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Abstract

Temporal knowledge representation and reasoning with qual-
itative temporal knowledge has now been around for several
decades, as formalisms such as Allen’s calculus testify. Now
a variety of qualitative calculi, both temporal and spatial, has
been developed along similar lines to Allen’s calculus. The
main object of this paper is to point to open questions which
arise when, leaving the now well-chartered waters of Allen’s,
we venture into rougher sea of these formalisms. What re-
mains true among the properties of Allen’s calculus? Partial
answers are indeed known, but numerous new problems also
arise. We try to point to the main issues in this paper.

Introduction
Temporal knowledge representation and reasoning with
qualitative temporal knowledge has now been around for
several decades, as tense logics and formalisms such as
Allen’s calculus testify. Applications are numerous, in-
cluding natural language processing, scheduling, planning,
database theory, diagnosis, circuit design, archaeology and
genetics. Representing and reasoning about spatial knowl-
edge in a qualitative way has developed more recently, as
previous work had mainly considered spatial knowledge
from a purely quantitative way. In many applications,
such as robotics, geographic information systems, and com-
puter vision, the main motivations for qualitative approaches
are robustness (robotics), naturalness and user-friendliness
(GISs), and high-level adequacy (computer vision).

Many questions have been raised for each individual for-
malism, and some have been answered in each particular
case. Basic problems pertain to the following issues:

� Develop suitable languages of representation for temporal
and/or spatial knowledge.

� Propose methods for managing and reasoning about that
knowledge. In particular, maintain consistent knowledge
bases, and answer queries.

� Investigate the computational cost of basic operations on
the knowledge basis, such as testing for consistency.

� Characterize the models (in a logical sense) of a given
calculus. More precisely, if the calculus can be expressed
as a first order theory, describe all models of that theory.
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As a case in point, consider the formalism proposed by
Allen in 1983 (Allen 1983):

� The language uses 13 basic relations between temporal
objects interpreted as intervals. The intended interpreta-
tion is in terms of intervals understood as ordered pairs of
time points on the time line. In logical terms, the corre-
sponding first order theory has 13 dyadic predicates satis-
fying suitable axioms.

� Allen’s main innovation was to propose to reason about
intervals using constraint networks, and providing explicit
algorithms for doing so: the knowledge about a (finite)
number of temporal intervals is expressed in terms of a
network whose nodes stand for the intervals, and where
arcs are labeled by disjunctions of the basic relations. The
basic reasoning mechanism operates by propagating con-
straints using the operation of composition of relations.

� In the same paper where he introduced the formal-
ism, Allen proposed an algorithm which maintains path-
consistency of the network, which is a necessary condi-
tion for consistency. He also exhibited a network which,
although it is path-consistent, is not consistent. An im-
portant body of work since that time has been devoted
to determining under what conditions path-consistency
would imply consistency, a question which has been com-
pletely solved by Nebel and Bürckert (Nebel & Bürckert
1995) and Drakengren and Jonsson (Drakengren & Jons-
son 1998).

� Concerning the complexity of testing consistency, early
results of Vilain and Kautz (Vilain & Kautz 1986) (com-
pleted by van Beek (van Beek 1990; van Beek 1992))
showed that the full problem of consistency is NP-
complete. As a consequence of Nebel and Bürckert and
others’ results mentioned above, subclasses of Allen’s al-
gebra are either NP-complete, or tractable by using the
path-consistency method, that is, in cubic time.

� Allen’s composition table for the 13 basic relations em-
bodies a ”strong” logical theory. Ladkin and Maddux,
in particular (Ladkin & Maddux 1994), emphasized the
fact that it can be interpreted in algebraic terms. Using
logical methods (quantifier elimination) Ladkin (Ladkin
1987) proved that this theory is in fact syntactically com-
plete. This implies for instance that the only countable
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model of the theory, up to isomorphism, is the set of in-
tervals on the rational numbers.

As far as the problems we raised at the outset are con-
cerned, then, navigating in the framework of Allen’s calcu-
lus is navigating in smooth waters. Now a variety of quali-
tative calculi, both temporal and spatial, has been developed
along similar lines to that calculus. Here is a tentative list of
calculi:

1. On the temporal side:

(a) Generalized intervals (Ladkin, Ligozat, Osmani, Con-
dotta (Ladkin 1986; Ligozat 1991b; Balbiani et al.
1998; Balbiani, Condotta, & Ligozat 2000b)).

(b) Partially ordered time (Anger, Mitra and Rodriguez
(Anger, Mitra, & Rodriguez 1998))1.

(c) Cyclic intervals (Balbiani, Osmani (Balbiani & Osmani
2000)).

(d) The INDU calculus (Pujari and Sattar (Pujari & Sattar
1999))2.

2. On the spatial side:

(a) RCC calculi ( ������� and ������� , Randell, Cui and Cohn
(Randell, Cui, & Cohn 1992)).

(b) � -dimensional point calculi (Balbiani, Condotta (Bal-
biani & Condotta 2001)).

(c) Rectangle and � -block calculi (Balbiani, Condotta).
(d) The oriented interval calculus (Renz (Renz 2001)).
(e) �	� -star calculi (Mitra (Mitra 2002)).

The main object of this paper is to point to open questions
which arise when, leaving the now well-chartered waters of
Allen’s, we venture into rougher sea. What remains true
among the facts listed above for Allen’s calculus? Partial
answers are indeed known, but numerous new problems also
arise. We try to point to the main issues in what follows.

Looking for general methods We understand this paper
as a contribution to the more general context of devising
general methods in the field of qualitative spatial and tem-
poral reasoning. We claim that such general methods are
to be developed inside the framework of general algebraic
methods, as exemplified by Ladkin and Maddux (Ladkin &
Maddux 1994), Ligozat (Ligozat 1998b), Krokhin and Jeav-
ons (Krokhin & Jeavons 2001) (as opposed to computer-
based calculations). Geometrical and topological methods
have also proved to be useful, as shown by the geometri-
cal characterizations of tractable classes, see Balbiani, Con-
dotta, Ligozat (Balbiani, Condotta, & Ligozat 2000a). The
structure of the paper is as follows: Section 1 introduces the

1This calculus has four basic relations, which may be denoted
by 
 (precedes), � (follows), ��
 (equality), and ��� (not related).

2The INDU calculus refines Allen’s calculus by using basic re-
lations which denote the relative size of the intervals. For instance,
the � relation splits into three relations: ������� , ������� , ������� ,
which mean that ����� and that the length of � is strictly greater,
equal or smaller than that of � , respectively. On the other hand,
since � �!� implies that the length of � is strictly less than that of � ,
there is only one relation � � .

basic algebraic properties of the calculi, as well as the no-
tion of a weak representation, which plays a central role in
the sequel. Section 2 discusses the relationships between
weak representations (which generalize the familiar notion
of scenarios) and configurations in a domain of interpreta-
tion. Finally, Section 3 discusses the models of the strong
theories in terms of representations of the corresponding al-
gebras.

Calculus: The algebra behind the scenes
Algebraic properties of qualitative spatial and
temporal reasoning
The calculi we consider share most or all of the following
features:

1. The calculus is based on a set " of basic relation symbols
denoting temporal or spatial binary qualitative relations
between some entities.

2. The set of basic relations is JEPD (jointly exhaustive and
pairwise disjoint).

3. Exchanging roles is expressed by a conversion operator.

4. Composition of knowledge is expressed by a composition
operation.

5. Indefiniteness (which inevitably arises in most cases when
composing knowledge) can be represented by disjunctive
relations (subsets of " ).

6. The Boolean algebra # of subsets of " , augmented by
conversion and composition (with suitable elements as
neutral elements for composition) is a relation algebra in
the sense of Tarski (Tarski 1941).

Relation algebras
For all the formalisms we consider here, # is the set of sub-
sets of " , hence it is a Boolean algebra. The operation of
transposition sends each basic relation on a basic relation
(notice that in the case of Mitra’s star relations, this is only
true for an even number of sectors in the plane, as observed
by Mitra).

The composition table of each calculus results from the
necessary conditions which are valid in a standard inter-
pretation of the calculus: for the temporal calculi 1(a), the
entities of this standard interpretation are generalized inter-
vals of the real line; the composition table for partially or-
dered time expresses conditions valid in any partial order;
for cyclic intervals, a standard model is the real circle; for
the INDU calculus, again, the interpretation is based on in-
tervals on the real line.

In the case of the composition tables of ���$��� and �%�$��� ,
various standard models for determining the composition ta-
ble have been considered (Düntsch 1999), such as e.g. cir-
cles in the plane.

Besides transposition and composition, a relation algebra
requires a unit element for composition &(' . This element is
the equality relation, which is a basic relation (an atom of
the Boolean algebra) when all entities considered are of the
same type. Again, notice that this last fact is no longer true
when the entities are of various types. For instance, in the



case of the algebra of generalized intervals #���� � correspond-
ing to time points and intervals on the time line (Ligozat
1991a), & ' is the sum of two atomic relations: &(' ��� � (equality
between time points) and & ' ��� � (equality between time inter-
vals).

Recall the general definition of a relation algebra:

Definition 1 A relation algebra #�� 	�

������������� & ����� &(' ����
is a Boolean algebra

	�
�������������� & � together with a unary
operation of converse (denoted by ��� !�#" ), a binary oper-
ation of composition (denoted by

	 � �%$&� � 	 � �'$&�(� , and a
distinguished element & ' , such that the following conditions
hold:

1. For all � ,
$

, ) ,
	 � �*$+�,� )-�.� �/	0$1� ) � ;

2. & ' is a unit element for composition:
	 � � &(' � � 	 & ' � � � �� , for all � ;

3. For all � ,
$

and ) , the following conditions are equiva-
lent:	 � �*$+�2� )-� � ;

	 �+" � ) �2�3$ � � ;
	 ) �*$ " ��� ��� �

Relation algebras were introduced by Tarski in order to
axiomatize the structural properties of binary relation alge-
bras (BRA), whose elements are actual binary relations, with
transposition, binary relation composition and the identity
relation as a neutral element.

The algebras of qualitative spatial and temporal
reasoning
Is # actually a relation algebra? In all cases where standard
interpretations of the calculus are based on entities on the
real line, it is a relatively easy matter to check that the com-
position table is indeed the composition table of an algebra
of relations: in other terms, the algebra can be realized as an
actual subset of the set of binary relations on some set (in
algebraic terms, it is a representable algebra). For instance,
thinking of Allen’s algebra as a typical instance, it is easy
to check that it is isomorphic to the algebra of binary rela-
tions between rational intervals, where a rational interval is
a pair

	�465��(4�7��
in 8:9�8 with

465<;=4�7
. The hard (although

easy) part consists in checking that the composition table ex-
presses necessary and sufficient conditions. To take an easy
example, the table asserts that > � > is > . The necessary part
asserts that if an interval ? precedes another interval @ , and
if @ precedes A , then ? precedes A . The sufficient part asserts
that, if ? precedes A , then there exists an interval @ such that? precedes @ and @ precedes A : this is true only because the
real line is a dense ordering.

Similarly, the algebras 1(a), 2(b-f), which are directly
based on entities on the time line, can be shown to be re-
lation algebras. For 1(c), the calculus of cyclic intervals,
similar arguments obtain, using the density of the real cir-
cle. The same is true for 2(a) ( ������� and �%�$��� ), because
suitable interpretations exist (Gotts 1996; Düntsch 1999).

Partial orderings

Proposition 1 The algebra of the calculus of partial order-
ings is a relation algebra.

The composition table of the calculus of partial ordering
is given as Table 1.

� B�4 C D EFE
B�4 B�4 C D EFEC C C & G CH�6EFEJID D & D G DH�6EFEJIEFE EFE G CH�6EFEKI G DH�6EFEJI &

Table 1: Composition in LNM

Proof We claim that 8
7
�O8P9Q8 , the set of pairs of

rational numbers equipped with the product ordering, which
is a partial ordering, provides an algebra of relations whose
composition table is Table 1.

Let RS�TG 	 ? � A �VU 8
7
9/8

7 E ? ; A I , Let WX�=G 	 ? � A �'U8
7
9Y8

7 E ?1�ZA I , and [\�S8
7
9Y8

7*] 	 R_^1R/`a^-W I .
Interpreting

C
,
D

,
B64

, and
E�E

as R , Rb` , and [ , respectively,
we have to check that Table 1 describes the properties of the
four relations R , R/` , W and [ .

We have to check that all the necessary properties hold.
Part of them result from the fact that c itself is dense and
unbounded. Obviously also, as the product of two total or-
derings, 8

7
is a (distributive) lattice. Hence each pair in 8

7
has a least upper bound and a greatest lower bound. The
following facts have to be checked:

1. Necessary conditions:

(a) R � RedfR : This is true because of transitivity.
(b) R � [gd 	 RT^�[ � : Again because of transitivity. IfR 	 ? � A � and [ 	 A � @ � hold, Rb` 	 ? � @ � would imply thatR 	 @ � A � , a contradiction.
(c) R � Red 	 RQ^hR/`i^1W � adds no constraint.
(d) The cases of R/` � R , R/` � R/` , R/` � [ are treated anal-

ogously.

2. Sufficient conditions:

(a) R � RejfR : This is true because of density.
(b) R � R/`kjQR : Because the partial ordering is unbounded

on the right.
(c) R � R/`ljmRn` : Again, because the partial ordering is

unbounded on the right.
(d) R � R/`kjQ[ : Because every pair of elements has a least

upper bound.
(e) R � R/`-joW : Again, because the partial ordering is

unbounded on the right.
(f) R � [pjQR : Let ?h� 	 ? 5 � ? 7 ��� A<� 	 A 5 � A 7 � in 8

7
such

that R 	 ? � A � . Then at least one of ? 5�; A 5 or ? 7q; A 7
holds. Assume for instance that ? 5�; A 5 . Choose @<�	 @ 5 � @ 7 � such that ? 5 ; @ 5 ; A 5 and @ 7�r A 7 (Fig. 1
(a)). Then R 	 ? � @ � and [ 	 @ � A � .

(g) [ � RsjZ[ : Suppose for instance that ? 5 r A 5 , while? 7 ; A 7 . Choose @ 5 ; A 5 and ? 7 ; @ 7 ; A 7 (Fig. 1
(b)). Then [ 	 ? � @ � and R 	 @ � A � .

(h) The remaining facts have similar proofs.

Notice that analogous considerations could be applied to
the partial orderings 8ut , for � rwv

. This raises the ques-
tion whether the resulting interpretations are isomorphic as
partial orderings.
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Figure 1: (a) R 	 ? � @ � and [ 	 @ � A � , (b) [ 	 ? � @ � and R 	 @ � A �

The algebra of the INDU calculus The algebra of the
INDU calculus, however, is not a relation algebra: the ax-
iom of associativity is not true. The following is a counter-
example:

Consider the three atomic relations > " , , -/" , , - , . It can
easily be checked that:	 > " , � - " , �,� - , �=G/. " , � - " , � > " , I
whereas

> " , �/	 - " , � - , � �=> " ,10
The algebra of the � � -star calculus The 2 -star calculus is
the Cardinal Direction Calculus studied in (Ligozat 1998a;
1998b) (or the point calculus in two dimensions). The cor-
responding algebra is a relation algebra.

For �4365 , it is not clear whether the �	� -star algebra is a
relation algebra or not.

A challenge: When does the algebra determine the
calculus?

Suppose conversely that we are given such a relation alge-
bra. The algebra may be abstracted from some qualitative
calculus we are not aware of. The following question arises:
How much we can recover, from the knowledge of the alge-
bra, of the calculus or calculi it originates from?

Before trying to answer this question, we begin by refor-
mulating some of the basic notions in algebraic terms.

Constraint networks and weak representations
Much of the effort in the study of qualitative temporal and
spatial calculi has been devoted to the context of binary con-
straint networks (BCN): A BCN on # is a network (an ori-
ented graph) whose arcs are labeled by elements # . Each
node represents some temporal or spatial entity, while the
labels express binary constraints between the nodes.

More specifically, a constraint network
	 [ ��	87:9 � ; �%� con-

sists of a set [ of nodes, and for each pair
	=<���>��

in [ , of an
element

7 9 � ; in # . In this paper, we assume that for all pairs	=<��?> �
in [ 7/9 � 9 is the identity, and that

7 ; � 9 � 7 "9 � ; .
If all labels

7/9 � ; are atoms of the algebra # , we say that
the network is atomic.

Finally, recall the notion of path-consistency:

Definition 2 A network is path-consistent if none of its la-
bels is the zero element of # , and for each 3-tuple

	8<���> ��@ �
of elements of [ , we have:

7A9 � B �C7 B6� ; j 7A9 � ;
Scenarios
Suppose we use one of the formalisms to describe a con-
figuration of spatial or temporal entities (in finite number).
The configuration can then be represented by a constraint
network: for each pair of objects, the corresponding label is
the actual relation between the two entities. Then this par-
ticular network is atomic. It is also path-consistent, because
we know that the composition table describes (at least nec-
essary) constraints.

Such a network is usually called a scenario in the litera-
ture:

Definition 3 A scenario is a constraint network which is
atomic and path-consistent.

In the case of Allen’s algebra, it is a fact (usually admitted
without proof) that a scenario entirely defines a qualitative
configuration of intervals (say, on the time line).

In what follows, we slightly generalize the notion of sce-
nario in order to include infinite sets of entities. The result-
ing notion is called a weak representation.

Weak representations
Consider a scenario. For each basic relation D U " , there is
a set of pairs

	=<��?> �
, say E 	 D � , of nodes of the network such

that:

1. Every pair of nodes
	=<���>��

belongs to exactly one E 	 D � , for
some D 9 � ; U " .

2. If
	8< �?>��VU E 	 D � , then

	&> �F< �'U E 	 D " � .
3. If

	8<���>��VU E 	 D 9 � ; � and
	�> �G@ �'U E 	 D�;(� B � , then

	=<��G@ �VU E 	 D �
for some D U 	 D 9 � ; � DH; � B � .

4. For each
<
,
	=<��H< �VU E 	 D � for some D U &(' .

Because of (1), we can extend E to the whole algebra
# . Then this map is a homomorphism of Boolean alge-
bras. Because of (2), E preserves transposition, that is,
E 	 �2" � �IE 	 � � ` . Because of (3), it also preserves com-
position in a “weak” sense, that is, for any pair of elements� and

$
we have:

E 	 � �,� E 	�$&� dJE 	 � �*$&�
.

More generally, we define weak representations (Ligozat
1990):

Definition 4 A weak representation of # is a pair
	�K'� E �

where
K

is a non empty set, and E is a map of # into a
product of algebras of subsets of

K 9 K , such that:

1. E is an homomorphism of Boolean algebras.
2. E 	 � �*$&� jJE 	 � �,� E 	0$&� .
3. E 	 & ' � �.W .
4. E 	 �2" � is the transpose of E 	 � � .



Intuitively, a weak representation is just a set
K

of ele-
ments, which stand for objects, together with the assignment
to each atomic relation of a set of pairs

	��+��� �
of elements inK

(i.e. a binary relation in
K

). To be interpreted as a model,
these binary relations should satisfy the axioms correspond-
ing to the algebraic properties.

Remark 1 Equivalently, weak representations are models
of the associated first-order weak theories:

K
is the domain

of interpretation, and E is the interpretation function for the
predicates associated to the symbols in " .

Remark 2 When
K

is a finite set, a weak representation
can be represented by a network, as already shown in the
examples. This network is atomic, and none of the atoms is
equality. Moreover, it is path-consistent: For any 3-tuple of
vertices

	8< �?> ��@ �
, the corresponding labels � 9 � ; , � ;(� B and � 9 � B

are such that
	 � 9 � ; � � ; � B � contains � 9 � B .

Conversely, if a network is such that it is atomic, that none
of its labels is equality, and if it is path-consistent, then it
defines a weak representation.

Domains and configurations
As already mentioned, most calculi come with (sometimes
implicit) domains of interpretation, together with a stan-
dard way of interpreting the basic relations in terms of this
domain. In (Ligozat 2001), the corresponding package is
called a configuration. For instance, a configuration for
Allen’s calculus is a linear ordering

�
together with a sub-

set
K

of the intervals on
�

, that is, of pairs
	�� 5 ��� 7 �

, where� 5 ;�� 7
.

A configuration defines in a canonical way a weak rep-
resentation. Intuitively, this weak representation is the de-
scription of the configuration using the language provided
by the calculus. For instance, a configuration

	 � �GKH�
for

Allen’s calculus defines the weak representation whose uni-
verse (think of it as a set of nodes of a network) is

K
, and

where the arc from
�

to
�

is labeled by the actual relation
holding between

�
and

�
.

The important fact for all the calculi based on linear order-
ings is that, conversely, each weak representation is uniquely
associated to a configuration. This is true for calculi 1(a) and
2(b-e):

Proposition 2 For all calculi mentioned above, there is a
well-defined construction 	 which, to any weak representa-
tion 
T� 	?K'� E � of # , associates a configuration for # .

Example The construction of 	 was first introduced in
(Ligozat 1990) for generalized intervals (which includes
Allen’s special case). It is described in detail in (Ligozat
1999) for the spatial calculi 2(b-d).

We illustrate it on a special case. Consider Fig. 2, which
represent a configuration of three intervals (left part of the
figure). Using Allen’s language, this configuration is de-
scribed by the weak representation (or scenario, in this case)
on the right.

�
�



�

� �
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Figure 2: A configuration for Allen’s calculus and its asso-
ciated description

The “inverse” construction 	 associates to the weak rep-
resentation a set of five elements (the end-points of the the
intervals)

� � G�� 56� � 7�� D 5�� D 7���� 7�I , which is linearly or-
dered by

�65/; D 5/; � 5/; D 7H; � 7 , and two canonical maps
from G 

���l����I to

�
, which can be interpreted as “starting

point” and “ending point” respectively.
Starting from a weak representation, using 	 , then con-

sidering the weak representation of all intervals on the re-
sulting set of endpoints yields a weak representation which
contains the original one. In the case of the example, we get
all ten intervals on the five end-points.

The resulting operation on weak representation is a clo-
sure operation, which can be described in terms of the the-
ory of categories. In particular, closed weak representation
are fully equivalent to point-based weak representations.

Weak representations of the calculi
What can be said about the weak representations of other
calculi?

�%�$��� and ���$��� The case of ������� and ������� is exam-
ined in detail in (Ligozat 1999). The results may be summa-
rized as follows:

1. A configuration for ���$��� is a family
�

of subsets of a set�
. It defines a weak representation of ���$��� .

2. Conversely, given a weak representation of ������� , there is
an explicit way of constructing a configuration to which it
is associated. In this case, however, there is no canonical
way of choosing one particular configuration.

3. A configuration for ������� is a family
�

of non empty
closed regular subsets of a topological space

�
. It defines

a weak representation of ������� .
4. Conversely, given a weak representation of ������� , there is

an explicit way of constructing a configuration to which
it is associated. Here again, there is no canonical way of
choosing one particular configuration.

The cyclic interval calculus In the case of the calculus
on cyclic intervals, the situation is still worse. Some weak
representations may have more than one configuration: con-
sider the case of a network where all the constraints are ��� <
(expressing that the intervals are non intersecting). Then any
permutation of the configuration has the same corresponding
weak representation.



Moreover, some weak representations have no configura-
tion associated to them. Indeed, there is a stronger result:

Proposition 3 For any integer � 3 � , there is a path-
consistent atomic network with � � v nodes which is not
consistent.

Indeed, consider the configuration where the circle is split
into � intervals. Hence two distinct intervals are in the rela-
tion ��� <

(if � � � ), or � , � <
, or � � < (for � r � ). To the

corresponding weak representation, add a fresh node with
the constraint � � < relative to each old node. Then the new
weak representation is � consistent, because leaving out one
of the � intervals permits to insert the new one in the “hole”.
However there is no room for it if all � � v intervals are con-
sidered, hence the new network is not consistent. See Figure
3 for an example with ��� �

.

�
�

� �

�

�
�

� �

�
� �
	

� �

�
�

�

��
 
�������������������� �!��" �#�!�$���!�$%&%&"

Figure 3: A path-consistent and non-consistent arc cyclic
network with six variables

Partially ordered time In the case of the partial order-
ing algebra L M , Anger, Mitra and Rodriguez (Anger, Mi-
tra, & Rodriguez 1998) have shown, with the help of some
examples, that path-consistency does not imply consistency
in the general case. Nevertheless, concerning atomic path-
consistent networks on L M , for all considered models,the
following question is still open (at the present state of our
knowledge) : can we assert that a such network is always
consistent ? We can just remark that the examples given by
Anger et al. cannot be adapted to the atomic case. For in-
stance, they show that each network with � variables ( � r 5 )
defined by one “cycle” of length � labeled with G CH� DbI
while all other relations are

E�E
will be path-consistent and

inconsistent if � is odd (Fig. 4 (a)). In the case of the atomic
network, we can remark that each network with � variables
( � r 5 ) defined by one “cycle” of length � labeled with
the atomic relation

C
or the atomic relation

D
will not be

path-consistent if � is odd (Fig. 4 (b)).
As a consequence, we do not know whether each weak

representation of L M can be associated to a configuration
(in any model).

The INDU calculus In (Vijaya Kumari 2002) (see also
(Pujari, Kumari, & Sattar 1999)), properties such as 4-
consistency are examined for the INDU calculus. The sim-
ple question arises:
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Figure 4: (a) A path-consistent and inconsistent L M net-
work, (b) a non path-consistent and inconsistent LsM atomic
network

Question: Is any path-consistent atomic network for the
INDU calculus consistent?

The � � -star calculus The 2 -star calculus is the Cardinal
Direction Calculus studied in (Ligozat 1998b). It behaves in
the same way as Allen’s calculus. In particular, each weak
representation is canonically associated to a configuration
set of points in the plane.

For the more general � � -star calculus ( � 3 5 ) little seems
to be known about the basic properties:

Question: Is any path-consistent atomic network for the
�	� -star calculus consistent?

According to Mitra (Mitra 2002) 2 -consistency implies
consistency for a class of pre-convex relations.

Tractability

Calculi based on linear orderings Again, for most cal-
culi based on linear orderings, including 1(a), 2(b-e), there
is a notion of pre-convexity for relations, and so-called
strongly pre-convex relations are tractable. In simpler cases,
such as Allen’s calculus and the cardinal direction calcu-
lus, the resulting class satisfies a maximality condition. In
the case of 1(a) and 2(b), strongly pre-convex relations are
known to coincide with ORD-Horn relations.

Question: Are the strongly pre-convex classes maximal in
cases 1(a), 2(b-c)?

Question: What are the maximal tractable subclasses for
the oriented interval calculus of Renz (Renz 2001)?

The ������� and ������� calculi All maximal tractable sub-
classes of ���$��� and ���$��� have been determined by Renz
(Renz 2001). Is there a description of the maximal classes
in geometrical terms?

The calculus of cyclic intervals There are some partial
results about tractable subsets of the calculus of cyclic inter-
vals in (Osmani 1999).



Models of the calculi: Representations
We introduced weak representations as a particular type of
generalization of a class of networks. On the other hand,
from the algebraic point of view, weak representations gen-
eralize the classical notion of a representation of an algebra.
Hence the notion constitutes a bridge between the two do-
mains.

Representations
Weak representations, as considered above, are models of
the theory associated to the composition table of the calculus
in a weak sense. The stronger notion of a model specifies
that the axioms embodied in the composition table should be
interpreted as necessary and sufficient conditions: namely, if
a pair

	��+��� �
belongs to the relation interpreting ) , and if )

can be obtained by composing � and
$

, then there should
exist

�
in

K
such that

	��&���n�
is in the interpretation of � ,

and
	��
��� �

in that of
$

.
This stronger notion corresponds to the standard notion of

a representation in algebra.

Definition 5 A representation is a weak representation	�K � E � where E is one-to-one and condition (2) is replaced
by the stronger condition (4):

5. E 	 � �*$&� �6E 	 � �&� E 	�$&� .
Looking back on our discussion of relation algebra, we

see that our proof of # being a relation algebra (except for
INDU) was based on exhibiting a representation of that al-
gebra in each case. For the calculi based on linear order-
ings, the existence of a canonical construction of configura-
tions from weak representations has strong implications. For
other calculi, again, this simple situation no longer holds.

Classifying representations
Calculi based on linear orderings In cases 1(a) and 2(b-
d), we know that there is a canonical construction 	 which
associates a suitable configuration to any weak represen-
tation. It is an easy fact to check that, in case the weak
representation is indeed a representation, it is closed in the
sense that it coincides with the weak representation based
on this configuration. Moreover, it is proved in (Ligozat
2001) that the configuration associated to a representation
coincides with the set of relevant objects (generalized inter-
vals, � -tuples of points, � -tuples of intervals) based on a
dense linear ordering without end-points.

In particular, there is no finite representation of the alge-
bra in those cases. Since any countable dense and linear
orderings without end-points is isomorphic to 8 , this im-
plies that the configuration based on 8 is the only one, up to
isomorphism:

Theorem 1 In cases 1(a) and 2(b-d), any countable repre-
sentation of # is isomorphic to the corresponding represen-
tation based on 8 .

In other terms, all corresponding first-order theories are
aleph-zero categorical. As a consequence, they are decid-
able.

The R � �
calculi Representations of ������� ?

For ���$��� , we observed that weak representations can be
realized (in many ways) as closed regular subsets in a topo-
logical space. Gotts (Gotts 1996) has given a characteriza-
tion of topological spaces which yield a representation of
�%�$��� . Further discussion of the problem can be found in
(Düntsch 1999).

The � � -star calculus The standard interpretation of the
calculus is a representation of the algebra.

Question: Give a classification of all representations of
the �	� -star algebra.

The INDU calculus As observed above, the algebra of the
INDU calculus is not a relation algebra. The standard inter-
pretation of this algebra in terms of intervals in 8 satisfies
the properties of a weak representation.

Question: Are there objects similar to the standard inter-
pretation of the INDU calculus in terms of intervals on the
time line?

Conclusions: Towards general methods in
qualitative spatial and temporal reasoning

We have examined some of the most typical qualitative cal-
culi developed in the field of spatial and temporal reason-
ing, by relating them to their underlying relation algebra.
In many respects, Allen’s calculus exhibits nice properties:
its weak representations relate neatly to the underlying end-
points; it has only one representation up to isomorphism;
any weak representation has an interpretation (in particular,
atomic path-consistent networks are consistent), and more-
over this interpretation is basically unique; path-consistency
in Allen’s case implies consistency for the well-studied sub-
set of ORD-Horn, or pre-convex relations;

The main conclusions of the discussion in this paper are
that although calculi which are directly based on totally or-
dered interpretations share most of these properties, the case
is quite different for formalisms based on partial orderings,
or on circular structures, as well as for formalisms describ-
ing topology or orientation. In consequence, we raised many
questions about the properties of these formalisms.

Concerning further progress in that direction, we suggest
that a systematic development of the algebraic point of view
should prove quite fruitful, as evidenced by recent work in
similar fields (Bulatov, Krokhin, & Jeavons 2000).
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