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Abstract

Situations where a spoken dialogue system cannot interpret a
user’s utterance are a major source of frustration in human-
computer spoken dialogue. Current spoken dialogue sys-
tems generally respond with an unhelpful “I’m sorry, I didn’t
understand,” or something similarly uninformative. Recent
work on Targeted Help has shown that giving users more
appropriate feedback makes systems easier to learn and im-
proves performance. In particular, Targeted Help can give the
user an appropriate within-domain example sentence to help
the user morequickly learn the system’s lexical and grammat-
ical coverage. This paper addresses the generation problem of
how to find such an example sentence. We present and eval-
uate four algorithms for solving this generation problem: an
Iterative-Deepening (ID) algorithm, anA� algorithm, a com-
binedA�-ID algorithm, and an anytime algorithm.

Introduction
The goal of Targeted Help in a spoken dialogue system is
to provide the user with more specific information in cases
in which the system is not able to understand their speech.
For instance, if the user is unfamiliar with a push-to-talk de-
vice, the system may recognize that the user was already
speaking when thepush-to-talk button was pressed, and the
system might respond withPlease be sure that the button
is pressed before you begin speaking. Previous work com-
paring grammar-based language models with statistical lan-
guage models (Knightet al. 2001) has shown that grammar-
based language models show superior recognition accuracy
for within-grammar utterances compared to a statistical lan-
guage model. Systems that use grammar-based language
models will then benefit from teaching the user the bounds
of the system quickly, and encouraging them to use within-
grammar utterances. Recent work (Hockeyet al. 2003) has
shown that Targeted Help leads to increased task-success
and decreased time-to-complete on a urban patrol and search
and rescue task in a mixed-initiative dialogue system to con-
trol a simulated robotic helicopter.

There are a number of strategies for what type of Targeted
Help system response might be produced. The previous ex-
ample illustrates a diagnostic response. Another possibil-
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ity is to produce an in-coverage example sentence similar to
what the user said. Some obvious questions are: 1) what
can be known about the user’s utterance if the system is not
able to understand it? and 2) in what way can the gener-
ated utterance be made similar to the user’s utterance? Even
when the user produces an out-of-coverage utterance they
are likely to produce some in-coverage words. Our Targeted
Help system runs a fall-back speech recognizer that is be-
ing driven by a category-based statistical language model.
When the grammar-based recognizer fails, the system looks
for within-domain words in the recognition hypothesis from
the fall-back recognizer. This gives us a set of target words
(potentially with word-confidencescores), and we then try to
generate a grammatical example utterance containing those
words. For example, if the user says something like I’d like
the pressure at the commander, and the fall-back recognizer
detected the wordspressureandcommander, thegenerator
could provide an example grammatical utterance likemea-
sure the pressure at the commander’s seat. This paper fo-
cusses on algorithms for generating this type of in-coverage
example.

The choice of an ideal example sentence could conceive-
ably take into account information from a wide variety of
sources, including discourse history, user model, and peda-
gogical strategy. This could lead to constraints on not only
what words should be included in the example, but also what
syntactic structures, semanticrepresentations, and word or-
der should be used. For this paper, we have settled on an
initial simplification of this task, using only a set of desir-
able candidate words. Our definition of this generation task
is then:

Given a grammar G, and a set of target wordsT , find
a word string W � W����Wn� W � L�G� such that
T � fW�� ����Wng.

This paper presents and evaluates four algorithms for
solving this generation problem: an Iterative-Deepening
(ID) algorithm, anA� algorithm, a combinedA�-ID algo-
rithm, and an anytime variant of theA�-ID algorithm. We
will discuss some potential extensions to these algorithms to
incorporate more information into the generation task under
FutureWork.
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Evaluation Domains
The algorithms described in this paper will be evaluated
using unification-based grammars developed in the Gemini
formalism (Dowdinget al. 1993) for two spoken dialogue
systems: the PSA simulation system (Rayner, Hockey, &
James 2000) and the WITAS system (Lemonet al. 2001).
Both systems are spoken dialogue interfaces to control semi-
autonomous robots. The PSA system controls a simulation
of the Personal Satellite Assistant (PSA), a mobile robot un-
der development at NASA’s Ames Research Center, and in-
tended for deployment aboard the Space Shuttle and Inter-
national Space Station. The WITAS system controls a sim-
ulation of a semi-autonomous helicopter engaged in urban
patrol and search and rescue tasks. Both systems have the
property that they use a single unification grammar for the
threepurposes of parsing/interpreting the user’s utterances,
generating the system’s responses, and acting as a grammar-
based language model in the speech recognizer. Generating
the system’s responses is carried out using a variant of Se-
mantic Head-Driven Generation (Shieberet al. 1990). The
algorithms presented in this paper let us use the unification
grammar for a 4th purpose, to generate canonical example
sentences.

Restricting Generation to Canonical Sentences
Although the language that a system can hear in a spoken di-
alogue system and the language that it can (or should) gen-
erate are naturally related, they need not be identical. For
instance, for the sake of robustness, a system may beable to
parse telegraphic or fragmentary user utterances, but it may
choose to always respond to the user in fully grammatical
utterances. Gemini provides a feature that allows us to effec-
tively subset the grammar into the parts that we want to make
available for generation, and the parts we do not. Our two
evaluation grammars have been subsetted in this way into
canonicalandnon-canonicalsubsets. The grammar writer
needs only markcanonical=no on those grammar rules and
lexical items that they want to exclude from generation, and
the generator specifiescanonical=yes on the call to the top-
level category.

The remainder of this paper will not make use of
any Gemini-specific capabilities. The internal representa-
tions of these Gemini grammars have been translated into
the Definite Clause Grammar (DCG) formalism (Pereira
& Warren 1980), and the algorithms described here op-
erate on these DCG representations, so the algorithms
should be applicable to other unification-based grammar for-
malisms. Prolog source code for all of these algorithms
will be made available on anopen-source license basis at
http://www.OpenNLP.com.

Iterative Deepening Algorithm
The first algorithm we tried used a simple iterative deepen-
ing (Korf 1985) (ID) approach in a generate-and-test pro-
gram. Iterative deepening simulates a breadth-first search
in a depth-first way by putting a bound on the amount of
computation done in each depth-first step, and iteratively in-
creasing that bound. Effectively, ID as a generator finds all

“The A� algorithm, described by Hart, Nilsson, and
Raphael (1968), addresses the problem of finding a
minimal-cost path joining the start node and a goal node
in a state-space graph. ... The algorithm used byA� is
anordered state-space search. ... Its distinctive feature
is its definition of theevaluation function, f*. As in the
usual ordered search, the node chosen for expansion is
always one at which f* is minimum.
Since f* evaluates nodes in light of the need to find
a minimal-cost solution, itconsiders the value of each
noden as having two components: the cost of reachingn
from the start node and the cost of reaching a goal from
noden. Accordingly,f* is defined by f*(n) = g*(n) +
h*(n), whereg* estimates the minimum cost of a path
from the start node to noden, and (h*) estimates the
minimum cost from noden to a goal. The valuef*(n)
thus estimates the minimal cost of a solution path pass-
ing through noden. Theactual costs, whichf* , g*, and
h* only estimate, are denoted byf, g, andh, respectively.
It is assumed that all arc costs are positive.
The functiong*, applied to a noden being considered
for expansion, is calculated as the actual cost from the
start nodes to n along the cheapest path found so far by
the algorithm.
... The functionh* is the carrierheuristic information
and can be defined in any way appropriate to the prob-
lem domain. For the interesting properties of theA� al-
gorithm to hold, however,h* should be nonnegative, and
it should never overestimate the cost of reaching a goal
node from the node being evaluated.”

Figure 1: A� Definition - Barr and Feigenbaum (1981)
pp.64-65

the grammatical parse trees with 1 node, followed by all with
2 nodes, then 3 nodes, etc. As ID is generating these parse
trees, each is tested to see if it contains the target words. We
built an iterative deepening generator first in part because
it was very easy to build (taking just a few minutes), and
we were hopeful that the inherent speed of Prolog’s depth-
firstengine would compensate for the unguided nature of the
search. Implementing ID efficiently for DCGs is easy be-
cause the additional argumentsneeded to enforce ID’s com-
putational bounds can be inserted in the DCG rules at com-
pile time, in a way exactly analogous to the way that DCG
stringpositions are automatically added to a DCG rule be-
fore it is converted to Prolog’s clausal form. Thus, the ID
version of the grammar is running in fully-compiled Prolog
clausal form with no interpreter overhead.

A
� Algorithm

Our next attempt was motivated by the observation that the
simple generate-and-test method was not taking advantage
of the fact that we know we are looking for a particular set
of target words. We designed anA� algorithm (see Figure 1)
using a cost function that would prefer hypotheses contain-
ing target words to those that don’t. Achieving good per-
formance of anA� algorithm depends on the quality of the



scoring functionf�, in particular on the choice ofh�. Toop-
erationalize the constraint “including all of the words in the
target set”, we defined a notion offruitful. A nonterminal is
fruitful if it dominates oneor more of the target words. Each
nonterminal in a derivation is scored both for the number of
target words it may dominate (its number of fruit), and mini-
mum number of rule applications it will take to consume the
nearest fruit. We pre-compute a table� C�W�D � where a
nonterminalC can derive a wordW in D rule applications.
Since this is a unification-based grammar, the nonterminal
C is a Prolog term, and the table is maintained with only
the most-general instantiations of each nonterminal, with the
exception that a nonterminal C that is subsumed by a non-
terminal C’ is retained in the table if the depth of C is less
than the depth of C’. When matching a particular nontermi-
nal against this table while estimatingh�hyp�, we find the
minimum depth in the table that unifies with that nontermi-
nal.

We explored several definitions off�, for both admissible
and inadmissibleA� searches. The results given in Table 1
use this definition:

f��n� � g��n� � h��n�

g��n� � the number of steps in the derivation so far

h��n� � maxnt�derivation�w�T � nt� w� d �

��N � ��

This definition forf� uses an estimateh� that never over-
estimates the number of steps to reach a final derivation, so
this yields an admissible search. The motivation behind this
estimate is to first find the target word that requires the most
steps to derive, since the estimate will require at least that
many steps. To this we add 1 for every other nonterminal in
the derivation, since they will require at least 1 step each to
derive a final terminal string.

The implementation of thisA� algorithm proceeds as fol-
lows. We maintain a priority queue of states, sorted on their
value forf�. Each state is a 4-tuple� S�D�G� TW �, con-
sisting of a scoreS, a current derivationD, thenumber of
derivational stepsG and the set of target wordsTW . The
algorithm proceeds:

� Initialize a priority queue with a start state defined as a
4-tuple� Score� �S�� �� TW � with an initial score of
h��S��, a derivation starting at the start symbolS, theini-
tial value forG = 0, and the set of target wordsTW .

� Iterate on:

– remove the highest state from the priority queue
– choose a nonterminal to expand, preferring a fruitful

nonterminal with minimal depth
– find new derivations by expanding the chosen nonter-

minal by all matching grammar rules
– compute the set of next states based on these deriva-

tions, updating Score, Derivation, G and TW
– add the new states to the priority queue

� Terminate when the top state in the priority queue has
TW � � and its derivation contains no nonterminals.

It is not clear that the admissibility property is critical for
this approach. We have experimented with several inadmis-
sible heuristic functions, and find that they appear to pro-
vide acceptable solutions, with some improvement in per-
formance.

Combined A�-ID Algorithm
The termination condition for theA� algorithm described
above is when the word string has been completely gener-
ated, continuing theA� search even after all of the target
words have been consumed. TheA� algorithm was moti-
vated as a way tocarry out a more directed search. Un-
fortunately, once the target words have all been found, they
provide no more direction to the search. We thus devised a
variant of this algorithm where theA� algorithm terminates
once all the target words have been found. The end product
of thisA� search is a derivation that is a combination of ter-
minal and nonterminal symbols. We produce the final word
stringby using the ID generator to find word strings for the
remaining nonterminals. To retain admissibility for theA�-
ID, it is critical that the remaining nonterminals be generated
as a conjunction of nonterminals in a single ID search, since
thenonterminals may share variables that effect the joint so-
lution.

Anytime Algorithm
So far we have written a generator that would generate utter-
ances quickly given a single target word, and successively
more slowly with additional target words. We can convert
this into an anytime algorithm, defined as ”An algorithm that
returns the best answer possible even if it is not allowed to
run to completion, and may improve on the answer if it is
allowed to run longer.” (Howe 1998).

The idea is to allow the algorithm to take the maximal
amount of time (in this case, 30 seconds), and to produce
the best answer possible by first finding a solution using 1
target word, then using 2 target words, etc. until the allowed
time has elapsed. The best solution found when time elapses
is returned as the final answer. The anytime variant works
best when the target words are priority ordered.

In our anticipated deployment in Targeted Help, however,
not all words will be treated equally. In particular, our most
important goal is to include the main verb in the generated
sentence; the object is of second importance; other words
after that. Therefore, we wrapped ourA� generator into an
anytime algorithm as follows. Given a list of words [Main-
Verb, Object—Rest]: First, generate with the empty list ([]).
(This just returns a default example, and is instantaneous.)
Second, generate with [MainVerb]. Third, generate with
[Object]. Continue to generate, adding one word from Rest
each time.

Evaluation
Our first experiment was to compare the performance of
ID, A� andA�-ID. Ideally, we would have liked to run a



PSA
ID A� A�-ID

0 Words 0ms. 150ms. 10ms.
1 Word 84% 96% 100%

(211/0/39) (241/0/9) (250/0/0)
2401ms. 969s. 458ms.

2 Word 27% 41% 41%
(27/0/73) (41/15/44) (41/15/44)
8312ms. 6205ms. 5932ms

3 Word 1% 6% 6%
(1/0/99 (6/35/59) (6/35/59)
11066 6900ms. 6890ms.

4 Word 0% 1% 1%
(0/0/100) (1/37/62) (1/37/62)

— 28391ms. 29291ms.
WITAS

ID A� A�-ID
0 Words 0ms. 70ms. 0ms.
1 Word 94% 94% 94%

(367/0/24) (367/24/0) (367/24/0)
206ms. 351ms. 304ms.

2 Word 21% 41% 44%
(21/0/79) (41/42/17) (44/42/14)
5688ms. 6732ms. 6159ms

3 Word 1% 16% 20%
(1/0/99 (16/41/43) (20/41/39)

27670ms 13868ms. 14727ms.
4 Word 0% 4% 5%

(0/0/100) (4/64/32) (5/64/31)
— 28391ms. 29291ms.

Table 1: Timing Results for ID,A�, andA�-ID - Numbers
in Parentheses indicate (Solved/Failed/Timed Out)

speech recognizer with a statistical language model on data
collected from real users of a targeted help system, but that
data is not yet available. To simulate that, we generated a
set of target word sets of increasing sizes. For the sake of
completeness, we include the amount of time to generate a
grammatical sentence from a 0-word target set. For the case
of 1-word target word sets, we considered singleton sets for
each lexical item in the vocabulary. For 2-word sets and
higher, we randomly generated 100 2 word (and higher) tar-
get words sets by randomly selecting target words from the
vocabulary for each grammar. The results of this experiment
are given in Table 1. All timing numbers given in the table
were run on a 1.6GHz P4 laptop with 1GB of memory and
running Windows 2000 and SICStus Prolog 3.10.0. We ran
the experiments with a time-out of 30 seconds. We report:

� the percentage of the target-word sets that each algorithm
was able to find example sentences for.

� the break-down (Success/Failure/TimedOut) for each test.
Failure indicates that there is no canonical sentence in
L�G� containing those target words.

� the average time for the non-timed-out instances of the
test set. We excluded the times for the timed-out instances
since they take a uniform 30 seconds each, and we didn’t

want the choice of timeout intervalto be reflected in the
timing numbers.

As can be seen, all 3 algorithms did relatively well at
generating grammatical sentences from a 1-word target set,
with theA�-ID algorithm performing the best, and the ID
algorithm performing the worst. However, as the target
set size increases, theperformance of all algorithms drops
markedly. It may be surprising that so many of the larger
target-word set instances failed to generate an example, or
that, for WITAS, even24 of the singleton target-word sets
failed to generate an example. Keep in mind, however, that
the grammar-writer has excluded certain lexical items and
grammar rules from generation as being non-canonical, and
that the target-word sets were selected from the entire vo-
cabulary, not just the canonical vocabulary. Note also that
the apparent advantage ofA�-ID overA� is greatest for the
PSA grammar where there are no failures. In failure cases,
A� andA�-ID will usually behave identically, and fail be-
fore getting to an ID search.

We ran a second experiment to evaluatethe anytime al-
gorithm. Since the anytime algorithm always runs until the
entire time period has elapsed, using time as a measure of
performance is not appropriate. Given the results above, we
were interested in the performance of the algorithm in cases
where weknow that a candidate solution exists. We lim-
ited the dataset to target sets containing words that we knew
could be found together in a grammatical sentence. We
picked 100 grammatical sentences from the PSA grammar,
and ran the anytime algorithm on the words from each sen-
tence in random order. The results are show in a histogram
in Figure 2, showing how many target words were taken into
consideration for each sentence at the point where the time
bound was met. In this figure, we can see that the anytime
algorithm is usually able to use target-word-set sizes in the
range 3-5. If the execution time of theA� � ID algorithm
was critically bound by the size of the target word set, then
we would expect to see most sentences only being generated
from a small number of target words. The figure shows that
theopposite is true: when a sentence is within grammar, the
A�-ID algorithm is able to find an example sentence using
relatively large target word sets.

Discussion and Future Work
There are a number of plausible extensions to the anytime
algorithm. There is no requirement that the target word sets
be unordered. We could use recognizer confidence scores as
one way to prefer example sentences containing some words
over others. We could also use part-of-speech information to
prefer content words (nouns and verbs) over function words.

We can also extend the notion offruit to includenot just
specific words, but specific categories. That is, to look for
example sentences with additional constraints on the result
to be of a certain grammatical form. For instance, if the
dialogue manager knows that it has asked a question that
would typically be answered with an isolated noun-phrase
fragment, it could add the request that the example sentence
be in the form of a noun phrase. Similarly, in order to speed
up system-user discussions about future events, we might



Figure 2: Anytime - PSA

want the system to demonstrate to the user that the system
can handle relative clauses.

There is a striking similarity between the problem of gen-
erating good example sentences for Targeted Help, and cer-
tain robust interpretation techniques. Minimal Edit Dis-
tance parsing (Aho & Pederson 1972) appears on its sur-
face to be very similar. The problem they solve is, given a
word sequenceW , find another word string�W , such that
�W � L�G� andW can be derived from�W with a mini-

mal number of insertions, deletions, and substitutions. The
principal difference is that we are considering arbitrary word
order on the target word sets, while they do not. This simi-
larity should perhaps not be surprising, since, if we had very
high confidence in the quality of our example sentences, it
is a very small step to go from respondingYou can say sen-
tences like “measure the pressure at the commander’s seat”
to Did you want me to measure the pressure at the comman-
der’s seat?. The fact that there is an elegantO�n�� solu-
tion to the Minimal Edit Distance parsing problem suggests
that perhaps there is a polynomial solution to this generation
problem as well.

Conclusion
This paper presents a novel and important problem, gener-
ating good example sentences for use in Targeted Help for
spoken dialogue systems. We present 3 admissible algo-
rithms addressing this problem, and compare their relative
performance. A 4th algorithm is provided that shows that
an example can almost always be generated from the target
words when such an example exists in the grammar.
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