their topologies can be exposed.  

2.2 Loss of Explorative Capability in Evolutionary 
synthesis: the Explanation 
Instead of the loss of diversity, the loss of exploratory 
capability turns out to be the more direct reason for 
premature convergence in EAs. In most EAs, while 
running, exploratory capability is found to be gradually 



lost along with the increasing fitness of the population. 
Premature convergence is also observed to be especially 
severe in genetic programming, which usually uses a much 
larger population size to get good results. All these 
phenomena can be explained in terms of loss of 
exploratory capability.  
 In a typical EA, the selection process is more or less 
based on fitness of individuals. Higher fitness individuals 
are given a higher probability for generating offspring. The 
result of this decision is:  the average fitness of the 
population increases continually. However, new offspring 
created by crossover and mutation usually have low 
fitness, as the result of disruption of the co-adaptation of 
closely coupled subcomponents.  Thus, it is often only 
those individuals that differ least significantly from one of 
the parents that still have reasonably high fitness, and 
become increasingly abundant in the population. In 
addition to the already existing fitness valleys specific to 
evolutionary synthesis, the ever-increasing average fitness 
of the population makes those valleys even deeper.  The 
consequence is that new exploratory offspring will have 
increasing difficulty to persist in the population long 
enough to be sufficiently exploited to demonstrate their 
actual performance value (i.e., fitness when suitably 
adapted parameters have been found). It becomes 
increasingly harder to move from one peak to another peak 
across those huge fitness valleys. The evolution process 
will then gradually lose the power to explore new search 
areas from these new individuals with low fitness, 
whethercreated by crossover, mutation, or reinitialization.  
It is clear now that to maintain explorative capability, there 
must be some mechanisms to protect new individuals of 
low fitness and culture them into higher fitness individuals. 
Individuals of different fitness levels should be segregated 
to ensure fair competition at all fitness levels. This 
suggests an assembly-line or pipeline structural 
organization of subpopulations, as employed in the HFC 
framework discussed in Section 3.  

2.3 The Convergent Nature of Most EAs and their 
Assumptions 
The scalability of evolutionary synthesis is also 
constrained by the convergent nature of most of the 
commonly used EAs. Intuitively, as the goal of evolution 
is to find high fitness individuals, all the individuals should 
be used to explore the fitness frontier, and indeed they are, 
as the result of some form of fitness-based selection in 
most EAs. However, due to the unbalanced sampling and 
the unbalanced speed of fitness growth of individuals, in 
any given run, typically some salient building blocks get to 
propagate, while other potential building blocks getting 
lost. And as the average population fitness increases, it 
becomes increasingly difficult for new building blocks to 
be discovered and exploited. 
 Traditional EAs typically begin the process of 
converging from the start of a run, discarding some low-
order components of potentially important building blocks 
(even when they may be critical later). This scheme is most 

clearly demonstrated in messy GA, where a special 
initialization phase is used to screen for useful building 
blocks (Goldberg 2002). However, this scheme is 
unjustified in the sense that the screening decision is based 
on very limited evaluations of the possible combinations of 
building blocks in the first few generations However, it is 
highly probable that some of the discarded building blocks, 
when appropriately assembled, may produce the perfect 
solution, or that some of the discarded building blocks may 
be essential to forming the best solutions. So, to some 
extent, premature convergence is the result of premature 
convergence of intermediate building blocks.  
 The convergent nature of EAs is caused by the 
underlying one-epoch assumption of the conventional EA 
framework: starting from random individuals, all the 
individuals should move to a higher fitness frontier and the 
low-level building block assembly stage is terminated. The 
population-sizing model of Goldberg is a typical example 
of this assumption (Goldberg 1989). The need to transform 
this convergent nature of conventional EAs into one of 
continuing (sustainable) search suggests a continual 
process of building block sampling and assembly, also 
including at the low and intermediate fitness levels, rather 
than only at high fitness levels. It also implies the 
importance of maintaining individuals of all fitness levels, 
from random ones to the best individuals. By continually 
introducing random individuals into the low-fitness-level 
subpopulations, it becomes possible to ameliorate the 
demand for a huge population size, as required by GA, to 
ensure sufficient building block sampling (Goldberg 
2002). This is especially true for GP, where much larger 
population sizes are usually required in order to achieve 
reasonably good results. 
 The advantage of maintaining individuals distributed 
across all fitness levels is also reported in (Hutter 2002). 
Instead of using a hierarchical organization of 
subpopulations, a fitness uniform selection (FUSS) is used 
to maintain individuals of all fitness levels. However, 
FUSS tends to distribute the computing efforts too evenly 
among all individuals and lacks sufficient selection 
pressure for healthy convergence to explore the fitness 
frontier.  

2.4 The Developmental/Growth Process in Evolu-
tionary Synthesis  
One unique feature of evolutionary synthesis, compared to 
normal parameter-oriented EAs such as evolution 
strategies and GA (in most applications), is the variable-
length-genotype encoding. One representative example is 
the case of genetic programming. In typical system 
synthesis tasks involving topology innovation, some kind 
of developmental or growth process through many 
generations is needed to evolve trivial primitive embryo 
designs into full-fledged functioning systems. This 
necessary intermediate “growth” process has a tremendous 
effect on the performance of an EA framework for 
evolutionary synthesis.  



 When one examines the fitness progress curve of most 
GP (or also GA) experiments, the most salient observation 
is that the largest fitness gains occur in the very early 
stages. The evolution in the later stages appears to be more 
like a refining process. In the tree-type genetic 
programming, the initial stages of evolution usually 
establish the general framework of the topology. The 
nodes near the tree root converge relatively quickly. 
Actually, the higher the fitness, the more constraints the 
established topology puts on possible later modifications, 
and the less likely become major innovations. It is very 
much like the biological evolution of species, in which the 
emergence of most species on the earth occurred during 
the age of the Cambrian explosion. Later on, the speciation 
process continues and reproductive segregation emerges. It 
is a converging, refining process.  
 Few people have considered how this phenomenon may 
guide our design of EAs. What the Cambrian innovation 
stage tells us is that, to ensure sustainable innovation and 
evolution, an EA framework for evolutionary synthesis 
should always keep the early evolution stages running. 
Since major innovation happens in the early stage, why 
should we terminate this phase after a very limited 
assembly process, as the fitness of individuals rises? Since 
highly evolved individuals have less and less probability of 
changing their basic frameworks, it seems preferable to 
maintain, somehow, repositories of representative 
intermediate individuals, from which further innovation 
may occur. This corresponds to the conclusions of the 
analysis of the loss of exploratory capability and the 
convergent nature of EAs:  
� Individuals of all fitness levels should be maintained, 

from random individuals to the highly evolved ones, to 
keep evolution going at all levels;   

� Random individuals should be continually introduced 
into low-fitness subpopulations 

� Mutation (either topology or parameter modification) 
rate and magnitude should be higher at lower fitness 
levels while lower at higher fitness levels, so as to 
provide highly evolved individuals a more gradual 
refining process, while not “throwing away” what has 
been learned at that level.  

The Hierarchical Fair Competition (HFC) model proposed 
below is exactly such an EA framework for scalable 
evolutionary synthesis.  

3. The HFC Framework for Scalable 
Evolutionary Synthesis 

Inspired by the fair competition principle observed in 
societal and economical systems (Hu and Goodman 2002), 
the HFC model is devised with three interrelated 
components, as discussed below.  

3.1 The Hierarchical Organization of Subpopu-
lations to Establish a Fitness Gradient 
In the HFC framework (Figure 1), multiple subpopulations 
are organized into a fitness hierarchy, in which each 
subpopulation belongs to a specific fitness level that 
accommodates immigrating individuals within a specified 
range of fitness, and that forces emigration of individuals 
with fitness above that range. The entire range of possible 
fitnesses is spanned by the union of the fitness ranges of all 
levels. Each fitness level has an admission buffer that has 
an admission threshold determined either initially (fixed) 
or adaptively. The admission buffer is used to collect 

(a) In HFC model, subpopulations are organized in a
hierarchy with ascending fitness level. Each level (with one
or more subpopulations) accomodates individuals within a
certain fitness range determined by the admission thresholds
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qualified candidates, synchronously or asynchronously, 
from the subpopulations of lower levels. Each level also 
has an export fitness threshold, defined by the admission 
threshold of the next higher fitness level. Only individuals 
whose fitnesses are above the admission threshold and 
below the export threshold of the fitness level that a given 
subpopulation belongs to are allowed enter, or stay, 
respectively, in that subpopulation. Otherwise, they are 
exported to asubpopulation of the appropriate higher 
fitness level.  
 A problem that can occur at any fitness level but the 
lowest (which has no lower fitness limit) is that the 
children produced via mutation or crossover of individuals 
at a given fitness level may have fitness below its 
admission threshold. This could allow the average fitness 
of individuals at that level to degrade below the admission 
threshold.  While many alternative policies are possible, in 
the work reported here, this degradation problem is dealt 
with by allowing these low-fitness offspring to remain in 
the level despite their degraded fitness -- reminiscent of the 
occasional backward step allowed in simulated annealing -
- with the assumption that the selection mechanism and 
immigration replacement policy will act strongly enough to 
maintain a reasonable percentage of “qualified” individuals 
at each level.  

3.2 Random Individual Generator:  the Source of 
Genetic Material 
To maintain the Cambrian innovation stage, as illustrated 
in Figure 1, at the bottom fitness level, there exists a 
random individual generator that continuously feeds raw 
building blocks (in the form of individuals) into the bottom 
processing level. It is important that this generator be 
unbiased as much as possible to supply a complete set of 
all possible low-level building blocks, unless there is prior 
knowledge about the search space that should be used to 
bias the generator. This inflow of random individuals 
relieves HFC from depending on a large initial population 
size to provide sufficient primitive building blocks.  

3.3 The Migration Policy from Lower to Higher 
Fitness Levels  
Exchange of individuals can be conducted synchronously 
after a certain interval or asynchronously as in many 
parallel models. At each moment of exchange, or, if 
desired, as each new individual in a subpopulation is 
evaluated, any individual whose fitness qualifies it for a 
higher level is exported to the admission buffer of 
whatever higher level has a fitness range that 
accommodates the individual. After the exporting 
processes at all levels finish, subpopulations at each level 
import an appropriate number of qualified candidates from 
their admission buffers to replace some worst individuals. 
If subpopulations at the base level find any open spaces 
left over by exporting, they fill those spots with random 
individuals. If subpopulations of higher levels find empty 
spaces after importing individuals from their admission 

buffers or the admission buffer is empty, they can either 
mutate current members or select two members and do 
crossover to generate the needed number of new 
individuals. In the experiments reported here, crossover is 
used to make up any shortfall of individuals at any level 
except the bottom level. As we use the sub-populations of 
each level as the repositories, the admission buffer is then 
cleaned after the migration process.  

3.4 Adaptive Allocation of Subpopulations to 
Fitness Levels 
In the previous HFC model (Hu & Goodman 2002), the 
allocation of subpopulations to fitness levels is configured 
before the evolution is started. A shortcoming of this 
method is that in the initial generations, the high –fitness-
level subpopulations won’t actually contain any qualified 
individuals, and so, according to this method, are not 
activated for evolution. This reduces the effective 
population size. The solution presented here (Figure 5: b) 
is to adaptively allocate subpopulations to fitness levels. In 
the beginning, all subpopulations are allocated to the 
bottom level. Later, once certain higher levels get some 
qualified individuals, then all intermediate levels are 
activated and the whole subpopulations on those activated 
levels are allocated according to some strategy. One simple 
strategy is illustrated in Figure 3. This HFC framework 
with adaptive topology works like a rubber band. At the 
initial stage, it is quite compressed, but gradually, the 
rubber band stretches to accommodate individuals within a 
larger range of fitness. In the work reported in this paper, 
we simply allocate the subpopulations evenly to all 
activated levels. Details of this procedure are described in 
(Hu et al. 2002).  

4. Experimental evaluations 
To evaluate the performance of the HFC framework, an 
HFC-based genetic programming system is applied to an 
analog circuit synthesis problem: the 10-eigenvalue-
placement problem. Except for the representation of 
circuits with bond graphs, the topology synthesis approach 
employed here is similar to what Koza did for evolving 
electric circuits with a developmental process. Simply 
speaking, the design task here is to synthesize a linear 
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Figure 2:   Adaptive allocation of
subpopulations  to fitness levels



system such that the eigenvalues are located at assigned 
target positions, building the system from capacitors, 
inductors, resistors, and sources of effort (like a battery). 
More details can be found in (Seo et al 2002; Fan et al 
2002).  
 Two experiments are conducted here to compare the 
performance of HFC with island multi-population GP 
(MulPop). In experiment 1, we investigate the relationship 
between the average of the best fitness over 40 runs and 
the maximum number of evaluations, ranging from 10,000 
to 300,000. Experiments for each maximum evaluation 
limit are run with independent random seeds. In 
experiment 2, we demonstrate the continuing search 
capability of HFC by examining the influence of 
population sizes on the average best fitness over 40 runs, 
each with a maximum of 150,000 evaluations.  
 The parameters used in experiment 1 are as follows: the 
10 target eigenvalues are {-0.1±5.0j, -1±2j, -2±j, -3±0.7j,   
-4±0.4j}. Total population size is 500, with 10 
subpopulations for the island model, each having 50 
individuals. For HFC, the subpopulation sizes for subpops 
1 to 10 are {30,30,40,40,50,50,50,50,60,100}. The 
maximum number of nodes is 400, while the maximum 
depth is 12. Crossover probability is 0.95 (individuals 
chosen using tournament selection with size 7) and 
reproduction probability is 0.05 with best selection 
(elitism). No mutation is used. The GP initialization 
method is half-and-half. Migration frequency is 5 
generations with 10 percent migration for MulPop-GP. 

The parameters of experiment 2 are the same as above 
except that the whole population size is varied. Individuals 
are evenly distributed among 10 subpops for the MulPop 
approach, while for HFC, the proportion of subpop sizes is 
the same as in experiment 1, again using ten subpops.  
 Figure 3 shows the results from the first experiment. It is 
apparent that HFC can achieve much lower average error 
of eigenvalue position assignment for different numbers of 
maximum evaluations and sustainable evolution appears 
with its steady decrease of the location error. While for 
conventional multi-population GP, it is expected that 
beyond a certain evaluation limit, there would be no more 
progress regardless how many more evaluations one may 
provide. The results of experiment 2 are illustrated in 
Figure 4. They illustrate that a multi-population version of 
“conventional” GP relies on large population sizes to 
achieve good performance. With limited evaluations, there 
is an optimal population size. If with unconstrained 
evaluations, larger populatin size produces better results. 
With a limitation on maximum number of evaluations 
(150,000) in this case, HFC clearly achieves better 
performance with smaller population sizes, which is 
contrary to the typical behavior of conventional GPs. 
Combining the evidence from Figure 3, we can expect that 
with sufficient evaluation limits, HFC-GP will achieve 
equally good performance regardless of the population 
sizes, as already confirmed in our other experiments. This 
is achieved due to the continuing search capability with 
sustainable innovation at all fitness levels.  
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(a) Multi-Population GP 

Average Eigen value Location Error vs Max Evaluations
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(b) HFC-GP 

 
Figure 3. Comparison of the average best-of-run errors vs. maximum evaluations for multi-population-GP and HFC-GP. Error of 
0 is the optimal value. HFC achieves much more robust search with continuous progress, reflected by its much smaller standard 
deviations. Multi-population-GP is more opportunistic with its large standard deviations of the location error. It also has the 
tendency that beyond 300 K evaluations, there won’t be much progress, while for HFC-GP, sustainable progress appears. 



5. Discussion and Conclusions 
By examining the phenomenon of premature convergence 
in EAs, this paper attributes its fundamental cause to the 
loss of exploratory capability, rather than the loss of 
diversity per se, as has been widely believed. This 
understanding, along with the analysis of the 
characteristics of evolutionary synthesis (such as fitness 
landscapes and developmental processes) and of the 
convergent nature of current EAs, helps to explain why 
premature convergence is much more severe in GP-based 
evolutionary synthesis and why GP usually needs much 
larger population sizes. It also helps to explain which types 
of “diversity” are helpful. That is, only when the diversity 
includes low- and moderate-fitness individuals operating in 
an environment free of competition from much-higher-
fitness individuals and allowing them sufficient 
opportunity for exploration can the diversity produce 
maximum benefit. 
 Based on this understanding of the premature 
convergence phenomenon, a generic EA framework, called 
Hierarchical Fair Competition (HFC), is proposed, which 
is characterized by its: maintaining of individuals of all 
fitnesses, fair competition at each fitness level, inherent 
hierarchical elitism, and its continuing search at all fitness 
levels including the continual introduction of random 
individuals. By removing the one-epoch assumption of the 
conventional EA framework, HFC transforms the 
convergent nature of the current EA framework into a 
continuing one. Two experiments demonstrate the 
continuing search capability by showing its independence 

of population size and its better performance with constant 
progress for different evolution times. In this framework, 
population sizing theory as earlier formulated is no longer 
applicable (Goldberg 1989). 
 It is interesting to note that HFC seems lie between two 
extreme strategies to allocate search effort: the 
conventional EA framework and FUSS (Hutter 2002). The 
first one allocates essentially all the computing resource to 
the earliest-found high-fitness individuals, increasing the 
average population fitness constantly. The latter one 
allocates the computing resource uniformly to individuals 
over all fitnesses, and thus has too weak selection pressure 
to ensure sufficient exploitation of early discovered 
promising search areas. However, introducing FUSS into 
each level of HFC might be useful, because of the 
selection pressure already provided by the HFC’s array of 
fitness levels. 
 By considering the apparent innovation period in the 
early evolution stages and the subsequent refining period, 
it seems to us that to achieve sustainable innovation in 
evolutionary synthesis and in all other EAs, the appropriate 
strategy is not to try to jump out of local optima from 
highly evolved populations, as is done in conventional 
EAs, but rather to try to form new local or global optima in 
a bottom-up way, as is done in a continuing sustainable EA 
framework like HFC. To achieve scalable evolutionary 
synthesis, this paradigmatic transition seems to be critical.   
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(b) HFC-GP 
 
Figure 4. Comparison of the performance dependence on population size for HFC-GP and Multi-populatio GP.  Due to its 
continuing search capability, HFC works well with small population sizes. With limited evaluations, HFC achieves better results 
by running more generations.  Multi-population GP depends on large population size to get better performance.  
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