
A New Buggy Rule And Template-Template Based Tutorial Dialogue System
(Extended Abstract)

Liang Chen
University of Northern British Columbia,

Prince George, B.C., Canada
Email: chenl@unbc.ca

Naoyuki Tokuda
Research & Development Center,
SunFlare Company, Tokyo, Japan
E-mail: tokuda n@sunflare.co.jp

Abstract

To simplify the time consuming authoring task of tem-
plate generation, we have developed a new buggy-
rule and template-template based tutorial dialogue sys-
tem which has not only simplified the authoring but
has markedly improved the system performance. The
template-template architecture comprises two schemes;
extraction rules are used to expand the classical tem-
plates into a variety of template patterns by introducing
rule-based symbols in some of transitional nodes of the
template automata while the buggy rules introduced are
capable of identifying and hence generating bugs from
learners’ erroneous responses automatically. Many dif-
ferent templates can now be integrated into, or equiva-
lently extracted from, a single template-template so that
a considerable reduction is achieved in both space and
time complexity of the overall system performance.
The new template-template automaton is expected to
play an important role in many other applications in-
cluding intelligent tutoring systems of both text-based
or speech-based dialogue systems, voice-enabling call
center or voice portal systems or in fact any systems
focused on enhanced as well as advanced human com-
puter interfaces, implementing more natural human
computer interactions between the system and humans.

I. Background
For a text-based tutorial dialogue system such as language
tutoring system to be successful (Tokuda & Chen 2001),
the template database containing a large collection of sen-
tences are needed in representing many plausible combina-
tions of both ‘right’ and ‘wrong’ responses from learners
because they must be in turn used in selecting a variety of
learner’s (or user’s) response from among the many seman-
tically equivalent paths of the collected database. We see
then that the system may now be able to make a right di-
agnosis of the learner’s response by capturing the seman-
tic meaning of the sentence, thus returning error contingent
feedback (Chen & Tokuda 2003; Heift & Nicholson 2001;
Tokuda & Chen 2001).

As many semantically equivalent sentences might share
the same structure, perhaps differing only in one or sev-

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

eral segments of the sentence, we can enumerate all possi-
ble combinations of segments listing all the equivalent sen-
tences. On the other hand, if the input sentences are not
100% syntactically correct, we would have much more trou-
ble in listing all the possible semantically equivalent sen-
tences.

All this suggests to use the FSA (finite state automata)
type templates to represent semantically equivalent sen-
tences. By doing so, we are able to reduce the storage space,
developing time, as well as the matching time complex-
ity by exploiting a computationally efficient HCS match-
ing algorithm (Aho & Ullman 1992). The template au-
tomaton architecture based on FSA and the correspond-
ing robust matching algorithm have been discussed as ap-
plied to language tutoring system (Chen & Tokuda 2003;
Chen, Tokuda, & Xiao 2002; Tokuda 2002; Tokuda & Chen
2001).

Having a distinct advantage of their pedagogic expertise
in language teaching, the language teacher can best con-
struct the templates with the help of monitoring students’
sample responses. The task of building a template corpus
comprising well-formed model expressions and erroneous
ill-formed sentences is quite labour-intensive, however, tak-
ing up considerable time. The quality of the monitoring stu-
dents’ sample responses also affect the template authoring
task because human errors are often erratic and are not eas-
ily amenable to taxonomy for clustering.

This paper will introduce the template-template architec-
ture whereby the extracting rules embedded in certain re-
stricted nodes of the transitional diagram allows a variety of
templates to be integrated into a single template-template
or equivalently allows the single template-template to be
expanded into a variety of patterns of templates. Further-
more, to deal with cumbersome error taxonomy, we have
introduced the concept of buggy rules which is capable of
automatically generating erroneous nodes with the help of
extracting rules of the template-template. In this way, the
language teacher need not be concerned with details of er-
ror taxonomy when he/she constructs the template-template.
Once completed by a human teacher in terms of buggy rules,
the template-template is endowed with enriched informa-
tion, providing many typical errors automatically.

From: AAAI Technical Report SS-03-06. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

II. Concept of Template-Template and The
Buggy Rules

1. Template-Template Structure
We will first define the term “template-template” below. The
template-template is defined as a special template where
some of the nodes are marked with rule-associated symbols,
which can be expanded into many templates or, into a large
template if we regard non-connected templates representing
the translation of one sentence as a single template.

Typically, a rule is related to a set of symbols, say
{s1, s2, · · · , sn}, each of the symbols is assigned to one or
many nodes in the templates. Several values may be as-
signed to these symbols which will represent the style of the
nodes of the transitional diagram. The so-called label sym-
bols related to a single rule are called related symbols. Re-
lated symbols should have certain restriction; when si = 1,
sk might have to be 2. When the value of one symbol si

depends on the values assigned to a set of other symbols,
the choice of the value of this symbol si is called a required
choice of the other symbols.

Depending on the application, we may develop many
rules. For the language translation system, we could exploit
rules similar to the following one.

Type A Rule: AP (appear)-NAP (not appear) Rule
In the template-template representation, suppose some

nodes are marked with APi and some other nodes being
marked with NAPi (i being any integer, representing dif-
ferent Type A Rules); The rule imposes the condition that
the template-template can be expanded to new templates
including either the nodes marked with APi or the nodes
marked with NAPi separately, but not both of them simul-
taneously. If we assign APi = 0 thus implying that the
nodes marked with APi do not appear in a template, we
must assign NAPi = 1 implying that the nodes marked
with NAPi will appear in the template. Thus, we can say
that NAPi = 1 is the required choice of APi = 0. For the
same reason, when NAPi = 0, we must have APi = 1;
and we can say that NAPi = 0 is the required choice of
APi = 1.

2. The Buggy Rules for Expanding Template-
Template
A buggy rule here is defined as a generating scheme of com-
mon erroneous expressions which are characterized as devi-
ations from a correct or well-formed expression. Consider
the following form of a buggy rule:

H1H2 · · ·HN → R1R2 · · ·RM

where H1H2 · · ·HN represents a set of nodes tracking the
correct path of any template-templates, or a set of gram-
matical part-of-speech tags representing basic components
or segments of a correct expression. R1R2 · · ·RM is the
set of nodes which represents a typical erroneous expression
whose correct form is H1H2 · · ·HN . We see immediately
that errors are identified as deviations from the correct paths
of the template-template.

Here is an example:
EXV BP → EXV BZ

(Here EX-Existential, PRP-Personal pronoun, VBP–Verb

for 1st and 2nd person present, VBZ-Verb, 3rd person sin-
gular present)

3. HCS (heaviest common sequence) Matching
Algorithm
As we have discussed in some details in (Chen &
Tokuda 2003), we are able to show that the DP (dynamic
programming)-based HCS algorithm can now be applied
directly to the template-template without expanding the
template-template into the template form. This is so be-
cause the algorithm is now able to select a closest path to
the student’s input from among the many possible paths of
the template-template databases. The algorithm now acts
as an efficient diagnostic engine of the tutorial systems. Be-
cause of the simple template-template architecture and a DP-
based high speed HCS-based computational algorithm as a
diagnostic engine, the new system contributes to marked re-
duction in space and time in computational complexities in
both authoring tasks and system performance.

III. Example of Template-Template
We demonstrate below our template-template architecture.
We first construct the template-template for an English
translation of a Japanese sentence meaning “Japan is dot-
ted with beautiful gardens nationwide”. The numbers in the
picture are the weights of each word emphasizing its relative
importance in the sentence. The weights of the words in the
template are set to 1 by default, and they must be assigned
in accordance with the importance of the words as judged
by experts in the field. The symbols within “[” and “]” are
the part-of-speech tags. The grey nodes of the transitional
diagram denote starting nodes.

Now, simply applying the buggy rules listed in subsection
II.2, we will be able to expand it into the template-template
of figure 2. This shows that, as a language teacher, he/she
could ignore some very common errors when he/she is con-
structing the templates, since buggy rules will then be able to
expand the template to include these erroneous expressions.

By applying the Type A rule listed in subsection II.1, it is
easy to see that, we are able to extract two templates from
the template-template of figure 2: One template is obtained
by simply allowing the nodes marked with AP1 appear and
accordingly deleting the nodes marked by NAP1; another
template is obtained by deleting the nodes marked by AP1

of figure 2 and accordingly let the nodes marked with NAP1

appear.
We now see that a language teacher is able to construct the

template-template integrating a large combination of tem-
plates by simply using some label symbols.

IV. Concluding Remarks
The template-template architecture we have developed in
this paper plays an important role in many text-based and
hopefully in speech-based dialogue systems where a free
format input in the form of text or spoken sentences are anal-
ysed by NLP (natural language processing) technology syn-
tactically as well as semantically. This is done firstly by syn-
tactical parsers and then by matching the respective response

to the semantically equivalent paths of template databases
prepared. A distinct advantage of the new dialogue system
is a reduction of computational complexities in both author-
ing tasks and computational processing of the system which
owes much to improved space and time complexities of the
new system. We hope the new dialogue system opens a way
to an enhanced human-computer interface facilitating more
natural human computer interactions.

Ja
p

a
n

[N
N

P
]

1

In
 J

a
p

a
n

,
[I

N
]

[N

N
P

]
 1

1

 1

W
ro

n
g

:
In

 J
a

p
a

n
 (

C
M

)
1

1

h
a

s
[V

B
Z

]
1

is

 d
o

tt
e

d
 w

ith
[V

B
Z

]

 [
V

B
N

]

[I
N

]
1

2

1

W
ro

n
g

:
is

 d
o

tt
e

d
 b

y
(P

R
)

1

2

 1

W
ro

n
g

:
m

a
n

y
(A

S
)

1

a
 n

u
m

b
e

r
o

f
(A

S
)

1

 1

1

a

lo
t

 o
f

(A
S

)

1

1

 1

th
e

 (
A

T
)

1

b
e

a
u

tif
u

l
[J

J] 1

p
re

tt
y

[J
J] 1

lo
ve

ly
[J

J] 1

p
ic

tu
re

sq
u

e
[J

J] 1

p
a

rk
s

[N
N

S
]

1

p
u

b
lic

 g
a

rd
e

n
s

 [

JJ
]

 [

N
N

S
]

1

1

W
ro

n
g

:
p

a
rk

 (
N

P
)

1

g
a

rd
e

n
 (

M
N

,
N

P
)

1

g
a

rd
e

n
s

(M
N

)
1

a
cr

o
ss

[I
N

]
2

a
ll

 o
ve

r
[R

B
]

 [

R
B

]
 1

 1

th
ro

u
g

h
o

u
t

[I
N

]

1

in
 a

ll
p

a
rt

s
o

f
[I

N
]

[R

B
]

[N

N
S

]

[I
N

]

 1

1

 1

1

n
a

tio
n

w
id

e
[J

J] 3

th
e

[D
T

]
1

co
u

n
tr

y
[N

N
]

1

n
a

tio
n

[N
N

]
1

(N
o

th
in

g
)

0

a
cr

o
ss

[I
N

]
2

e
ve

ry
w

h
e

re
 in

 [
R

B
]

 [
IN

]

 1

1

a
ll

 o
ve

r
[R

B
]

 [

R
B

]
 1

 1

th
ro

u
g

h
o

u
t

[I
N

]

1

in
 a

ll
p

a
rt

s
o

f
[I

N
]

[R

B
]

[N

N
S

]

[I
N

]

 1

1

 1

1

n
a

tio
n

w
id

e
[J

J] 3

e
ve

ry
w

h
e

re

 [

R
B

]

 1

a
ll

 o
ve

r
[R

B
]

 [

R
B

]
 1

 1

th
ro

u
g

h
o

u
t

[I
N

]

1

n
a

tio
n

w
id

e
[J

J] 3

in
 J

a
p

a
n

[I
N

]

[N
N

P
]

 1

1

in
 J

a
p

a
n

[I
N

]

[N
N

P
]

 1

1

 1

A
P

1

A
P

1

A
P

1

A
P

1

N
A

P
1

N
A

P
1

N
A

P
1

N
A

P
1

A
P

1

th
e

re
 a

re
 [

E
X

]

 [
V

B
P

]

1

 1

 w
e

h
a

ve
 [

P
R

P
]

 [

V
B

P
]

1

 1

Figure 1: Original Template-Template

References
Aho, A. V., and Ullman, J. D. 1992. Foundations of Com-
puter Science. New York: Computer Science Press.
Chen, L., and Tokuda, N. 2003. Bug diagnosis by string
matching: Application to ILTS for translation. J. CALICO.
In Press.

J
a

p
a

n
[N

N
P

]
1

In
 J

a
p

a
n

,
[I
N

]

[N

N
P

]
 1

1

 1

W
ro

n
g

:
In

 J
a

p
a

n
 (

C
M

)
1

1

h
a

s
[V

B
Z

]
1

is

 d
o

tt
e

d
 w

it
h

[V
B

Z
]

 [
V

B
N

]

[I
N

]
1

2

1

W
ro

n
g

:
is

 d
o

tt
e

d
 b

y
 (

P
R

)

1

2

 1

th
e

re
 a

re
 [
E

X
]

 [
V

B
P

]

1

 1

 w
e

h
a

v
e

 [
P

R
P

]

 [
V

B
P

]

1

 1

W
ro

n
g

:
m

a
n

y
 (

A
S

)
1

a
 n

u
m

b
e

r
o

f
(A

S
)

1

 1

1

a

lo
t

 o
f

(A
S

)

1

1

 1

th
e

 (
A

T
)

1

b
e

a
u

ti
fu

l
[J

J
]

1

p
re

tt
y

[J
J
]

1

lo
v
e

ly
[J

J
]

1

p
ic

tu
re

s
q

u
e

[J
J
]

1

p
a

rk
s

[N
N

S
]

1

p
u

b
li
c
 g

a
rd

e
n

s

 [
J
J
]

 [
N

N
S

]
1

1

W
ro

n
g

:
p

a
rk

 (
N

P
)

1

g
a

rd
e

n
 (

M
N

,
N

P
)

1

g
a

rd
e

n
s
 (

M
N

)
1

a
c
ro

s
s

[I
N

]
2

a
ll

o
v
e

r
[R

B
]

 [
R

B
]

 1

 1

th
ro

u
g

h
o

u
t

[I
N

]

1

in
 a

ll
 p

a
rt

s
 o

f
[I
N

]

[R

B
]

[N

N
S

]

[I
N

]

 1

1

 1

1

n
a

ti
o

n
w

id
e

[J
J
]

3

th
e

[D
T

]
1

c
o

u
n

tr
y

[N
N

]
1

n
a

ti
o

n
[N

N
]

1

(N
o

th
in

g
)

0

a
c
ro

s
s

[I
N

]
2

e
v
e

ry
w

h
e

re
 i
n

 [
R

B
]

 [
IN

]

 1

1

a
ll

o
v
e

r
[R

B
]

 [
R

B
]

 1

 1

th
ro

u
g

h
o

u
t

[I
N

]

1

in
 a

ll
 p

a
rt

s
 o

f
[I
N

]

[R

B
]

[N

N
S

]

[I
N

]

 1

1

 1

1

n
a

ti
o

n
w

id
e

[J
J
]

3

e
v
e

ry
w

h
e

re

 [
R

B
]

 1

a
ll

o
v
e

r
[R

B
]

 [
R

B
]

 1

 1

th
ro

u
g

h
o

u
t

[I
N

]

1

n
a

ti
o

n
w

id
e

[J
J
]

 3

in
 J

a
p

a
n

[I
N

]

[N

N
P

]
 1

1

in
 J

a
p

a
n

[I
N

]

[N

N
P

]
 1

1

 1

A
P

1

A
P

1

A
P

1

A
P

1

N
A

P
1

N
A

P
1

N
A

P
1

N
A

P
1

A
P

1

W
ro

n
g

:

 1

 1

T
h

e
re

 i
s
 (

P
P

)

 1

1

W
e

h

a
s
 (

P
P

)

 1

 1

W
ro

n
: h
a

v
e

 (
V

S
)

1

is

 d
o

tt
e

d
 w

it
h

 (
V

S
)

1

2

 1

A
P

1

Figure 2: Expanded Template-Template

Chen, L.; Tokuda, N.; and Xiao, D. 2002. A post
parser-based learner model for template-based ICALL
for Japanese-English writing skills. Journal of CALL
15(4):357–372.
Heift, T., and Nicholson, D. 2001. Web delivery of adaptive
and interactive language tutoring. International Journal of
Artificial Intelligence in Education 14:310–325.
Tokuda, N., and Chen, L. 2001. An online tutoring system
for language translation. IEEE Multimedia 8(3):46–55.
Tokuda, N. 2002. Guest editor’s introduaction: New devel-
opments in intelligent CALL systems in a rapidly interna-
tionalized information age. Journal of CALL, Special Issue
on Recent Development in ICALL 15(4):319–327.

