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Abstract

We are currently exploring relaying navigational in-
formation (e.g., obstacles, terrain, depth) to a visually
impaired person using a tactile glove we have devel-
oped. The glove consists of a collection of vibrating
motors. The collective patterns of motor activity are
used for conveying the navigational information which
is mapped from an artificial perception system derived
from a wearable camera and computer. The tactile glove
has a reduced bandwidth when compared to the visual
input stream. Three exploratory routes of tactile map-
ping include: (1) encoding information in terms of a
minimally spanning basis set of spatial prepositions; (2)
organizing the hand in terms of functionality (e.g., ob-
stacle motors, terrain motors); and (3) a direct fovea-
periphery retinal distinction on the hand. The glove
strongly relies on the information provided by the ar-
tificial perception system. We have explored a prob-
abilistic framework (e.g., Particle filtering) for mod-
elling dynamical visual processes (e.g., tracking, optical
flow, depth from stereo). We suspect that a probabilistic
encoding is necessary to model the uncertainty in vi-
sual processing. In addition, the integration of temporal
stream redundancy helps the reliability of the perceived
scene. The internal representations developed for this
application will also be useful for mobile robot naviga-
tion.

Introduction
Previous depth conveying devices for the blind have relied
on active sensors and audible feedback. Active sensors such
as sonar are power consuming and have other limitations
with the detail and the manner the scene information is re-
layed back. Passive sensing such as vision overcomes these
limitations by relying on the ambient energy in the environ-
ment. Audio feedback burdens the one sensory channel that
a visually impaired person relies on for communication and
safety. Touch feedback is an innovative and new way for
conveying scene depth information.

We have proposed a navigational system for the visually
impaired that consists of using passive stereo machine vision
and a haptic feedback glove capable of conveying complex
scene information. The system needs to convey obstacle and
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terrain information to a blind individual through the hap-
tic channel. The goal is an affordable, low power consum-
ing system that is comfortable and provides safe navigation
without the hindrances of more active sensing techniques,
nor the disadvantages and interference of auditory naviga-
tional aids. Our intent is to allow the user to ”feel” their
local environment.

Our visual perception routines rely on a probabilistic
framework which is modelled on a particle filter framework.
We have used particle filters for human limb tracking and are
currently trying to formalize optical flow and stereo vision
algorithms into such a framework. We plan on using probab-
listic stereo vision algorithms and are currently using Kono-
lige’s stereo vision algorithm (Konolige 1997). We have
started to explore three exploratory routes of tactile mapping
including: (1) encoding information in terms of a minimally
spanning basis set of spatial prepositions; (2) organizing the
hand in terms of functionality (e.g., obstacle motors, terrain
motors); and (3) a direct fovea-periphery retinal distinction
on the hand.

Probabilistic Visual Perception
The probabilistic framework we have adopted for visual rou-
tines is referred to as Particle filtering, which is also called
the Condensation algorithm (Isard & Blake 1998c), is usu-
ally used for tracking objects where the posterior probability
function is not unimodal or can be modeled by a predefined
function such as a Gaussian. The Condensation approach
is useful when there are multiple hypothesis and it is nec-
essary to propagate them across time. A Monte Carlo tech-
nique of factored sampling is used to propagate a set of sam-
ples through state space efficiently. The posterior probability�������	��
���
������������

, can be computed by using:
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(i.e., the likelihood),
from which the posterior follows. The temporal model
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typically includes a deterministic drift component and a
random diffusion component. It is also a set of samples� � ��� � �'����� ���	�
� �����
�

selected from
� �����

using a sample-
and-replace scheme that are propagated. The posterior is
only computed to an unknown scale factor

�
.

We have used this formalism for the visual perception
techniques used by our robot for the basic reason that vision
is uncertain and the principle of least commitment should
be adhered to as long as possible. This permits a robot to
explain its vision-based actions to a user in a probabilistic
form. It also permits the robot to convey this information
to a user for the user to use their decision making abilities
(cognitive) to make the actual decision.

We have started to use the particle filtering framework in
three visual routines: (1) tracking; (2) optical flow; and (3)
stereo vision.

Visual Target Tracking
Deterministic tracking techniques force the system to make
a decision as to the target state (e.g., limb pose) at each time
step. In this there is a finite chance of the system making an
errant decision, a series of which could lead to permanent
loss of the tracked target. Consequently, we track the limb’s
pose using probabilistic techniques which propagate an en-
tire state-space probability density, rather than a single target
state estimate. This offers a mechanism for propagating un-
certainty and ambiguity in the measurements. Many visual
tracking algorithms use the Kalman or Extended Kalman
Filter (Welch & Bishop 2000) for this purpose. However, the
Kalman filter is inherently ill-suited to tracking in complex
environments since it can only model the target posterior as
a uni-modal Gaussian distribution. While this can allow for
the representation of uncertainty, it forces the posterior to be
modeled as having a single dominant hypothesis. This is of-
ten inadequate when depth or kinematic ambiguities create
input data which tends to support multiple conflicting hy-
potheses. This motivated us to implement the Condensation
particle filtering algorithm (Isard & Blake 1998a) which rep-
resents the target posterior not by a Gaussian distribution (a
multi-variate mean and variance), but instead by a large set
of weighted state-space samples. Each sample, or particle,
represents a separate hypothesis as to the true nature of the
target, and is weighted according to its calculated likelihood.
These particles are made to propagate through state-space
according to a motion model (� � � ��� ���'� � � ��� ��� ����� � ) tuned to
the target’s behavioral tendencies, and the observed image
data. The complete set of particles can combine to form
an asymptotically correct estimate of the target state poste-
rior, � � � ��� ��� �,� 
�������� ���

. The asymptotic correctness of the
tracker output is illustrated in figure reffg:correct. In this
figure, the mean positional error of the 3-D hand location
estimate is shown to approach zero as the number of sam-
ples (and computational resources required) increases. Fig-
ure 2(b) shows the estimated limb posterior for the image
shown in figure 2(a).

Hypotheses (state-space particles) are weighted according
to how well the image data in the region of the hypothesized
arm fits the spatial-chromatic appearance model. While this
is an adequate tracking cue when the target is clearly vis-

Figure 1: Accuracy of the Hand Position Estimate: The ac-
curacy of the estimated hand position gradually approaches zero
as the number of samples (and computational resource required)
increases.

a)

b)

Figure 2: Estimated Arm Pose: The estimated 3-D arm pose of
the user is shown super-imposed over the original image in (a). In
(b) the posterior estimate of the joint angles is plotted for both the
upper and lower arm segments.



ible, during periods of occlusion the state-space particles
may drift away from the high-probability regions of state-
space and ultimately loss the target. Therefore, a method of
focusing the particles into high-probability regions of state-
space is required to combat the effects of occlusion. We use
the Monte Carlo technique of importance sampling (Isard
& Blake 1998b) to redistribute a portion of the particles at
each time step using a secondary image cue. We use a novel
ridge segment detector which is able to estimate the possi-
ble 3-D pose of the arm from the projected contour informa-
tion. Contours are a natural complement to colored-blobs
and thus the two can combine to form a powerful tracking
cue in which one excels where the other fails. In our ex-
perimentation the system has demonstrated exceptional re-
silience to target occlusion and temporary target disappear-
ance by employing this search focusing mechanism (Bullock
& Zelek 2002).

The output of the target tracking component is the set of
estimated limb joint angles. These can be used to render an
image of the estimated arm pose (as is done in figure 2a), or
interpreted by a gesture understanding software component
for interfacing with the robot. At this state the target tracking
component performs at sub-real-time frame rates ( � %�� � � ),
but there exists significant room for optimization by multi-
threading and parallelism.

Probabilistic Optical Flow

Optical flow is what results from the recovery of the 2-D
motion field (i.e., the projection of the 3D velocity profile
onto a 2-D plane; or the resulting apparent motion in an im-
age). Most optical flow techniques assume that uniform il-
lumination is present and that all surfaces are Lambertian.
Obviously this does not necessarily hold in the real-world,
but we assume that these conditions do hold locally. Opti-
cal flow describes the direction and speed of feature motion
in the 2D image as a result of relative motion between the
viewer and the scene. If the camera is fixed, the motion can
be attributed to the moving objects in the scene. Optical
flow also encodes useful information about scene structure:
e.g., distant objects have much slower apparent motion than
close objects. The apparent motion of objects on the image
plane provides strong cues for interpreting structure and 3-D
motion. Some creatures in nature such as birds are chiefly
reliant on motion cues for understanding the world.

Optical flow may be used to compute motion detection,
time-to-collision, focus of expansion as well as object seg-
mentation; however, most optical flow techniques do not
produce an accurate flow map necessary for these calcula-
tions (Barron, Fleet, & Beauchemin 1995). Most motion
techniques make the assumption that image irradiance re-
mains constant during the motion process. The optical flow
equation relates temporal (
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This equation is not well posed and many approaches (Horn
& Schunk 1981) use a smoothness constraint to render the
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Motion field computations are similar to stereo disparity
measures albeit for the spatial differences being smaller be-
tween temporal images (because of a high sampling rate)
and the 3-D displacement between the camera and the scene
not necessarily being caused by a single 3D rigid transfor-
mation.

A recent hypothesis (Weiss & Fleet 2001) is that early mo-
tion analysis is the extraction of local likelihoods which are
subsequently combined with the observer’s prior assump-
tions to estimate object motion. Ambiguity is present in the
local motion information, either as a result of the aperture
problem (e.g., the vertical motion component is not attain-
able from a horizontally moving edge just based on local in-
formation) (Wallach 1935) or the extended blank wall prob-
lem (i.e., both vertical and horizontal gradients are zero and
many motion velocities

���!��� �
fit the brightness constancy

equation) (Simoncelli 1999).
The goal in a Bayesian approach to motion analysis is to

calculate the posterior probability of a velocity given the im-
age data (Weiss & Fleet 2001). The posterior probability is
computing using the spatio-temporal brightness observation
(i.e., measurement)


���
����	�����
at location


"���
and time

�
and

the 2D motion
���"��� �

of the object, where
�

is a normaliza-
tion constant independent of

���!��� �
:

�����"��� ��
���
�������������� �"�����"��� ������
	��
��������������"��� �
(5)

Assuming that the image observations at different posi-
tions and times are conditionally independent, given
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where the product is taken over all positions
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The quantity to compute is the likelihood of a velocity����
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. This also assumes that we are only
concerned with a single object which many not necessarily
be the case.
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, the prior, has been hypothesized (Weiss

& Fleet 2001) that it should favor slow speeds.
For the image velocity likelihood, we have argued that SD

(sum difference) can also be expressed as a likelihood (Zelek
2002). Thus making the simplistic optical flow approach
proposed by Camus (Camus 1997) a candidate algorithm for
a Bayesian approach for real-time optical flow computation.
Rather than computing a single likelihood for the scene, we
compute a likelihood for each overlapping patch. We also
argue that there are really three different likelihood function
cases: (1) a well defined symmetric likelihood; (2) an anti-
symmetrical likelihood (i.e., aperture problem), and (3) a flat
likelihood (i.e., extended blank wall or zero flow). We pos-
tulate that the shape of the likelihood (i.e., variance) is an
indicator of the reliability of the optical flow value at that
location. A tight symmetrical likelihood translates to a good
estimator. We also suggest that likelihoods should be prop-
agated spatially in two steps before temporal propagation.



Firstly, the aperture problem is addressed and secondly the
extended blank wall problem is solved. We hypothesize that
temporal propagation via particle filtering resolves ambigu-
ity.

(a) (b)

Figure 3: Dense Flow Estimate: (a) shows where optical flow
vectors were detected using the Camus algorithm (Camus
1997), while (b) shows the result of motion detection based
on only spatially propagating significant flow vectors.

Stereo Vision: Blind Aid

Figure 4: Second Generation Glove Prototype: of the tactile
feedback unit is shown. There is a major compression of
bandwidth in trying to convey a depth map in a tactile form
on the hand. It is essential that an appropriate representation
ease that transition.

Due to the similarity of trying to solve the correspondence
problem in both binocular vision as well as optical flow, we
are also trying to cast our stereo vision algorithm into the
particle filtering framework. There is a high bandwidth com-
pression when translating from a depth map to the tactile
feedback mechanism. We would like to have an underlying
architecture where the stereo vision system can also be used
as a sensor for navigating a mobile robot platform. Critical
to the tactile conversion of information (e.g., depth map, ter-
rain information, etc.) is some condensed representation of
the spatial world (i.e., both obstacles and terrain need to be
represented).

We speculate that the glove can also be used as a tac-
tile feedback mechanism when communicating with a robot,
playing the role of, lets say, someone tapping you on the
shoulder to get your attention. The relevancy in applications
such as search and rescue is apparent because the human res-
cuers will be conducting search concurrently with the robot

and the robot only needs to notify the humans when some-
thing is of interest for more detailed interaction.

Modeling Touch Perception

A complete model that provides a coherent explanation of
touch fibers is a necessary precursor for the design of hap-
tics and sensory substitution devices. In particular, we are
interested in a model that will predict the perception of stim-
ulated vibro-tactile patterns superimposed on a tight fitting
glove worn by a visually impaired person. We have de-
veloped a tactile feedback glove that is to be used in con-
junction with a wearable computer and camera vision sys-
tem. Artificial perception algorithms executing on a wear-
able computer ingest stereo camera information to produce
depth and obstacle information as a navigational aid con-
veyed via a tactile glove for the blind person. We are cur-
rently investigating how to best utilize the glove’s bandwidth
to convey the necessary navigational information in a timely
and intuitive manner. We are about to conduct empirical
studies with blind subjects to determine what sensations they
experience and which patterns are most intuitive. An accu-
rate model is necessary to predict the responses from the
test subjects in order to establish some assurance of safety
robustness and predictability for the eventual users.

The haptic community has done very little modelling of
the touch system of the human hand. Local properties of
mechano-receptors are understood but not their collective
interactions. The modelling of a single mechano-receptor
(including the mechanics of the skin, end organ, creation
of a generator potential, the initiation of the action poten-
tial and branching of afferent fibres) has recently been stud-
ied for single collections in the fingertips (Pawluk & Howe
1995). This work requires further development into the pop-
ulation responses of neighbourhoods with both excitatory
and inhibitatory activity. Another related investigation (Rit-
ter 1992) explored the formation of the somatotopic (pro-
jection of the body surface onto the brain cortex) map by
a computer simulation of Kohonen’s algorithm. The soma-
totopic map is analogous to other brain sensory processing
units (e.g., visual processing pathways). Empirical investi-
gations have provided us with rough estimations on the sizes
of the excitatory portion of the receptive fields for touch on
the hand. The receptive field distributions are not unlike the
fovea-periphery distinction for visual perception where the
touch receptors in the fingertips correspond to the fovea.
However, we are not interested in analyzing the fingertip
touch receptors since these receptors will be left for other
sensory activities such as reading (i.e., via Braille). There
are approximately 100,000 nerve cells in the hand and 20
different nerve cells, with approximately 12 being of the
mechanoreceptor variety that we are interested in. There are
approximately 2500 mechanoreceptors per cm. in each fin-
gertip region. The various receptors all have different field
sizes (scale), as well as varying dynamic and static proper-
ties.

Psychophysical experiments have shown that humans are
able to perceive equivalent stimuli via touch that are usually
associated with visual perception (e.g., moving bars). We



will develop a set of maps that are analogous to the early vi-
sual cortex maps such as maps for edges, bars with various
orientations, curvature, and moving bars to name a few. It
appears to be obvious that we will probably use touch inten-
sity in a similar fashion as visual brightness but it is a matter
of investigation to determine if we can equate vibration fre-
quency with brightness also or perhaps colour.

Linguistic Spatial Representation
A major function of language is to enable humans to expe-
rience the world by proxy, “because the world can be envis-
aged how it is on the basis of a verbal description” (Johnson-
Laird 1989). A minimal spanning language has been used
as a robot control language template onto which recognized
speech can be mapped (Zelek 1997). The language lexi-
con is a minimal spanning subset for human 2D navigational
tasks (Landau & Jackendoff 1993; Miller & Johnson-Laird
1976). The task command lexicon consists of a verb, desti-
nation, direction and a speed. The destination is a location in
the environment defined by a geometric model positioned at
a particular spatial location in a globally-referenced Carte-
sian coordinate space.

A key element of the task command is a minimal span-
ning subset of prepositions (Landau & Jackendoff 1993),
(Zelek 1997) that are used to spatially modify goal descrip-
tions (e.g., near, behind), and to specify trajectory com-
mands (e.g., left, right, north). The spatial relationships used
are sparse, primarily including qualitative distinctions of dis-
tance and direction. The quantification of the spatial and tra-
jectory prepositions depends on two norms: the definitions
for the spatial prepositions near and far in the current envi-
ronment and task context. In language design, the descrip-
tors (e.g., spatial prepositions) filter out metric information
(i.e., not explicitly encoded), and similarly, such descrip-
tions may be instrumental for providing the structure for a
level in a cognitive map. The spatial preposition can also be
used for encoding map information in a form that is anal-
ogous to the SSH (Spatial Semantic Hierarchy) topological
level (Kuipers 2000).

We have also thought of using this topological represen-
tation as a form of organizing how the environment is rep-
resented on the glove. Another mapping that we are con-
sidering is purely function, where different regions of the
hand are used for varying roles. For example, the fingers
can be used to convey angular (direction) obstacle informa-
tion (e.g., absence or detection).

Discusssions
We have shown two visual routines (tracking and optical
flow) and their probabilistic frameworks. We are currently
exploring framing other visual routines such as depth-from-
stereo with a particle filter infrastructure, in particular, as a
front-end to our project that is exploring converting depth
maps produced from stereo vision into a tactile representa-
tion that can be used as a wearable system for blind people.
Key to this project is the representation of the environment
that facilitates the necessary data reduction. One suggestion
is that the Spatial Semantic Hierarchy (SSH) framework be

adopted with a linguistic set of operators. One other possible
representation scheme includes an analogous visual percep-
tion stream mapping onto touch perception of the hand (e.g.,
the fingertips represent the fovea, and the rest of the hand
represents periphery regions). Yet another is conveying en-
vironmental information (e.g., obstacles, terrain, certainty)
using different regions of the hand.

We hope to derive some insight into appropriate environ-
mental representations for mobile robots from our work with
the seeing with touch project. Staircase navigation for the
blind is an area where terrain information representation will
be crucial and we hope to use a walking robot in conjunction
with blind people for our field trials to test the robustness of
our algorithms. This will provide us with some feedback
on the appropriateness of our robot-human representational
scheme mappings.

We have recently conducted experiments with 10 blind
test subjects. The test was to navigate a flat indoor obstacle
course with tactile stimulus that indicated directional head-
ing (i.e., three fingers were used to indicate direction: left,
in front of, right). With this limited bandwidth, the learning
time was minimal (i.e., less than a minute) and all the test
subjects were able to navigate the course consisting of three
boxes at a normal walking pace. The results of this exper-
iment are preliminary and have yet to be analyzed and will
be published shortly. The results indicate a preference for
receiving directional information with an appropriate intu-
itive physical mapping, but this may change when the entire
bandwidth of the glove is approached.
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