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Abstract

The probability calculus provides an attractive canon-
ical form for reasoning but its use requires numerous
estimates of chance. Some of the estimates needed in
artificial systems can be recorded individually or via
Bayesian networks. Others can be tabulated as relative
frequencies from stored data. For the shifting contexts
of commonsense reasoning, however, the latter sources
are likely to prove insufficient. To help fill the gap, we
show how sensible conditional probabilities can be de-
rived from absolute probabilities plus information about
the similarity of objects and categories. Experimental
evidence from studies of human reasoning documents
the naturalness of the numbers we derive.

Introduction
For the probability calculus to serve as the “faithful guardian
of common sense” (Pearl 1988), a great many estimates of
chance are needed. Even when the domain can be structured
by conditional independence (as assumed in medical diag-
nosis, Heckerman 1991), numerous probabilities must often
be recorded. Without such structure, the source of probabil-
ity estimates becomes a yet more pressing issue, especially
for autonomous agents exposed to novel situations in every-
day life.

It has been observed that the needed estimates “can come
either from the knowledge engineer’s (or expert’s) subjec-
tive experience, or from measurements of frequencies in
a database of past experiences, or from some combina-
tion of the two” (Russell & Norvig 1995). Little atten-
tion appears to have been devoted to forging probabilities
from other kinds of information that may be available to a
reasoning agent. The latter information includes the pair-
wise similarity between objects or categories, e.g., that a
German Shepherd is more similar to a Labrador than to
a Chihuahua. In a competent reasoner, some means of
calculating similarity is likely to be present in any event.
For similarity is essential to categorization (Smith 1995;
Sattath & Tversky 1977), and to evaluating substitutions in
a search task (e.g., whether to retrieve a Labrador or a Chi-
huahua when a German Shepherd cannot be found). It also
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plays a role in naive inductive inference, at least at the qual-
itative level.1

Similarity is a particularly intriguing raw material for
probability computations because it can often be derived
from facts easily discovered by an autonomous agent. Thus,
feature-based models of similarity (Tversky 1977; Osherson
1987) rely on little more than counting the predicates that
apply to objects. Likewise, geometrical models (Shepard
1980) involve the positions of objects along quantifiable di-
mensions like size. (See Krantz, Luce, Suppes & Tversky
1989, and G̈ardenfors 2000, for further discussion.)

The goal of the present paper is to argue for the feasibility
of extracting estimates of probability from similarity. Rather
than treating the problem in full generality, we focus on a
narrow class of conditional probabilitiesPr (p | q1 · · · qn),
described in the next section. The derivations depend on no
more than the (absolute) probabilities attached top, q1 · · · qn

and the similarity of objects (or categories) mentioned in the
latter statements. Our proposals conform to qualitative con-
ditions that must be met by sensible estimates of chance. It
will also be shown that the numbers implied by our formulas
are close to estimates of conditional probabilities produced
by students asked to think about salaries after graduating
from familiar colleges.

Helping ourselves to the probabilities ofp, q1 · · · qn is not
(mere) indolence. In Juslin & Persson (2002) the classifi-
cation model of Medin & Schaffer (1978) is adapted to the
construction of subjective probabilities for statements of the
form “object o belongs to categoryC.” Implementing the
method is shown to be psychologically plausible from the
algorithmic point of view, and the method’s success in pre-
dicting elicited probabilities from college students is docu-
mented. The statements to be analyzed below likewise in-
volve categorization; hence, our theory can be interpreted as
building on Juslin & Persson (2002) by showing how sim-
ilarity might be used to leverage absolute into conditional
probability.

Let us stress at this point that our results are intended
merely to illustrate the larger enterprise of culling useful

1See (Rips 1975; Oshersonet al. 1990). An attempt to in-
tegrate rule-based and similarity-based reasoning within an overar-
ching connectionist system is reported in (Sun 1995). For a broader
analysis of commonsense knowledge (that does not assimilate it to
probabilities over explicit statements), see (Narasimhan 1997).
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probabilities from varied information available to the rea-
soner. Similarity is only one type of information that ulti-
mately influences human estimates of chance.2

We conclude this introductory section with a remark about
probabilistic coherence. An agent may endorsePr (p ∧ q ∧
r) = .5 and Pr (q) = .8 and then use similarity to de-
rive Pr (p | q) = .6. Together, the three judgments are
incoherentin the sense that no joint distribution generates
all three.3 Incoherent probabilities are a questionable ba-
sis for reasoning, so a similarity-based estimate of chance
seems to be constrained to take into account the agent’s
pre-existing probabilities. This is a daunting prospect if
the latter set is numerous. It might nonetheless be safe
to generate new probabilities in isolation from earlier ones
if there is an efficient way to “rectify” all the estimates
in a second step, minimally adjusting them to achieve co-
herence. In fact, recent progress (Batsellet al. 2002;
Deineset al. 2002) in devising algorithms for rectifying in-
coherent judgment warrants exploring the two step strategy
for expanding a corpus of probabilistic beliefs by similarity-
derived estimates of chance. We proceed on this basis, thus
ignoring most of the probability corpus already available to
the reasoner prior to her exploitation of similarity.

Theory
First we specify the class of conditional probabilities to be
derived. Then we present and discuss formulas for carrying
out the derivation.

Cases to be considered
Let Q represent a given predicate like “has trichromatic vi-
sion.” Lettersa, b, c stand for objects or categories to which
Q can be meaningfully applied, e.g.,foxes, wolves, gold-
fish. We assume thata, b, c are all at the same concep-
tual/hierarchical level. Thus, ifa is foxesthenb cannot be
a particular fox nor the class of canines. The intent of this
requirement is to allow similarity to be naturally assessed
among all pairs froma, b, c. The statements figuring in our
analysis have the formQk or¬Qk, wherek is one ofa, b, c.
We consider the following types of conditional probabilities.

(1) Conditional probabilities to be derived

(a) Pr (Qc | Qa)
(b) Pr (Qc | ¬Qa)
(c) Pr (¬Qc | Qa)
(d) Pr (¬Qc | ¬Qa)
(e) Pr (Qc | Qa, Qb)
(f) Pr (¬Qc | ¬Qa,¬Qb)
(g) Pr (¬Qc | Qa, Qb)
(h) Pr (Qc | ¬Qa,¬Qb)
(i) Pr (Qc | ¬Qa, Qb) andPr (Qc | Qa,¬Qb)
(j) Pr (¬Qc | ¬Qa, Qb) andPr (¬Qc | Qa,¬Qb)

2Obviously, causal theories are also central to commonsense
reasoning. See (Ortiz 1999; Turner 1999).

3They imply thatPr (p ∧ q) = Pr (q)× (Pr (p ∧ q))/Pr (q) =
Pr (q) × Pr (p | q) = .8 × .6 = .48 < .5 = Pr (p ∧ q ∧ r). No
distribution assigns lower probability top ∧ q than top ∧ q ∧ r.

To predict the conditional probabilities in (1), we allow
ourselves no more than (i) the probability of each of the
three statementsQa, Qb, Qc, and (ii) the pairwise similar-
ities among each pair in{a, b, c}. We denote the similar-
ity between objectsx, y by sim(x, y), and assume that it is
scaled on the unit interval with1 representing identity. That
is, sim(x, y) ∈ [0, 1] andsim(x, y) = 1 iff x = y. It is
further assumed thatsim is a symmetric function, that is,
sim(x, y) = sim(y, x). The symmetry assumption is con-
sistent with the bulk of human judgment (Aguilar & Medin
1999) even though it may be violated in rare circumstances
(Tversky 1977). The symmetry ofsim(· , ·) ensures that
similarity is not a disguised judgment of conditional proba-
bility inasmuch asPr (·| ·) is not symmetric in its arguments.

For any pair of statementsp, q, at least one ofPr (p | q) ≥
Pr (p) andPr (p | ¬q) ≥ Pr (p) must hold. It simplifies no-
tation to assume:

(2) Confirmation Assumption: Pr (Qc | Qa) ≥
Pr (Qc) andPr (Qc | Qb) ≥ Pr (Qc).

The stimuli used in our experiments have been designed to
satisfy (2). Their construction was guided by the authors’
intuition rather than theory, however. We return to this theo-
retical gap in the discussion section.

Formulas

The appendix lists the formulas used to construct the con-
ditional probabilities in (1). If the formulas seem complex,
the reader is warmly invited to simplify them in a way com-
patible with the qualitative conditions of “reasonableness”
discussed next. In fact, we only discuss cases (1)(a),(e),(i).
The others are straightforward variants.

Pr (Qc | Qa). Any formula for constructingPr (Qc | Qa)
on the basis ofPr (Qa), Pr (Qc) andsim(a, c) should meet
certain qualitative conditions. Trivially, the formula must
ensure that0 ≤ Pr (Qc | Qa) ≤ 1. More substantively,
assim(a, c) approaches1, Pr (Qc | Qa) should approach1.
For if sim(a, c) ≈ 1 thenPr (Qc | Qa) ≈ Pr (Qc | Qc) = 1.
(Thus, the conditional probability that pigs have trichro-
matic vision given that the hogs do is close to unity given
the similarity of these creatures.) On the other hand, as
sim(a, c) goes to0, Pr (Qc | Qa) should go toPr (Qc). This
is becausesim(a, c) ≈ 0 signals the unrelatedness ofa and
c, renderingQa irrelevant to the estimation ofQc. Further
conditions arise from purely probabilistic considerations.
For example,Pr (Qa) ≈ 1 should implyPr (Qc | Qa) ≈
Pr (Qc). (Consider the probability that newborn rats typi-
cally weigh at least one ounce assuming that the same is true
for newborn elephants.) Conversely, and other things equal,
asPr (Qa) decreasesPr (Qc | Qa) should increase. The for-
mula must also respect the familiar fact that asPr (Qc) goes
to unity so doesPr (Qc | Qa), and similarly for zero.

It is easy to verify that Formula (4) of the appendix meets
the foregoing conditions. For example, assim(a, c) goes to
1,

1− sim(a, c)
1 + sim(a, c)



goes to0, hence

α =
(

1− sim(a, c)
1 + sim(a, c)

)1−Pr(Qa)

goes to0, soPr (Qc)α goes to1. Of course, (4) is not unique
with these properties, but it is the simplest formula that oc-
curred to us, and reaches its limiting behavior monotoni-
cally. It will be seen in the next section that (4) provides
a reasonable approximation toPr (Qc | Qa) in at least one
experimental context.

Note that Formula (4) satisfies the Confirmation Assump-
tion (2) inasmuch asPr (Qc) cannot exceedPr (Qc | Qa).

Pr (Qc | Qa,Qb). We propose ten qualitative conditions
that should be satisfied by a formula forPr (Qc | Qa,Qb);
five involve similarity and are discussed first. As either
sim(a, c) or sim(b, c) approach unity,Pr (Qc | Qa, Qb)
should also approach unity. (Thus, the conditional proba-
bility that pigs have trichromatic vision given that the hogs
and squirrels do is close to unity given the similarity of
pigs and hogs.) Next, if bothsim(a, c) andsim(b, c) go to
0 then Pr (Qc | Qa, Qb) should go toPr (Qc) (since zero
similarity signals irrelevance of the conditioning events).
On the other hand, if justsim(a, c) approaches0, then
Pr (Qc | Qa,Qb) should approachPr (Qc | Qb); likewise,
if just sim(b, c) approaches0 thenPr (Qc | Qa, Qb) should
approachPr (Qc | Qa). (Thus, the probability that wolves
are fond of garlic given that bears and bees are is close to the
probability that wolves are fond of garlic given than bears
are.) Next, assim(a, b) goes to unity,Pr (Qc | Qa, Qb)
should go toPr (Qc | Qa) [equivalently,Pr (Qc | Qa, Qb)
should go toPr (Qc | Qb)]. For sim(a, b) ≈ 1 indicates
that Qa, Qb record virtually identical facts. (Thus, the
probability that otters can hear ultrasounds given that por-
poises and dolphins can should be close to the probabil-
ity that otters can hear ultrasounds given that porpoises
can.) Our formula also represents the converse tendency
when neither similarities nor absolute probabilities are ex-
treme. In this case, we typically expectPr (Qc | Qa, Qb) >
Pr (Qc | Qa), Pr (Qc | Qb). (Thus, the probability that
geese have a magnetic sense given that sparrows and eagles
do exceeds the probability that geese have a magnetic sense
given that sparrows do, without reference to eagles.) Nat-
urally, there are counterexamples to such generalizations;
they will be discussed at the end.

Purely probabilistic conditions on the construction of
Pr (Qc | Qa, Qb) include the following.

(a) 0 ≤ Pr (Qc | Qa, Qb) ≤ 1.
(b) As Pr (Qa) approaches unity,Pr (Qc | Qa,Qb)

approachesPr (Qc | Qb). Likewise, asPr (Qb)
approaches unity,Pr (Qc | Qa, Qb) approaches
Pr (Qc | Qa).

(c) As Pr (Qa) and Pr (Qb) both go to unity,
Pr (Qc | Qa, Qb) goes toPr (Qc).

(d) Other things equal, asPr (Qa) andPr (Qb) both
decrease,Pr (Qc | Qa, Qb) increases.

(e) As Pr (Qc) approaches unity, so does
Pr (Qc | Qa, Qb); as Pr (Qc) approaches
zero, so doesPr (Qc | Qa, Qb).

Formula (8) satisfies all the conditions we
have posited for Pr (Qc | Qa, Qb). For exam-
ple, if sim(a, b) ≈ 1 then β ≈ 1 in (8), hence
Pr (Qc | Qa) ≈ max{Pr (Qc | Qa), Pr (Qc | Qb)}.
Since sim(a, b) ≈ 1, the latter expression is close to
max{Pr (Qc | Qa), Pr (Qc | Qa)} = Pr (Qc | Qa).

Pr (Qc | ¬Qa, Qb). Note first that (2) implies that
Pr (Qc | Qb) ≥ Pr (Qc). It also follows that
Pr (Qc | ¬Qa) ≤ Pr (Qc). In light of these inequal-
ities, four constraints on the relation between similar-
ity and Pr (Qc | ¬Qa, Qb) may be formulated. First, as
sim(a, c) approaches unity,Pr (Qc | ¬Qa, Qb) approaches
zero. Likewise, assim(b, c) approaches unity, so does
Pr (Qc | ¬Qa, Qb). [Of course, by the transitivity of
identity and Leibniz’s law, it can’t be the case that
both sim(a, c) and sim(b, c) approach unity.] Next, as
sim(a, c) andsim(b, c) both go to zero,Pr (Qc | ¬Qa, Qb)
goes toPr (Qc). Finally, if just sim(a, c) goes to zero
then Pr (Qc | ¬Qa, Qb) goes to Pr (Qc | Qb); likewise,
if sim(b, c) goes to zero thenPr (Qc | ¬Qa,Qb) goes to
Pr (Qc | ¬Qa).

We also have familiar conditions involving only prob-
ability. As Pr (Qa) approaches zero,Pr (Qc | ¬Qa, Qb)
approachesPr (Qc | Qb); likewise, asPr (Qb) approaches
1, Pr (Qc | ¬Qa,Qb) approachesPr (Qc | ¬Qa). In the
same way, asPr (Qa) approaches zero whilePr (Qb)
approaches unity,Pr (Qc | ¬Qa, Qb) approachesPr (Qc).
And asPr (Qc) goes to unity (respectively, to zero), so does
Pr (Qc | ¬Qa, Qb).

Formula (12) satisfies the foregoing conditions. For
example, sim(a, c) ≈ 1 implies that X is large rela-
tive to Y , hence thatPr (Qc | ¬Qa, Qb) is dominated by
Pr (Qc | ¬Qa).

Pr (Qc | Qa,¬Qb) is treated in parallel fashion.

Experimental test of the theory
Three experiments were performed to assess the psycholog-
ical plausibility of our formulas. The vast array of potential
predicates and objects renders definitive evaluation a long
range project. As a preliminary test, we chose a domain
about which college students were likely to have opinions
and interest, namely, post-graduation salaries from different
colleges and universities.

Experiment 1
Stimuli and procedure. The following institutions served
as objects in the first experiment (playing the roles ofa, b, c
in the theoretical section above.

Connecticut State University

Oklahoma State University

Harvard University

Arkansas State University

Yale University

The predicate employed was:

over 60% of the graduates from [a given institution]
will earn more than $50,000 a year at their first job.



The resulting five statements give rise to20 conditional
probabilities of form (1)(a) [Pr (Qc | Qa)] and to60 of form
(1)(e) [Pr (Qc | Qa, Qb)].4 Eighteen students at Northwest-
ern University were recruited to evaluate probabilities and
similarities. Each student estimated all20 conditional prob-
abilities of the first form, and half of the second form (50
judgments in all). In addition, each student estimated the
(absolute) probabilities of the five statements, as well as the
10 similarities among the five institutions. Similarity was
rated on a scale from0 (perfect dissimilarity) to1 (perfect
similarity). Observe that 15 judgments of similarity and ab-
solute probability were used to predict 80 judgments of con-
ditional probability (or 50 judgments if the order of condi-
tioning events is ignored). The predictions were made on the
basis of formulas (4) and (8) of the appendix.

Data were collected using a computerized questionnaire.
Similarity judgments were elicited first, followed by abso-
lute probabilities, conditional probabilities of form (1)(a)
then conditional probabilities of form (1)(e). Within these
categories, stimuli were individually randomized.

Results. Data were averaged prior to analysis. Probabil-
ities of form (1)(e) are thus the average of estimates by9
students; all other averages involve18 students.5 We com-
puted three linear correlations, namely:

(3) Correlations computed

(a) between the conditional probabilities of form
(1)(a) versus their predicted values using For-
mula (4);

(b) between the conditional probabilities of form
(1)(e) versus their predicted values using For-
mula (8); and

(c) between the conditional probabilities of both
forms (1)(a) and (1)(e) versus their predicted val-
ues using Formulas (4) and (8).

Correlation (3)(c) is plotted in Figure 1, and reveals good
fit between predicted and observed values. Note that the re-
gression line does not lie precisely along the diagonal. This
disparity seems inevitable given the arbitrary endpoints of
the similarity scale, which may not be coterminous with the
probability interval in the minds of human judges. The cor-
relation for (3)(a) is.99 (N = 20). For (3)(b) it is .92
(N = 60).

Experiment 2
Stimuli and procedure. The following four institutions
served as objects in the second experiment.

Harvard University Texas Technical Institute
Harvard Divinity School Texas Bible College

4We distinguish the order of two conditioning events
[otherwise, there would be only30 probabilities of form
Pr (Qc | Qa, Qb) based on5 statements]. The order in which in-
formation is presented is an important variable in many reasoning
contexts (Johnson-Laird 1983) although there is little impact in the
present study.

5Student-by-student analyses of the data are reported in Blok
(2003).

Results for Pr (Qc | Qa) and Pr (Qc | Qa, Qb).
Correlation= .93 (N = 80). Slope= 1.13, Intercept= .099.

Figure 1:Correlations in Experiment 1

Two predicates were employed:

• graduates [of a given institution] earned an average salary
of morethan $50,000 a year in their first job after gradua-
tion.

• graduates [of a given institution] earned an average salary
of lessthan $50,000 a year in their first job after gradua-
tion.

We conceived the second predicate as the negation of the
first (ignoring the case of equal salaries). The result-
ing statements give rise to twelve conditional probabilities
of form (1)(a) [Pr (Qc | Qa)] and twelve of form (1)(b)
[Pr (Qc | ¬Qa)]. Forty-one students at Northwestern Uni-
versity evaluated these 24 conditional probabilities along
with the similarities and absolute probabilities needed to test
formulas (4) and (5). Data collection proceeded as in Exper-
iment 1.

Results. Data were averaged over the41 students. Figure
2 shows the correlation between the conditional probabilities
of forms (1)(a) and (1)(b) versus their predicted values using
Formulas (4) and (5). The correlation for the12 probabilities
of form Pr (Qc | Qa) is .98; for Pr (Qc | ¬Qa) it is .91.

Experiment 3
The stimuli of Experiment 2 also served in Experiment
3. The resulting statements give rise to96 conditional
probabilities of forms (1)(e) [Pr (Qc | Qa,Qb)], (1)(h)
[Pr (Qc | ¬Qa,¬Qb)]. and (1)(i) [Pr (Qc | ¬Qa, Qb) and
Pr (Qc | Qa,¬Qb)]. Forty-seven students at Northwestern
University each evaluated half of these conditional probabil-
ities, along with the six similarities and eight absolute prob-
abilities needed to test formulas (8), (11) and (12). Each of
the96 conditional probabilities was thus evaluated by23 or
24 students. Data were collected in the same order as for
Experiments 1 and 2. Note that in the present experiment 14
judgments of similarity and absolute probability are used to
predict 96 judgments of conditional probability.

Figure 3 shows the correlation between the condi-
tional probabilities of forms (1)(e),(h),(i) versus their pre-



Results for Pr (Qc | Qa) and Pr (Qc | ¬Qa). Correlation=
.95 (N = 24). Slope= .922, Intercept= .053.

Figure 2:Correlation in Experiment 2

Results for Pr (Qc | Qa, Qb), Pr (Qc | ¬Qa,¬Qb),
Pr (Qc | ¬Qa, Qb) and
Pr (Qc | Qa,¬Qb). Correlation = .91 (N = 96).
Slope= .893, Intercept= .042.

Figure 3:Correlation in Experiment 3

dicted values using Formulas (8), (11), and (12). For
Pr (Qc | Qa, Qb) the correlation is.93 (N = 24). For
Pr (Qc | ¬Qa,¬Qb) it is .92 (N = 24), whereas for
Pr (Qc | ¬Qa, Qb) and Pr (Qc | Qa,¬Qb) it is .93 (N =
48).

Discussion
Our experimental results illustrate the thesis that sensible es-
timates of chance can be extracted from nonprobabilistic in-
formation that may be available to reasoning agents for other
purposes. In the present case, conditional probabilities are
derived from similarity supplemented with absolute proba-
bility. The specific proposals embodied in formulas (4) -
(13) should be considered tentative and preliminary.

Of particular importance to developing our theory is the
context-dependent nature of similarity, often noted in psy-
chology (Keilet al. 1998; Osherson, Smith, & Shafir 1986;
Medin, Goldstone, & Gentner 1993). Thus, the similarity
of the Texas Technical Institute to the Texas Bible College

should depend on the content of the statements whose prob-
abilities are at issue (e.g., involving geography versus cur-
riculum). Similarity is usually calculated on the basis of
shared features or proximity in a feature space (as noted
earlier). The context-dependence of similarity thus requires
that some features be counted as morerelevantthan others,
depending on which predicateQ is involved in the prob-
ability to be estimated. The issue of relevance is much
discussed in philosophy and A.I. (Blum & Langley 1997;
Goodman 1972). For present purposes, it may suffice to
measure relevance in terms of path-length in an ontological
hierarchy of predicates. Alternatively, two predicates might
be considered mutually relevant to the extent that they co-
vary in their application to objects familiar to the reasoner.
ConstructingPr (Qc | Qa) would thus proceed by first cal-
culating the relevance of predicates toQ, next calculating
sim(a, c) on the basis of weighted features or dimensions,
then applying rule (4).6

In addition to relevance, there is another type of informa-
tion that needs to be accessed prior to applying our formu-
las. To calculatePr (Qc | Qa), for example, it is necessary
to know whetherQa confirms or disconfirmsQc. Suppose
thata is Dell Computer Corporation, andc is HP/Compaq.
If Q is increases sales next yearthenQa will strike many
reasoners as confirmatory ofQc, whereas ifQ is increases
market share next yearthenQa will seem disconfirmatory
of Qc. The similarity ofa andc can be expected to have
different effects in the two cases. To simplify the issue, we
constructed stimuli that satisfy the confirmation assumption
(2), thereby aligning polarity with confirmation; specifically,
one of our experimental statements confirms another just
in case both have the same number of negation signs. For
greater generality, the computation ofPr (Qc | Qa) should
proceed on the basis of (4) ifQa confirmsQc, but on the
basis of a formula like (5) ifQa disconfirmsQc [and simi-
larly for the other forms listed in (1)]. Default assumptions
governing large sets of objects and predicates might suffice
in many cases. For example, susceptibility to disease may
normally be assumed to extend to species of the same genus
and rarely beyond (Coley, Atran, & Medin 1997). Excep-
tions to such rules need to be marked in memory. Marked
cases can be expected to include a range of special facts that
resist convenient classification. Even the similarity of iden-
tical twins (which usually underwrites high probability of
matching features) can be trumped by information that just
one of them is dating a millionaire.

Finally, we note that the theory discussed in the present
paper can be extended to a broader class of probabilities,
beyond those listed in (1). For example, the probability
of universal statements is treated in Blok (2003). The the-
ory can also be generalized to conditional probabilities like
Pr (Qc | Ra), involving different predicates in the condi-
tioning and target events. For this purpose, similarity must
be assessed between pairs of predicates.

6For further discussion of similarity, relevance, and induction,
see (Medinet al. 2003). That similarity involves more than just
counting features is shown in (Lassaline 1996).



Appendix: Formulas for predicting
conditional probability

(4) Pr (Qc | Qa) = Pr (Qc)α, where

α =
(

1− sim(a, c)
1 + sim(a, c)

)1−Pr(Qa)

.

(5) Pr (Qc | ¬Qa) = 1.0− (1.0− Pr (Qc))α, where

α =
(

1− sim(a, c)
1 + sim(a, c)

)Pr(Qa)

.

(6) Pr (¬Qc | Qa) = 1.0− Pr (Qc)α, where

α =
(

1− sim(a, c)
1 + sim(a, c)

)1−Pr(Qa)

.

(7) Pr (¬Qc | ¬Qa) = (1.0− Pr (Qc))α, where

α =
(

1− sim(a, c)
1 + sim(a, c)

)Pr(Qa)

.

(8) Pr (Qc | Qa, Qb) = βM + (1− β)S, where

β = max



sim(a, b)
sim(a, c)
sim(b, c)
1.0− sim(a, c)
1.0− sim(b, c)
Pr (Qa)
Pr (Qb)


,

M = max{Pr (Qc | Qa), Pr (Qc | Qb)}, S =

Pr (Qc | Qa)+Pr (Qc | Qb)− Pr (Qc | Qa)×Pr (Qc | Qb),

andPr (Qc | Qa) andPr (Qc | Qb) are defined by Equation
(4).

(9) Pr (¬Qc | ¬Qa,¬Qb) = βM + (1− β)S, where

β = max



sim(a, b)
sim(a, c)
sim(b, c)
1.0− sim(a, c)
1.0− sim(b, c)
1.0− Pr (Qa)
1.0− Pr (Qb)


,

M = max{Pr (¬Qc | ¬Qa), Pr (¬Qc | ¬Qb)}, S =

Pr (¬Qc | ¬Qa) + Pr (¬Qc | ¬Qb)−

Pr (¬Qc | ¬Qa)× Pr (¬Qc | ¬Qb),

and Pr (¬Qc | ¬Qa) and Pr (¬Qc | ¬Qb) are defined by
Equation (7).

(19) Pr (¬Qc | Qa, Qb) = βM + (1− β)S, where

β = max



sim(a, b)
sim(a, c)
sim(b, c)
1.0− sim(a, c)
1.0− sim(b, c)
Pr (Qa)
Pr (Qb)


,

M = max{Pr (¬Qc | Qa), Pr (¬Qc | Qb)}, S =

Pr (¬Qc | Qa) + Pr (¬Qc | Qb)−
Pr (¬Qc | Qa)× Pr (¬Qc | Qb),

andPr (¬Qc | Qa) andPr (¬Qc | Qb) are defined by Equa-
tion (6).

(11) Pr (Qc | ¬Qa,¬Qb) = βM + (1− β)S, where

β = max



sim(a, b)
sim(a, c)
sim(b, c)
1.0− sim(a, c)
1.0− sim(b, c)
1.0− Pr (Qa)
1.0− Pr (Qb)


,

M = max{Pr (Qc | ¬Qa), Pr (Qc | ¬Qb)}, S =

Pr (Qc | ¬Qa) + Pr (Qc | ¬Qb)−
Pr (Qc | ¬Qa)× Pr (Qc | ¬Qb),

andPr (Qc | ¬Qa) andPr (Qc | ¬Qb) are defined by Equa-
tion (5).

(12) Pr (Qc | ¬Qa,Qb) =(
Pr (Qc | ¬Qa)× X

X + Y

)
+

(
Pr (Qc | Qb)× Y

X + Y

)
where

X =
(

sim(a, c)
1− sim(a, c)

)
× Pr (Qa)

Y =
(

sim(b, c)
1− sim(b, c)

)
× [1.0− Pr (Qb)],

andPr (Qc | ¬Qa) andPr (Qc | Qb) are defined by Equa-
tions (5) and (4), respectively.

(13) Pr (¬Qc | ¬Qa, Qb) =(
Pr (¬Qc | ¬Qa)× X

X + Y

)
+

(
Pr (¬Qc | Qb)× Y

X + Y

)



where

X =
(

sim(a, c)
1− sim(a, c)

)
× Pr (Qa)

Y =
(

sim(b, c)
1− sim(b, c)

)
× [1.0− Pr (Qb)],

and Pr (¬Qc | ¬Qa) and Pr (¬Qc | Qb) are defined by
Equations (7) and (6), respectively.
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