
Hybridization in Question Answering Systems

Jennifer Chu-Carroll, David Ferrucci, John Prager, Christopher Welty

IBM T. J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA
jencc,ferrucci,jprager,welty@us.ibm.com

Abstract
Question answering systems can benefit from the
incorporation of a broad range of technologies, including
natural language processing, machine learning, information
retrieval, knowledge representation, and automated
reasoning. We have designed an architecture that identifies
the essential roles of components in a question answering
system. This architecture greatly facilitates experimentation
by enabling comparisons between different choices for
filling the component roles, and also provides a framework
for exploring hybridization of techniques – that is,
combining different approaches to question answering. We
present results from an initial experiment that illustrate
substantial performance improvement by combining
statistical and linguistic approaches to question answering.
We also present preliminary and encouraging results
involving the incorporation of a large knowledge base.

Introduction

Question answering systems can benefit from the
incorporation of a broad range of technologies, including
natural language processing, machine learning, information
retrieval, knowledge representation, and automated
reasoning. In order to experiment with the various
technologies and measure their impact on an end-to-end
question answering system, we have developed a flexible
and easily extensible architecture that enables plug-and-
play of system components to enable rapid prototyping of
different system configurations. In addition, our new
architecture supports a multi-agent approach to question
answering by allowing multiple strategies for answering a
question to be pursued in parallel and their results
combined. This approach is motivated by the success of
ensemble methods in machine learning, which has recently
been applied to question answering, and has been shown to
achieve significant performance improvement over their
component systems [Chu-Carroll et al. 2002, Burger et al.
2002].

We begin this paper with a discussion of our question
answering architecture, on which our PIQUANT question
answering system is based, focusing on components that
deviate from traditional approaches. We then discuss how
PIQUANT instantiates these components to address
question answering using multiple strategies and multiple

resources. We present results from an experiment that
shows significant performance improvement using this
multi-strategy and multi-source approach. Finally, we
present preliminary and encouraging results involving the
incorporating of a large knowledge base (Cyc) into our
question answering system.

Component Architecture Overview

The architecture adopted by our PIQUANT system, shown
in Figure 1, defines several basic roles that components of
a question answering system can play. The definition of
each role includes a consistent interface that allows
components implementing that role to be easily plugged
into the system. This approach is not simply to facilitate
good software engineering in a group, it allows
hybridization at a fairly low development cost, and it also
facilitates experimentation based on the choices available
within the different component roles.

While our architecture can loosely be thought of as
following the classic pipeline design of QA systems, which
consists of question analysis, passage retrieval, and answer
selection (see e.g., [Harabagiu et al. 2001, Prager et al.
2000, Hovy et al. 2000, Clarke et al. 2001]), we have
introduced a number of components unique to our system
that enable this experimentation and hybridization. These
components can basically be divided into processing
components, centered around answering agents, and
consisting additionally of the question analysis and answer
resolution components, and knowledge source interfaces,
with provide access to both structured and unstructured
information. Below we discuss the basic components of our
system, emphasizing their deviation from traditional
approaches.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

From: AAAI Technical Report SS-03-07. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

Processing Components

Answering Agents
Answering agents are the central components in our
architecture. They define strategies for finding answers to
questions given information available from other
components, such as question analysis, knowledge sources,
and annotated corpora.

Answering agents get their input, the QFrame, from the
question analysis component. Each agent in its independent
operation is free to engage in a dialog with any number of
knowledge sources through the knowledge source
interfaces. The result from the knowledge source may be a
direct answer to the question if the answering agent
requested a database lookup of the answer. On the other
hand, the answering agent may receive a set of relevant
passages from a text corpus if a search query was issued. In
the latter case, further processing by the answering agent’s
own answer selection component is needed to identify the
answer to the question from the relevant passages. When
complete, the answering agent delivers its results to the
answer resolution component

Answering agents may differ at a fundamental level, e.g.
one may use pure statistics to extract matching sequences
from the corpus, and another may use a full parse of the
question to extract semantic categories that appear in the
annotated corpus. Another may use the predicate argument
structure of the question to query a knowledge source.

Answering agents may agree on the fundamental level, but
differ in terms of their applicability. For instance, some
answering agents may be tailored toward addressing certain
question types, such as definition questions, while others
may be general purpose and can be invoked to answer all
questions.

In addition to being able to define multiple answering
agents that take different approaches to question answering,
our architecture also allows multiple answering agents to be
invoked in parallel. This approach allows us to experiment
not only with different approaches to question answering
strategies, but with combining them as well.

Question Analysis
The purpose of question analysis is to construct a QFrame
that contains pertinent information from the question.
Information in the QFrame is used to select one or more
answering agents to address the question, and contains the
necessary information for subsequent processing by the
activated answering agents.

Information contained in the QFrame must be sufficient for
all available answering agents to construct and issue
queries to their respective knowledge sources. If the
answering agent employs a search engine, then the query is
a text search query, constructed by taking the original
question, removing stop words, converting inflected terms
to their canonical forms, adding synonyms or closely
related words where appropriate, and building the correct
syntactic form for the search engine query. If the
answering agent uses a structured resource such as an

A n s w e r i n g A g e n ts

K S P

S e m a n t i c
S e a r c h

K e y w o r d
S e a r c h

Q u e s t io n

W o r d N e t

A n s w e r

C y c

Q F r a m e

Q u e s t i o n
A n a ly s is

Q G o a l s

K n o w l e d g e - B a s e d
A n s w e r i n g A g e n t

S t a t i s t i c a l
A n s w e r i n g A g e n t

A q u a i n t
c o r p u s

T R E C
c o r p u s

E B

A n s w e r
R e s o lu t i o n

D e f in i t io n Q
A n s w e r i n g A g e n t

C y c - B a s e d
A n s w e r i n g A g e n t

K n o w l e d g e S o u r c e sA n s w e r i n g A g e n ts

K S P

S e m a n t i c
S e a r c h

K e y w o r d
S e a r c h

Q u e s t io n

W o r d N e t

A n s w e r

C y c

Q F r a m e

Q u e s t i o n
A n a ly s is

Q G o a l s

K n o w l e d g e - B a s e d
A n s w e r i n g A g e n t

S t a t i s t i c a l
A n s w e r i n g A g e n t

A q u a i n t
c o r p u s

T R E C
c o r p u s

E B

A n s w e r
R e s o lu t i o n

A n s w e r
R e s o lu t i o n

D e f in i t io n Q
A n s w e r i n g A g e n t

C y c - B a s e d
A n s w e r i n g A g e n t

K n o w l e d g e S o u r c e s

Figure 1 PIQUANT’s System Architecture

ontology, database or inference engine, the query may be in
a logical form.

Answering agents that produce text passages will call
answer selection to process them; in order to extract
candidate answers, answer selection needs to know the
semantic type of the entity being sought. Typical QA
systems define anything from a dozen or so to one or two
hundred semantic types for purposes of question
classification [Ittycheriah et al. 2001, Hovy et al. 2001].
These can range from the broad MUC-type classes
PERSON and PLACE, corresponding to “Who” and
“Where” questions, to specific subtypes, such as
PRESIDENT and CITY, or to non-proper-named entities,
such as COLOR and ANIMAL. The expected semantic
type of the answer is also determined by the question
analysis component.

Answer Resolution
The task of the answer resolution component is to combine
and reconcile results returned by multiple answering
agents. Given the pipeline architecture traditionally
employed by QA systems, resolution between two
answering agents can be performed at multiple points in the
pipeline. So far, we have implemented two answer
resolution interfaces. First, two answering agents may be
allowed to carry out their respective end-to-end processes
and their individual final answers combined by answer
resolution. Second, the search passages retrieved by one
answering agent can be considered by the other answering
agent as additional candidate passages in its own answer
selection process [Chu-Carroll et al., 2002].

Knowledge Source Interfaces

The purpose of the knowledge source interfaces is to
provide a uniform interface to all answering agents for
knowledge access, regardless of the actual knowledge
sources. We distinguish between access to unstructured
knowledge, currently limited to text corpora, and access to
structured knowledge such as databases and ontologies.

Access to Unstructured Knowledge
Traditional QA systems attempts to locate answers to
questions in a large text corpus. In terms of knowledge
access, this requires formulating a query from the question
issuing the query to a search engine, and receiving a set of
relevant documents/passages in return. In Figure 1, we
showed two instantiations of search, the traditional
keyword search, and semantic search, which allows
search terms to be either keywords or semantic categories
of terms. In order to enable search on semantic categories,
the corpus must be indexed with such information in a
process described below.

Semantic Annotation. Prior to building a text index, we
analyze the entire corpus with a set of text analysis engine
(TAE) components [Byrd and Ravin, 1999], and then
generate a special purpose index of the semantic entities
discovered by the engine. This semantic index can then be
used by answering agents to search the corpus for classes
of terms that may not match any particular string. For
example, the question:
 When (or In what year) did Beethoven die?
can be turned into a search for the terms, “Beethoven”,
“die” and the semantic category YEAR, which then matches
passages containing an instance of a year (but note not
necessarily the word “year”), “Beethoven” and “die”.
Subsequent processing in answer selection and answer
resolution seek to identify those entities of semantic type
YEAR that are actually about Beethoven dying. The two-
pronged process of indexing semantic labels, and including
them in queries for search, is called Predictive Annotation
[Prager et al, 2000].

An obvious benefit of our component-based approach is
that we can easily experiment with and compare different
annotation techniques by keeping the rest of the
components of the QA system fixed and changing only the
TAEs producing the index. Thus we could, for example,
measure the overall impact on QA performance of using
statistical vs. rule-based annotators.

Structured Knowledge Adapters
We have identified many uses of structured knowledge in
the QA process. Knowledge can be used at corpus
annotation time to, e.g. perform simple inferences from
class hierarchies or entail obvious consequences of
described actions. Knowledge can be used during question
analysis to guide a parse, identify question categories, etc.
Knowledge can be used by answering agents as a direct
source of answers to questions. Knowledge can be used
during answer resolution to prune out ridiculous answers,
and to help score candidate answers. Finally, knowledge
can be used to classify answering agents themselves, based
on, e.g., areas of expertise or question category.

Due to the many ways knowledge may be employed, we
have defined a key component of the system responsible
for adapting various structured knowledge sources into the
QA architecture. This component, OntASK (Ontology-
based Access to Structured Knowledge) insulates the other
components of the QA system that may have need of
structured knowledge from the multitude of data formats,
access mechanisms, representation languages, reasoning
services, and ontologies that consumers of existing
structured knowledge sources must be acutely aware of.

OntASK presents a clean and consistent interface that
supplies a single data format, representation, and ontology
to the other components of the QA system. There are only
two major interfaces that other QA components need to be

directly aware of: knowledge-source adapters (KSAs) and a
KSA directory service (KDS).

A KSA is a single component that is responsible for
adapting one or more knowledge sources into the format,
language, and ontology that the QA components
understand. In the PIQUANT project, for example, we
have chosen a predicate logic form with a simple syntax
based on KIF (KIF is, for our purposes, a serialization of
first order logic that allows logical formulae to be specified
within the ASCII character set), and defined an ontology
which is derived directly from the semantic categories our
predictive annotation engine recognizes. One of the
simplest predicates our ontology specifies is “ ISA” , that is,
the relation between two terms specifying that the first term
is more specific than the second, e.g. ISA(HORSE,
MAMMAL).

There are a number of existing knowledge sources that
contain information in this form, for example WordNet
[Miller, 1995] and Cyc [Lenat, 1995] In WordNet’s
ontology, however, this relation is called “ hypernym” and
in Cyc it is called “ genls” . In addition, WordNet uses a
database format with a fixed number of tables, and Cyc
uses a KR language with a LISP-like syntax called CycL.
Rather than requiring each QA component that wishes to
capitalize on the knowledge in Cyc and WordNet to
implement access to these different sources, we simply
provide a set of components that adapt their format,
language, and ontology into that of the system. Thus, all
QA components that need information about the general
terms of horse, submit a query to OntASK such as
“ ISA(HORSE, ?x)” , and the Cyc adapter returns
information about the “ genls” of the Cyc term “ Horse” , and
the WordNet adapter returns information about the
“ hypernyms” of the word Horse.

The KDS is a web-services based component that permits
the dynamic deployment of KSAs that adapt new
knowledge sources or new pieces of knowledge sources.
KSAs register themselves within the OntASK framework
by listing the predicates they support. When a query is
made, the KDS finds all the KSAs that support the
predicate in the query, and those KSAs are dispatched. If
no KSA supports the predicate desired, a special status
code is returned.

This approach was taken because, generally speaking, in
the PIQUANT QA system most of the queries to the
structured knowledge sources are generated from the
natural language questions. We cannot predict ahead of
time every predicate that might be generated during the
question analysis process, and we do not wish to require
that all other QA components know every predicate the
OntASK framework provides. From the perspective of the
other QA components, the set of supported predicates in
the ontology is open-ended, and may change over time.
Thus, if we recognize a predicate that is being requested in

queries but is not supported, we may take action and
provide a KSA that supports it, and the other QA
components do not need to change. Thus, this approach
only requires that the QA components handle the special
“ unsupported predicate” status code.

Multiple Answering Agents

PIQUANT currently includes answering agents that adopt
two different processing strategies, and consult three
different text-based knowledge sources and a number of
structured information sources through KSAs. The two
processing strategies both employ the traditional pipeline
architecture, but utilize fundamentally different approaches
within the individual components for question answering.

In the rest of this section, we briefly describe the
characteristics of the answering agents we employed, as
well as our experimental setup and results.

Knowledge-Based Answering Agent (KBA)
Our first answering agent utilizes a primarily knowledge-
driven approach to question answering, based on the
predictive annotation mechanism described earlier. The
basic architecture follows the traditional pipeline, with
most components employing rule-based processing
mechanisms [Prager et al., 2000; Prager et al., to appear].

Statistical Answering Agent (SA)
The second answering agent we employed in our multi-
agent architecture is a statistical question answering system
[Ittycheriah et al., 2001]. This agent again employs the
pipeline architecture, and the individual components are
statistically trained based on the maximum entropy
framework.

Experimental Setup
To assess the effectiveness of our multi-agent architecture,
we conducted experiments using questions from the
TREC10 Question Answering track. We selected from the
original 500 questions those questions 1) whose answers
existed in the reference corpus (henceforth referred to as
the TREC corpus), and 2) which was not a definition type
question.1 This results in a test set of 313 questions.

Our experiments are designed to evaluate the impact of
answer resolution using both our answer resolution
interfaces described earlier. First, we evaluate the impact of
integrating results from multiple corpora using the

1 Definition questions (e.g. “ Who is Colin Powell?” and
“ What is mold?”) are handled by a special process in the
knowledge-based answering agent [Prager et al., 2001],
which greatly reduces potential contribution from other
answering agents. Thus, we exclude such questions in our
current evaluation.

knowledge-based answering agent. More specifically, we
configured the knowledge based answering agent to use the
TREC corpus as its primary corpus from which answers
will be given, and to use the new AQUAINT corpus as a
knowledge source from which additional supporting
evidence may be found. Next, we assess the contribution of
merging the results of two different answering agents both
at the passage level and at the answer level. Here we
merged in the passages retrieved by the statistical answer
agent from the TREC corpus as additional passages from
which the knowledge based answering agent will ultimately
select its answers. Additionally, the answers generated by
the statistical answering agent are used to adjust the
confidence of the final answers produced by the knowledge
based agent.

Results
For each of the 313 questions in the test set, PIQUANT
generated its top answer along with the system’s
confidence in it being a correct answer. These 313 answers
are then rank ordered based on the confidence value.

Two evaluation metrics are used. First, we measure the
number of correct answers out of the 313 answers given by
PIQUANT. Second, we adopt the new TREC average
precision metric in which a confidence weighted score is
computed as follows:

∑
=

=
N

i
i

iuptoCorrect
NAP

1

 #1

where N is the total number of questions (in this case 313).

 # correct avg prec
KBA (TREC) 124 0.595
SA 116 0.569
KBA (TREC+AQUAINT) 138 0.647
KBA (TREC+AQUAINT) + SA 151 0.714

Table 1 Experimental Results

Table 1 shows the results of our experiments. The first two
rows of the table show that our baseline answering agents
perform quite comparably in terms of both the number of
questions correctly answers and in average precision.
Furthermore, enabling the knowledge based answering
agent to consult an additional corpus for supporting
evidence resulted in fairly substantial gain using both
metrics. Comparing the results in row 3 to the baseline in
row 1 shows an 11.3% relative improvement using the
“ number correct” metric, and an 8.7% relative
improvement using the average precision metric. In
addition, performing answer resolution using two
strategically-independent answering agent resulted in even
further performance gain. Comparing the results in the last
row to the baselines in rows 1 and 2 shows a 21.8% relative
improvement using the “ number correct” metric, and a
20.0% relative improvement using the average precision
metric over the better performing baseline system.

NLP and Sanity Checking in Answer
Resolution

One of the ways in which the knowledge source adapters
have been integrated into our current system is in the so-
called “ sanity checking.” Sanity checking is motivated by
the observation that people often use their real world
knowledge to rule out answers that appear quite
improbable, such as the weight of a gray wolf being 300
tons. Sanity checking utilizes a structured knowledge
source (in our current implementation, Cyc) to determine
whether a top-ranked answer selected for a question is sane
or insane. This process can be used to eliminate incorrect
answers that may otherwise be difficult to rule out by non-
knowledge-based components.

The answer selection component of our knowledge-based
answering agent ranks candidate answers to passages based
on three criteria: 1) semantic type of candidate answer, and
2) weighted grammatical relationships, and 3) frequency of
answer. The first criterion checks for a match between the
semantic type of the answer as inferred from the question
and the candidate answer itself. The second criterion
measures how closely the grammatical relationships in the
question are mirrored by those in the passage surrounding a
candidate answer. The third criterion captures the notion
that identical answers occurring in different contexts
reinforce one another [Clarke et al., 2001]. These three
criteria combined generate a confidence score for each
candidate answer and the agent passes on the top n
candidate answers to the answer resolution component for
confidence re-ranking.

The sanity checking process is invoked after the answer
resolution component re-ranks all its candidate answers.
Currently, the INRANGE operator is supported, which
applies to most questions seeking numerical values, such as
“ What is the population of the United States?” and “ How
high is Mount Everest?” The sanity checker is invoked
with the expected semantic type of the answer
(“ POPULATION” in the first example above), the focus of
the question (“ United States”) and the system’s proposed
answer (“ X people”). It currently returns one of the
following verdicts: “ in range” , which results in an increase
in the confidence associated with the answer, “ out of
range” , which results in the answer being eliminated, or
“ don’t know” , which has no effect.2

Consider the TREC11 question, “ What is the population of
Maryland?” Prior to sanity checking, our system’s top

2 In future work, we will extend the sanity checker to return
the probability of a candidate answer being correct, based
on a normal distribution around Cyc’s knowledge of the
correct answer.

answer is “ 50,000” , from the sentence “ Maryland’ s
population is 50,000 and growing rapidly.” This would
otherwise be an excellent answer if it were not for the fact
that the article from which this passage is extracted
discusses an exotic species called nutria.3 By employing
sanity checking, however, our system was able to consider
that answer “ out of range” , and return an initially lower-
ranked correct answer “ 5.1 million” instead with high
confidence.

Conclusion

We have designed an architecture that identifies the
essential roles of components in a question answering
system. This architecture greatly facilitates
experimentation by enabling comparisons between
different choices for filling the component roles, and also
provides a framework for exploring hybridization of
techniques – that is, combining different approaches to
question answering. We have implemented several
components that make specific choices about how to do fill
these roles. We presented results from an initial
experiment combining statistical and linguistic approaches
to question answering that showed performance
improvement of over 20% according to two standard
evaluation metrics. We also presented preliminary results
involving the incorporation of a large knowledge-base,
Cyc, in validating the answers generated by search.

Acknowledgments

We would like to thank Abe Ittycheriah and Salim Roukos
for making their system and results available to us for
experimental purposes, Stefano Bertolo for his help with
Cyc integration, Ruchi Kalra for ontology population, and
Krzysztof Czuba for helpful discussions, and Alan
Marwick for his comments on an earlier draft of this paper.
This work was supported in part by the Advanced Research
and Development Activity (ARDA)’ s Advanced Question
Answering for Intelligence (AQUAINT) Program under
contract number MDA904-01-C-0988.

References

Byrd, R. and Ravin, Y. Identifying and Extracting Relations in
Text. In Proceedings of NLDB 99, Klagenfurt, Austria, 1999.

3 Alternatively, incorrect answers can be eliminated by
performing more sophisticated processing in the answer
selection component. For instance, “ 50,000” will be
considered an incorrect answer in the population of
Maryland example if global discourse context is taken into
account. We plan to investigate this issue in future work.

Burger, J., Ferro, L., Greiff, W., Henderson, J., Light, M., and
Mardis, S. MITRE’ s Qanda at TREC-11. In Proceedings of
TREC-2002. Gaithersburg, MD. 2002.

Chu-Carroll, J., Prager, J., Welty, C., Czuba, K., and Ferrucci, D.
A Multi-Strategy and Multi-Source Approach to Question
Answering. In Proceedings of TREC-2002, Gaithersburg, MD,
2002.

Clarke, L.A., Cormack, G.V. and Lynam, T.R. Exploiting
Redundancy in Question Answering. In Proceedings of SIGIR
2001, New Orleans, LA, 2001.

Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu,
M., Bunescu, R., Girju, R., Rus, V., and Morarescu, P. The Role
of Lexico-Semantic Feedback in Open-Domain Textual Question-
Answering., In Proceedings of ACL 2001, Toulouse, France,
2001.

Hovy, E., Gerber, L., Hermjakob, U., Junk, M., and Lin C-Y.
Question Answering in Webclopedia. In Proceedings of TREC-
2000, Gaithersburg, MD, 2000.

Hovy E., Hermjakob U. and Lin C-Y. The Use of External
Knowledge in Factoid QA. In Proceedings of TREC-2001,
Gaithersburg, MD, 2001.

Ittycheriah, A., Franz, M., Zhu, W-J, and Ratnaparkhi, A.
Question Answering Using Maximum Entropy Components. In
Proceedings of NAACL. 2001.

Lenat, D.B. Cyc: A Large-Scale Investment in Knowledge
Infrastructure. Communications of the ACM 38, no. 11, Nov.
1995.

Miller, G. WordNet: A Lexical Database for English.
Communications of the ACM 38(11) pp. 39-41, 1995.

Pasca, M.A. and Harabagiu, S.M. High Performance
Question/Answering. In Proceedings of SIGIR 2001, New
Orleans, LA, 2001.

Prager, J., Brown, E., Coden, A., and Radev, D., Question-
Answering by Predictive Annotation. In Proceedings of SIGIR,
2000.

Prager, J.M., Radev, D.R. and Czuba, K. Answering What-Is
Questions by Virtual Annotation. In Proceedings of Human
Language Technologies Conference, San Diego CA, March 2001.

Prager, J., Chu-Carroll, J., Brown, E., and Czuba, K. Question
Answering Using Predictive Annotation. To appear in Advances
in Question Answering, 2003.

Wacholder, N., Ravin, Y., and Choi, M. Disambiguation of
proper names in text. In Proceedings of the Fifth Applied Natural
Language Processing Conference, Washington, D.C., 1997.

