
Generation Models for Spoken Dialogues

Graham Wilcock and Kristiina Jokinen
University of Helsinki

00014 Helsinki, Finland
graham.wilcock@helsinki.fi

kristiina.jokinen@helsinki.fi

Abstract
The paper discusses what kind of genera-
tion model is suitable for spoken dialogue re-
sponses. We describe different existing models
of generation, and compare them from the point
of view of spoken dialogue systems. We intro-
duce a model of generation based on new infor-
mation focus, and argue that this addresses the
communicative requirements of flexible spoken
dialogue systems (incrementality, immediacy
and interactivity). We discuss the relationship
between the dialogue manager and the gener-
ator, and what kind of interface they should
share. We describe a flexible shallow genera-
tion approach which combines template-based
generation with a pipeline of distinct process-
ing levels.

1 Introduction
In this paper we address the question of what
kind of generation is suitable for spoken dia-
logue systems. We look at the question from
three perspectives.

First, in Section 2 we discuss different kinds
of generation models which are in use in dif-
ferent fields (machine translation, text genera-
tion, telephone booking systems) and consider
whether they are appropriate for spoken dia-
logue systems. We argue that for spoken di-
alogue systems a model of generation must
take account of new and old information status,
must allow for interactivity with the user, and
must be adaptive to different user expectations.

Second, in Section 3 we consider the re-
lationship between the dialogue manager and
the generator, and what kind of interface they
should share. We argue that for spoken dia-
logue systems an agenda type of interface is

suitable, in which new and old information sta-
tus is already marked up by the dialogue man-
ager to simplify the work of the generator.

Third, in Section 4 we discuss the question
of whether template-based generation methods
are satisfactory for dialogue responses. We ar-
gue that in the NLG community the question of
template-based versus plan-based NLG is now
seen as a false opposition, and the real issue is
how to make templates more flexible and how
to use them in practical “shallow generation”
approaches.

The paper is based on practical experience
in designing and implementing spoken dia-
logue systems, most recently the USIX-Interact
project (Jokinen et al., 2002). We will be glad
to offer a demo showing our model of response
generation, using an XML-based NLG imple-
mentation and a Java speech synthesizer.

2 Models of Generation
In this section we describe different models
of generation, originating from work in ma-
chine translation, text generation, and tele-
phone booking systems. We consider whether
they are appropriate for spoken dialogue re-
sponse generation, and argue that a model of
generation based on new information focus is
more suitable.

2.1 A Machine Translation Model
Machine translation systems concentrate
mainly on analysis and transfer problems, so
the generation stage is often rather simple.
Some MT systems which take generation more
seriously use bidirectional grammars. In this
case generation may be performed by a bag
generation algorithm, in which generation
starts from a bag of semantic terms or lexical

From: AAAI Technical Report SS-03-06. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved. 



items. An essential property of the generation
algorithm is that the order of information in
the bag is not significant - it has no effect on
surface realization order.

In machine translation, treating the source
information as unordered is attractive, as the
surface order in the target language should not
be tied to the surface order in the source lan-
guage. The usual approach in bag genera-
tion has therefore been to generate all possible
grammatical sentences (all sentences licensed
by the target language grammar) which match
the source information (i.e. use all and only
the items in the source bag). This produces a
combinatorial explosion of different sentences
which are grammatically legal. The emphasis
of research efforts in bag generation has there-
fore been on finding ways to increase the effi-
ciency of the algorithms (Carroll et al., 1999).

In this model, the generation problem has
been seen either as purely syntactic (find all
syntactically permitted sentences which use the
given lexical items), or as a relationship be-
tween semantics and syntax (find all syntac-
tically permitted sentences which realize the
given semantic terms). Usually, information
structure is ignored. This model does not at-
tempt to select the best realization from the
multiple possible alternatives, if they are all
syntactically equally correct.

A similar kind of approach is used in Ni-
trogen (Langkilde and Knight, 1998) where a
symbolic generator is combined with statistical
selector, and sentence generation is basically
based on statistical models of sentence struc-
ture derived from large corpora.

The form of bag generation developed for
machine translation has also been used for di-
alogue response generation. The algorithm is
suitable for incremental generation, and an im-
plementation of an incremental version of the
algorithm is described by Wilcock (1998). In
this incremental model, the initial bag of terms
is incomplete, and more semantic terms are
added after generation has started. The gener-
ator starts generating from the incomplete bag,
and must find a way to include the additional
semantic terms when they are supplied. In
this model, although the order of terms inside
the bag is not significant, the order in which

terms are added influences the utterance very
strongly.

Wilcock (1998) suggestsutterance rulesto
control the behaviour of the generator. From an
incomplete bag and a partial utterance, the gen-
erator attempts to continue the utterance as fur-
ther semantic terms are added. When the gen-
erator cannot find a way to continue, a repair
is performed. Like the underlying bag model,
however, this incremental model does not take
information structure explicitly into account as
a significant factor in generation.

2.2 A Text Generation Model
In the model of generation adopted in text gen-
eration systems (Reiter and Dale, 2000), infor-
mation structure is recognised as a major fac-
tor. This model usually has a pipeline architec-
ture, in which one stage explicitly deals with
discourse planning and another stage deals with
referring expressions, ensuring that topic shifts
and old and new information status are properly
handled.

Although the text generation model is orga-
nized to deal effectively with new and old infor-
mation structure, it is designed for producing
text which is basically monologue rather than
dialogue. Spoken dialogue systems impose dif-
ferent requirements on generation, such as how
to handle prosody, which do not arise in text
generation systems.

A basic point about the monologue nature of
text generation is that it is essentially a one-shot
process. All of the information to be expressed
must be put into the generated text, so that it is
available for the reader to extract later. In a di-
alogue this is not necessary. Part of the relevant
information can be given initially, and the rest
of the information can be given later depending
on the user’s reactions to the first part. The user
may in fact indicate that the rest of the informa-
tion is not wanted.

In spoken interaction, listeners also immedi-
ately react to the information units carried by
the utterance, and the speaker can modify the
following utterances according to this kind of
feedback. Hence, faced with one of the funda-
mental questions of NLG namely “where does
generation start from?”, which brings the dan-
ger of sliding down a slippery slope (McDon-



ald, 1993), we can reply that in dialogue sys-
tems generation starts simultaneously with in-
terpretation, as a reaction to the presented infor-
mation. The initial ’message’ is then gradually
specified into a linguistic expression with re-
spect to language-specific knowledge and com-
municative requirements of the situation.

In a dialogue system, as Santamarta (1999)
says, “the length of the generated text is rather
short, namely a turn. A turn can consist of
one word up to a couple of sentences.” The
text planning part of the text generation model,
which plans how to pack all of the information
into a single text, is therefore unsuitable as a
model for dialogue response generation where
content determination is handled by the dia-
logue manager and text planning is rather sim-
ple.

Nevertheless we advocate using a version of
the pipeline architecture which is common in
text generation systems. The different stages of
the pipeline perform specialized subtasks, and
many of these tasks (including lexicalization,
referring expressions, aggregation) are equally
required in generation for a spoken dialogue
system.

2.3 A Telephone Bookings Model
Another model of generation, developed for
telephone-based booking and ordering systems,
is based on the use of dialogue grammars
or dialogue description languages, such as
VoiceXML (VoiceXML Forum, 2000). Unlike
the text generation model, this approach is ex-
plicitly designed for dialogue systems rather
than monologue systems. This model, however,
suffers from the disadvantage that it tends to in-
crease the rigidity of the system, by enforcing a
form-filling approach which makes the user fit
in with the system’s demands. The generation
of system utterances is mainly a matter of de-
signing prompts, i.e. the system responses are
carefully tailored so as to elicit appropriate type
of reaction from the user.

This model fits in the common view of
human-computer interaction where the com-
puter is regarded as a tool which supports hu-
man goals: the role of the computer is to be
a passive and transparent “slave” under hu-
man control. However, in recent years, another

metaphor has also become available: the com-
puter as an agent which is capable of mediating
interaction between human users and the appli-
cation (cf. the situated delegation-oriented di-
alog paradigm in SmartKom, (Wahlster et al.,
2001)). Advanced research and technological
development allows us to build more intelligent
software which takes into account requirements
for complex interaction: spoken dialogue sys-
tems contain sophisticated models of commu-
nication and of the user, and the interest in mul-
timodality also extends the system’s commu-
nicative repertoire. Furthermore, information-
providing systems often encounter situations
where they need to present large amounts of
complex information to the user and they need
to present this in a form that is accessible and
clear. Consequently, dialogue systems should
also have more sophisticated models of gener-
ation in order to be able to present complex in-
formation to the user.

3 Dialogue Manager and
Generator

In this section we describe the model of gen-
eration which we advocate for spoken dialogue
systems, and this leads us to consider the re-
lationship between the dialogue manager and
the generator, and what kind of interface they
should share. We argue that for spoken dia-
logue systems an agenda type of interface is
suitable, in which new information status is al-
ready marked up by the dialogue manager.

3.1 A NewInfo-based Model
The model of generation which we advocate
and which we use in our spoken dialogue sys-
tems is described by Jokinen et al. (1998). This
model of generation, which focusses on in-
crementality, immediacy and interactivity (the
three I’s), is more suitable for highly interac-
tive systems than the approaches discussed pre-
viously.

In this model, response planning starts from
the new information focus, calledNewInfo. The
generator decides how to present NewInfo to
the user: whether to presented it by itself or
whether to wrap it in appropriate linking in-
formation. The following examples are taken



from Jokinen and Wilcock (2001), where they
are discussed in more detail.

(1) User:Which bus goes to Malmi?
System:Number 74.

(2) User:How do I get to Malmi?
System:By bus - number 74.

In example (1) NewInfo is the information
about the bus number, while in (2) NewInfo
concerns the means of transportation. In both
cases, NewInfo is presented to the user by it-
self, without linking to the Topic.

(3) When will the next bus leave for Malmi?
(a)2.20pm.
(b) It will leave at 2.20pm.
(c) The next bus to Malmi leaves at
2.20pm.

Whether NewInfo should be wrapped or
not depends on the changing dialogue context.
When the context permits a fluent exchange of
contributions, wrapping is avoided and the re-
sponse is based on NewInfo only, as in example
(3a). When the context requires more clarity
and explicitness, NewInfo is wrapped by Topic
information as in (3b) in order to avoid misun-
derstanding. When the communication channel
is working well, wrapping can be reduced, but
when there are uncertainties about what was ac-
tually said, wrapping must be increased as in
example (3c) to provide implicit confirmation.

3.2 The Agenda
In this approach, the dialogue manager creates
an Agenda, a set of domain concepts which it
makes available for use by the generator. The
generator can freely use the concepts in the
agenda in order to realise the system’s inten-
tion as a surface string, but it is not forced to
include in the response all the concepts that the
dialogue manager has designated as relevant in
the agenda.

Because the dialogue manager is responsi-
ble for recording dialogue history, perform-
ing topic tracking, and getting new information
from the data source (via a task manager), it is
the best authority to decide the new or old in-
formation status of each concept. The dialogue

manager therefore marks up each concept in the
agenda with Topic and NewInfo tags. This in-
formation is very useful to the generator in de-
ciding how to realize the concepts in the gener-
ated response.

Thus the dialogue manager and the gener-
ator communicate via the specifically marked
conceptual items in the shared agenda, but they
both make their own decisions on the basis of
their own reasoning and task management. The
dialogue manager need not know about partic-
ular rules of surface realisation while the gen-
erator need not know how to decide the infor-
mation status of the concepts in the current di-
alogue situation.

Here is the agenda given by Jokinen and
Wilcock (2001) for response (2)By bus - num-
ber 74. All information in the system is held in
XML format, including the agenda. Note that
this is a simplified early prototype format - later
agenda formats use Annotation Graph (Bird et
al., 2001) representations.

<agenda>
<concept info="NewInfo">

<type>means-of-transportation</type>
<value>bus</value>

</concept>
<concept info="Topic">

<type>destination</type>
<value>malmi</value>

</concept>
<concept info="NewInfo">

<type>bus</type>
<value>exists</value>

</concept>
<concept info="NewInfo">

<type>busnumber</type>
<value>74</value>

</concept>
</agenda>

If the real-time requirements of the system
allow sufficient time, the generator can decide
on the optimum way to wrap the new informa-
tion, but if there is extreme urgency to produce
a response, the generator can simply give the
new information without wrapping it. If this
leads to misunderstanding, the system can at-
tempt to repair this in subsequent exchanges.
In this sense, the model offers anany-timeal-
gorithm.



4 Template-based Generation
In this section we discuss the question of
whether template-based generation methods
are satisfactory for dialogue response genera-
tion.

The role of template-based generation has
been widely debated in the NLG community
(Becker and Busemann, 1999), and the ques-
tion of template-based versus plan-based NLG
is now largely seen as a false opposition. The
real issue is how to make templates more flex-
ible and how to use them in practical “shallow
generation” approaches.

The problem is that “deep” NLG needs to
perform linguistic processes at a number of dif-
ferent levels (lexicalization, referring expres-
sions, aggregation) whereas templates have tra-
ditionally been simple, single-shot, single-level
mechanisms. The simplest kinds of templates
use only canned texts and are single-level, but
more flexible templates can include a range of
information at different linguistic levels.

Following van Deemter et al. (1999), we take
template-basedto mean “making extensive use
of a mapping between semantic structures and
representations of linguistic surface structures
that contain gaps”. On this interpretation, tem-
plates can clearly include linguistic knowledge
and the ways in which the gaps can be filled can
be highly flexible.

4.1 Shallow Generation
Our approach is to use templates to create ini-
tial tree structures which serve as simple text
plans for short dialogue responses. We then
pass these tree structures through a pipeline
of processes which perform specialized oper-
ations at a number of different linguistic lev-
els, adding, deleting or modifying the informa-
tion in the structure. This pipeline is based on
the standard text generation pipeline architec-
ture described by Reiter and Dale (2000).

However, we advocate a form of “shallow
generation” as described by Busemann and Ho-
racek (1998), which allows the pipeline compo-
nents to be simpler and more lightweight than
in a full-scale text generation system. The shal-
low generation approach does not attempt gen-
eral solutions and does not try to model every-
thing. It restricts itself to domain-specific and

task-specific choices, with a linguistic coverage
based only on a domain corpus.

If the processing of the initial template-based
tree structure by the pipeline stages is so exten-
sive that the original template vanishes com-
pletely, it would be inappropriate to call this
approach “template-based”, but in our shallow
generation system the template’s structure is re-
tained through most of the levels. The pro-
cessing levels modify the information inside
the template, for example replacing the domain
concept nodes in the tree structure with linguis-
tic referring expression nodes.

4.2 A Pipeline Architecture
The prototype response generator described
by Jokinen and Wilcock (2001) has a simple
pipeline consisting of an aggregation stage, a
combined lexicalization and referring expres-
sions stage, and a surface realization stage.

Following the NewInfo-based model, the
generator selects from the agenda those con-
cepts marked as NewInfo as the basis for gen-
eration, and also decides whether NewInfo will
be the only output, or whether it will be pre-
ceded by Topic linking concepts.

The aggregation stage decides on an appro-
priate template, based on the concepts in the
agenda and their status as Topic or NewInfo.
In the aggregation stage, variable slots in the
templates are filled simply by copying concepts
from the agenda into the slots, pending further
processing by the lexicalization and referring
expression stages.

In the lexicalization and referring expres-
sion stages, concepts in the aggregation tem-
plates are replaced by lexical items and refer-
ring expressions using XML-to-XML transfor-
mations. Further details of the XML-based im-
plementation are discussed by Wilcock (2001).

The final stages of the pipeline perform syn-
tactic and morphological realization. The early
prototype generates simple responses like the
examples in Section 3.1. Later versions of the
system can generate more complex responses
in both Finnish and English.

4.3 NLG and Speech
The output from the NLG pipeline is marked
up for speech synthesis in Java Speech Markup



Language (Sun Microsystems, 1999). The re-
sponseBy bus - number 74in example (2) is
marked up in JSML as follows.

<jsml>
<div type="sent"> By

<emphasis> bus </emphasis>
</div>
<break size="large"/>
<div type="sent"> Number

<sayas class="number"> 74 </sayas>
</div>

</jsml>

Here <div type="sent"> marks sen-
tence boundaries,<emphasis> shows that
the wordbusshould be spoken with emphasis,
<break> shows that a pause is required before
the second part of the response, and<sayas
class="number"> tells the speech synthe-
sizer that 74 should be pronounced “seventy-
four”.

In our implemented system, speech synthesis
is performed by the open source FreeTTS Java
speech synthesizer (Sun Microsystems, 2002).

5 Conclusion
We have discussed the design of a generation
component for a spoken dialogue system, and
argued that the flexibilty needed in spoken dia-
logue systems can be addressed by a suitable
generation model. Our model of NewInfo-
based generation supports incrementality, im-
mediacy and interactivity. The design com-
bines template-based generation with a pipeline
architecture within a shallow generation ap-
proach, using an XML-based implementation.

A working system can be demonstrated at the
workshop.

References
Tilman Becker and Stephan Busemann, editors.

1999. May I Speak Freely? Between Tem-
plates and Free Choice in Natural Language
Generation. Proceedings of the KI-99 Work-
shop. DFKI, Saarbr̈ucken.

Steven Bird, Kazuaki Maeda, and Xiaoyi Ma.
2001. AGTK: The annotation graph toolkit.
In IRCS Workshop on Linguistic Databases,
Philadelphia.

Stephan Busemann and Helmut Horacek.
1998. A flexible shallow approach to text
generation. InProceedings of the Ninth In-
ternational Workshop on Natural Language
Generation, pages 238–247, Niagara-on-the-
Lake, Ontario.

John Carroll, Anne Copestake, Dan Flickinger,
and Victor Poznanski. 1999. An efficient
chart generator for (semi-)lexicalist gram-
mars. In7th European Workshop on Natural
Language Generation.

Kristiina Jokinen and Graham Wilcock. 2001.
Confidence-based adaptivity in response
generation for a spoken dialogue system. In
Proceedings of the 2nd SIGdial Workshop on
Discourse and Dialogue, pages 80–89, Aal-
borg, Denmark.

Kristiina Jokinen, Hideki Tanaka, and Akio
Yokoo. 1998. Planning dialogue contribu-
tions with new information. InProceedings
of the Ninth International Workshop on Nat-
ural Language Generation, pages 158–167,
Niagara-on-the-Lake, Ontario.

Kristiina Jokinen, Antti Kerminen, Mauri
Kaipainen, Tommi Jauhiainen, Graham
Wilcock, Markku Turunen, Jaakko Haku-
linen, Jukka Kuusisto, and Krista Lagus.
2002. Adaptive dialogue systems - Interac-
tion with Interact. InProceedings of the 3rd
SIGdial Workshop on Discourse and Dia-
logue, pages 64–73, Philadelphia.

Irene Langkilde and Kevin Knight. 1998. Gen-
eration that exploits corpus-based statistical
knowledge. In36th Annual Meeting of the
Association for Computational Linguistics
and 17th International Conference on Com-
putational Linguistics (COLING-ACL’98),
pages 704–710.

David McDonald. 1993. Does natural lan-
guage generation start from a specification?
In H. Horacek and M. Zock, editors,New
Concepts in Natural Language Generation,
pages 275–278. Pinter, London.

Ehud Reiter and Robert Dale. 2000.Build-
ing Natural Language Generation Systems.
Cambridge University Press.

Lena Santamarta. 1999. Output generation in
a spoken dialogue system. In Becker and
Busemann (1999), pages 58–63.



Sun Microsystems. 1999. Java Speech
Markup Language Specification, version
0.6. http: //java.sun.com/products/java-
media/ speech/forDevelopers/JSML.

Sun Microsystems. 2002. FreeTTS:
A speech synthesizer written entirly
in the Java programming language.
http://freetts.sourceforge.net/.

Kees van Deemter, Emiel Krahmer, and Mariët
Theune. 1999. Plan-based vs. template-
based NLG: A false opposition? In Becker
and Busemann (1999), pages 1–5.

VoiceXML Forum. 2000. Voice eXtensible
Markup Language VoiceXML, Version 1.00.
http://www.voicexml.org/.

Wolfgang Wahlster, Norbert Reithinger, and
Anselm Blocher. 2001. SmartKom: Multi-
modal communication with a life-like char-
acter. InProceedings of Eurospeech 2001,
Aalborg, Denmark.

Graham Wilcock. 1998. Approaches to sur-
face realization with HPSG. InProceedings
of the Ninth International Workshop on Nat-
ural Language Generation, pages 218–227,
Niagara-on-the-Lake, Ontario.

Graham Wilcock. 2001. Pipelines, templates
and transformations: XML for natural lan-
guage generation. InProceedings of the 1st
NLP and XML Workshop, pages 1–8, Tokyo.


