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Abstract 
Question answering systems can benefit from the 
incorporation of a broad range of technologies, including 
natural language processing, machine learning, information 
retrieval, knowledge representation, and automated 
reasoning.  We have designed an architecture that identifies 
the essential roles of components in a question answering 
system.  This architecture greatly facilitates experimentation 
by enabling comparisons between different choices for 
filling the component roles, and also provides a framework 
for exploring hybridization of techniques – that is, 
combining different approaches to question answering.  We 
present results from an initial experiment that illustrate 
substantial performance improvement by combining 
statistical and linguistic approaches to question answering.  
We also present preliminary and encouraging results 
involving the incorporation of a large knowledge base. 

Introduction 

Question answering systems can benefit from the 
incorporation of a broad range of technologies, including 
natural language processing, machine learning, information 
retrieval, knowledge representation, and automated 
reasoning.  In order to experiment with the various 
technologies and measure their impact on an end-to-end 
question answering system, we have developed a flexible 
and easily extensible architecture that enables plug-and-
play of system components to enable rapid prototyping of 
different system configurations.  In addition, our new 
architecture supports a multi-agent approach to question 
answering by allowing multiple strategies for answering a 
question to be pursued in parallel and their results 
combined.  This approach is motivated by the success of 
ensemble methods in machine learning, which has recently 
been applied to question answering, and has been shown to 
achieve significant performance improvement over their 
component systems [Chu-Carroll et al. 2002, Burger et al. 
2002].   
 
We begin this paper with a discussion of our question 
answering architecture, on which our PIQUANT question 
answering system is based, focusing on components that 
deviate from traditional approaches.  We then discuss how 
PIQUANT instantiates these components to address 
question answering using multiple strategies and multiple 

resources.  We present results from an experiment that 
shows significant performance improvement using this 
multi-strategy and multi-source approach. Finally, we 
present preliminary and encouraging results involving the 
incorporating of a large knowledge base (Cyc) into our 
question answering system. 

Component Architecture Overview   

The architecture adopted by our PIQUANT system, shown 
in Figure 1, defines several basic roles that components of 
a question answering system can play.  The definition of 
each role includes a consistent interface that allows 
components implementing that role to be easily plugged 
into the system.  This approach is not simply to facilitate 
good software engineering in a group, it allows 
hybridization at a fairly low development cost, and it also 
facilitates experimentation based on the choices available 
within the different component roles.   
 
While our architecture can loosely be thought of as 
following the classic pipeline design of QA systems, which 
consists of question analysis, passage retrieval, and answer 
selection (see e.g., [Harabagiu et al. 2001, Prager et al. 
2000, Hovy et al. 2000, Clarke et al. 2001]), we have 
introduced a number of components unique to our system 
that enable this experimentation and hybridization. These 
components can basically be divided into processing 
components, centered around answering agents, and 
consisting additionally of the question analysis and answer 
resolution components, and knowledge source interfaces, 
with provide access to both structured and unstructured 
information. Below we discuss the basic components of our 
system, emphasizing their deviation from traditional 
approaches. 
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Processing Components 

Answering Agents 
Answering agents are the central components in our 
architecture.  They define strategies for finding answers to 
questions given information available from other 
components, such as question analysis, knowledge sources, 
and annotated corpora.  
 
Answering agents get their input, the QFrame, from the 
question analysis component. Each agent in its independent 
operation is free to engage in a dialog with any number of 
knowledge sources through the knowledge source 
interfaces.  The result from the knowledge source may be a 
direct answer to the question if the answering agent 
requested a database lookup of the answer. On the other 
hand, the answering agent may receive a set of relevant 
passages from a text corpus if a search query was issued. In 
the latter case, further processing by the answering agent’s 
own answer selection component is needed to identify the 
answer to the question from the relevant passages.  When 
complete, the answering agent delivers its results to the 
answer resolution component   
 
Answering agents may differ at a fundamental level, e.g. 
one may use pure statistics to extract matching sequences 
from the corpus, and another may use a full parse of the 
question to extract semantic categories that appear in the 
annotated corpus.  Another may use the predicate argument 
structure of the question to query a knowledge source.   
 

Answering agents may agree on the fundamental level, but 
differ in terms of their applicability. For instance, some 
answering agents may be tailored toward addressing certain 
question types, such as definition questions, while others 
may be general purpose and can be invoked to answer all 
questions. 
 
In addition to being able to define multiple answering 
agents that take different approaches to question answering, 
our architecture also allows multiple answering agents to be 
invoked in parallel.  This approach allows us to experiment 
not only with different approaches to question answering 
strategies, but with combining them as well.  

Question Analysis 
The purpose of question analysis is to construct a QFrame 
that contains pertinent information from the question. 
Information in the QFrame is used to select one or more 
answering agents to address the question, and contains the 
necessary information for subsequent processing by the 
activated answering agents. 
 
Information contained in the QFrame must be sufficient for 
all available answering agents to construct and issue 
queries to their respective knowledge sources.  If the 
answering agent employs a search engine, then the query is 
a text search query, constructed by taking the original 
question, removing stop words, converting inflected terms 
to their canonical forms, adding synonyms or closely 
related words where appropriate, and building the correct 
syntactic form for the search engine query.  If the 
answering agent uses a structured resource such as an 
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Figure 1   PIQUANT’s System Architecture 



ontology, database or inference engine, the query may be in 
a logical form. 
 
Answering agents that produce text passages will call 
answer selection to process them; in order to extract 
candidate answers, answer selection needs to know the 
semantic type of the entity being sought.  Typical QA 
systems define anything from a dozen or so to one or two 
hundred semantic types for purposes of question 
classification [Ittycheriah et al. 2001, Hovy et al. 2001].  
These can range from the broad MUC-type classes 
PERSON and PLACE, corresponding to “Who” and 
“Where” questions, to specific subtypes, such as 
PRESIDENT and CITY, or to non-proper-named entities, 
such as COLOR and ANIMAL.  The expected semantic 
type of the answer is also determined by the question 
analysis component. 

Answer Resolution 
The task of the answer resolution component is to combine 
and reconcile results returned by multiple answering 
agents. Given the pipeline architecture traditionally 
employed by QA systems, resolution between two 
answering agents can be performed at multiple points in the 
pipeline. So far, we have implemented two answer 
resolution interfaces. First, two answering agents may be 
allowed to carry out their respective end-to-end processes 
and their individual final answers combined by answer 
resolution. Second, the search passages retrieved by one 
answering agent can be considered by the other answering 
agent as additional candidate passages in its own answer 
selection process [Chu-Carroll et al., 2002]. 

Knowledge Source Interfaces 

The purpose of the knowledge source interfaces is to 
provide a uniform interface to all answering agents for 
knowledge access, regardless of the actual knowledge 
sources.  We distinguish between access to unstructured 
knowledge, currently limited to text corpora, and access to 
structured knowledge such as databases and ontologies. 

Access to Unstructured Knowledge 
Traditional QA systems attempts to locate answers to 
questions in a large text corpus. In terms of knowledge 
access, this requires formulating a query from the question 
issuing the query to a search engine, and receiving a set of 
relevant documents/passages in return.  In Figure 1, we 
showed two instantiations of search, the traditional 
keyword search, and semantic search, which allows 
search terms to be either keywords or semantic categories 
of terms. In order to enable search on semantic categories, 
the corpus must be indexed with such information in a 
process described below. 
 

Semantic Annotation.   Prior to building a text index, we 
analyze the entire corpus with a set of text analysis engine 
(TAE) components [Byrd and Ravin, 1999], and then 
generate a special purpose index of the semantic entities 
discovered by the engine.  This semantic index can then be 
used by answering agents to search the corpus for classes 
of terms that may not match any particular string.  For 
example,  the question: 
 When (or In what year) did Beethoven die? 
can be turned into a search for the terms, “Beethoven”, 
“die” and the semantic category YEAR, which then matches 
passages containing an instance of a year (but note not 
necessarily the word “year”), “Beethoven” and “die”.   
Subsequent processing in answer selection and answer 
resolution seek to identify those entities of semantic type 
YEAR that are actually about Beethoven dying.  The two-
pronged process of indexing semantic labels, and including 
them in queries for search, is called Predictive Annotation 
[Prager et al, 2000]. 
 
An obvious benefit of our component-based approach is 
that we can easily experiment with and compare different 
annotation techniques by keeping the rest of the 
components of the QA system fixed and changing only the 
TAEs producing the index.  Thus we could, for example, 
measure the overall impact on QA performance of using 
statistical vs. rule-based annotators.  

Structured Knowledge Adapters  
We have identified many uses of structured knowledge in 
the QA process.  Knowledge can be used at corpus 
annotation time to, e.g. perform simple inferences from 
class hierarchies or entail obvious consequences of 
described actions.  Knowledge can be used during question 
analysis to guide a parse, identify question categories, etc.  
Knowledge can be used by answering agents as a direct 
source of answers to questions.  Knowledge can be used 
during answer resolution to prune out ridiculous answers, 
and to help score candidate answers.  Finally, knowledge 
can be used to classify answering agents themselves, based 
on, e.g., areas of expertise or question category.  
 
Due to the many ways knowledge may be employed, we 
have defined a key component of the system responsible 
for adapting various structured knowledge sources into the 
QA architecture.  This component, OntASK (Ontology-
based Access to Structured Knowledge) insulates the other 
components of the QA system that may have need of 
structured knowledge from the multitude of data formats, 
access mechanisms, representation languages, reasoning 
services, and ontologies that consumers of existing 
structured knowledge sources must be acutely aware of.   
 
OntASK presents a clean and consistent interface that 
supplies a single data format, representation, and ontology 
to the other components of the QA system.  There are only 
two major interfaces that other QA components need to be 



directly aware of: knowledge-source adapters (KSAs) and a 
KSA directory service (KDS). 
 
A KSA is a single component that is responsible for 
adapting one or more knowledge sources into the format, 
language, and ontology that the QA components 
understand.  In the PIQUANT project, for example, we 
have chosen a predicate logic form with a simple syntax 
based on KIF (KIF is, for our purposes, a serialization of 
first order logic that allows logical formulae to be specified 
within the ASCII character set), and defined an ontology 
which is derived directly from the semantic categories our 
predictive annotation engine recognizes. One of the 
simplest predicates our ontology specifies is “ ISA” , that is, 
the relation between two terms specifying that the first term 
is more specific than the second, e.g. ISA(HORSE, 
MAMMAL).   
 
There are a number of existing knowledge sources that 
contain information in this form, for example WordNet 
[Miller, 1995] and Cyc [Lenat, 1995]  In WordNet’s 
ontology, however, this relation is called “ hypernym”  and 
in Cyc it is called “ genls” .   In addition, WordNet uses a 
database format with a fixed number of tables, and Cyc 
uses a KR language with a LISP-like syntax called CycL.  
Rather than requiring each QA component that wishes to 
capitalize on the knowledge in Cyc and WordNet to 
implement access to these different sources, we simply 
provide a set of components that adapt their format, 
language, and ontology into that of the system.  Thus, all 
QA components that need information about the general 
terms of horse, submit a query to OntASK such as 
“ ISA(HORSE, ?x)” , and the Cyc adapter returns 
information about the “ genls”  of the Cyc term “ Horse” , and 
the WordNet adapter returns information about the 
“ hypernyms”  of the word Horse. 
 
The KDS is a web-services based component that permits 
the dynamic deployment of KSAs that adapt new 
knowledge sources or new pieces of knowledge sources.  
KSAs register themselves within the OntASK framework 
by listing the predicates they support.  When a query is 
made, the KDS finds all the KSAs that support the 
predicate in the query, and those KSAs are dispatched.   If 
no KSA supports the predicate desired, a special status 
code is returned. 
 
This approach was taken because, generally speaking, in 
the PIQUANT QA system most of the queries to the 
structured knowledge sources are generated from the 
natural language questions.  We cannot predict ahead of 
time every predicate that might be generated during the 
question analysis process, and we do not wish to require 
that all other QA components know every predicate the 
OntASK framework provides.  From the perspective of the 
other QA components, the set of supported predicates in 
the ontology is open-ended, and may change over time.  
Thus, if we recognize a predicate that is being requested in 

queries but is not supported, we may take action and 
provide a KSA that supports it, and the other QA 
components do not need to change.  Thus, this approach 
only requires that the QA components handle the special 
“ unsupported predicate”  status code. 

Multiple Answering Agents 

PIQUANT currently includes answering agents that adopt 
two different processing strategies, and consult three 
different text-based knowledge sources and a number of 
structured information sources through KSAs. The two 
processing strategies both employ the traditional pipeline 
architecture, but utilize fundamentally different approaches 
within the individual components for question answering.  
 
In the rest of this section, we briefly describe the 
characteristics of the answering agents we employed, as 
well as our experimental setup and results. 

Knowledge-Based Answering Agent (KBA) 
Our first answering agent utilizes a primarily knowledge-
driven approach to question answering, based on the 
predictive annotation mechanism described earlier. The 
basic architecture follows the traditional pipeline, with 
most components employing rule-based processing 
mechanisms [Prager et al., 2000; Prager et al., to appear]. 

Statistical Answering Agent (SA) 
The second answering agent we employed in our multi-
agent architecture is a statistical question answering system 
[Ittycheriah et al., 2001]. This agent again employs the 
pipeline architecture, and the individual components are 
statistically trained based on the maximum entropy 
framework. 

Experimental Setup 
To assess the effectiveness of our multi-agent architecture, 
we conducted experiments using questions from the 
TREC10 Question Answering track. We selected from the 
original 500 questions those questions 1) whose answers 
existed in the reference corpus (henceforth referred to as 
the TREC corpus), and 2) which was not a definition type 
question.1 This results in a test set of 313 questions. 
 
Our experiments are designed to evaluate the impact of 
answer resolution using both our answer resolution 
interfaces described earlier. First, we evaluate the impact of 
integrating results from multiple corpora using the 
                                                 
1 Definition questions (e.g. “ Who is Colin Powell?”  and 
“ What is mold?” ) are handled by a special process in the 
knowledge-based answering agent [Prager et al., 2001], 
which greatly reduces potential contribution from other 
answering agents. Thus, we exclude such questions in our 
current evaluation. 



knowledge-based answering agent. More specifically, we 
configured the knowledge based answering agent to use the 
TREC corpus as its primary corpus from which answers 
will be given, and to use the new AQUAINT corpus as a 
knowledge source from which additional supporting 
evidence may be found. Next, we assess the contribution of 
merging the results of two different answering agents both 
at the passage level and at the answer level. Here we 
merged in the passages retrieved by the statistical answer 
agent from the TREC corpus as additional passages from 
which the knowledge based answering agent will ultimately 
select its answers. Additionally, the answers generated by 
the statistical answering agent are used to adjust the 
confidence of the final answers produced by the knowledge 
based agent. 

Results 
For each of the 313 questions in the test set, PIQUANT 
generated its top answer along with the system’s 
confidence in it being a correct answer. These 313 answers 
are then rank ordered based on the confidence value. 
 
Two evaluation metrics are used. First, we measure the 
number of correct answers out of the 313 answers given by 
PIQUANT. Second, we adopt the new TREC average 
precision metric in which a confidence weighted score is 
computed as follows: 
 

∑
=

=
N

i
i

iuptoCorrect
NAP

1

  #1  
 
where N is the total number of questions (in this case 313).  
 
 # correct avg prec 
KBA (TREC) 124 0.595 
SA 116 0.569 
KBA (TREC+AQUAINT) 138 0.647 
KBA (TREC+AQUAINT) + SA 151 0.714 

Table 1  Experimental Results 

Table 1 shows the results of our experiments. The first two 
rows of the table show that our baseline answering agents 
perform quite comparably in terms of both the number of 
questions correctly answers and in average precision.  
Furthermore, enabling the knowledge based answering 
agent to consult an additional corpus for supporting 
evidence resulted in fairly substantial gain using both 
metrics. Comparing the results in row 3 to the baseline in 
row 1 shows an 11.3% relative improvement using the 
“ number correct”  metric, and an 8.7% relative 
improvement using the average precision metric. In 
addition, performing answer resolution using two 
strategically-independent answering agent resulted in even 
further performance gain. Comparing the results in the last 
row to the baselines in rows 1 and 2 shows a 21.8% relative 
improvement using the “ number correct”  metric, and a 
20.0% relative improvement using the average precision 
metric over the better performing baseline system. 

NLP and Sanity Checking in Answer 
Resolution 

 
One of the ways in which the knowledge source adapters 
have been integrated into our current system is in the so-
called “ sanity checking.”   Sanity checking is motivated by 
the observation that people often use their real world 
knowledge to rule out answers that appear quite 
improbable, such as the weight of a gray wolf being 300 
tons.  Sanity checking utilizes a structured knowledge 
source (in our current implementation, Cyc) to determine 
whether a top-ranked answer selected for a question is sane 
or insane. This process can be used to eliminate incorrect 
answers that may otherwise be difficult to rule out by non-
knowledge-based components. 
 
The answer selection component of our knowledge-based 
answering agent ranks candidate answers to passages based 
on three criteria: 1) semantic type of candidate answer, and 
2) weighted grammatical relationships, and 3) frequency of 
answer. The first criterion checks for a match between the 
semantic type of the answer as inferred from the question 
and the candidate answer itself. The second criterion 
measures how closely the grammatical relationships in the 
question are mirrored by those in the passage surrounding a 
candidate answer. The third criterion captures the notion 
that identical answers occurring in different contexts 
reinforce one another [Clarke et al., 2001].  These three 
criteria combined generate a confidence score for each 
candidate answer and the agent passes on the top n 
candidate answers to the answer resolution component for 
confidence re-ranking. 
 
The sanity checking process is invoked after the answer 
resolution component re-ranks all its candidate answers. 
Currently, the INRANGE operator is supported, which 
applies to most questions seeking numerical values, such as 
“ What is the population of the United States?”  and “ How 
high is Mount Everest?”  The sanity checker is invoked 
with the expected semantic type of the answer 
(“ POPULATION”  in the first example above), the focus of 
the question (“ United States” ) and the system’s proposed 
answer (“ X people” ). It currently returns one of the 
following verdicts: “ in range” , which results in an increase 
in the confidence associated with the answer, “ out of 
range” , which results in the answer being eliminated, or 
“ don’t know” , which has no effect.2  
 
Consider the TREC11 question, “ What is the population of 
Maryland?”  Prior to sanity checking, our system’s top 
                                                 
2 In future work, we will extend the sanity checker to return 
the probability of a candidate answer being correct, based 
on a normal distribution around Cyc’s knowledge of the 
correct answer. 



answer is “ 50,000” , from the sentence “ Maryland’ s 
population is 50,000 and growing rapidly.”  This would 
otherwise be an excellent answer if it were not for the fact 
that the article from which this passage is extracted 
discusses an exotic species called nutria.3 By employing 
sanity checking, however, our system was able to consider 
that answer “ out of range” , and return an initially lower-
ranked correct answer “ 5.1 million”  instead with high 
confidence. 

Conclusion 

We have designed an architecture that identifies the 
essential roles of components in a question answering 
system.  This architecture greatly facilitates 
experimentation by enabling comparisons between 
different choices for filling the component roles, and also 
provides a framework for exploring hybridization of 
techniques – that is, combining different approaches to 
question answering.  We have implemented several 
components that make specific choices about how to do fill 
these roles.  We presented results from an initial 
experiment combining statistical and linguistic approaches 
to question answering that showed performance 
improvement of over 20% according to two standard 
evaluation metrics.  We also presented preliminary results 
involving the incorporation of a large knowledge-base, 
Cyc, in validating the answers generated by search. 
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