
Teaching Artificial Intelligence with Low-Cost Robots

Lloyd Greenwald and Donovan Artz
Department of Computer Science

Drexel University
Philadelphia, PA 19104

{lgreenwa,dono}@cs.drexel.edu

Introduction
While robot platforms have played a role in artificial intel-
ligence and robotics education for over 30 years, the cost
and size of these platforms have limited their reach. Re-
cently, low-cost robot platforms have emerged, extending
hands-on educational benefits to a diverse audience. In other
work (Greenwald & Kopena 2003), we present and dis-
cuss the construction and implementation of a course based
around a series of detailed lab exercises using these plat-
forms to tackle basic problems in computer science, artifi-
cial intelligence, robotics, and engineering. In that work we
discuss the overall educational lessons and curricular themes
that can be accomplished with these platforms. We observe
that in that course, as in many similar courses, the extensive
time spent on low-level engineering and computer science
leaves little time for artificial intelligence education. In this
paper we focus on the use of these platforms to achieve artifi-
cial intelligence education goals, assuming as pre-requisites
basic engineering and computer science lessons.

We first discuss the tradeoffs an educator must face when
deciding to employ low-cost robots in artificial intelligence
education, using localization as an example exercise. We
then provide step-by-step instructions for using a Handy
Board-based mobile robot kit to teach neural networks.
We then extend this lesson to teaching Bayesian networks.
These example exercises demonstrate that low-cost plat-
forms have matured sufficiently to become a standard tool
for teaching artificial intelligence and robotics to advanced
undergraduate and beginning graduate students.

Tradeoffs in Education with Low-Cost Robots
Educational goals can be achieved at a wide range of costs.
AI modeling, algorithms and applications may be taught
with anything from paper-and-pencil exercises, to traditional
computer programming, to hands-on robotics programming.
The benefits of hands-on robotics have been demonstrated
repeatedly (Greenwald & Kopena 2003; Beer, Chiel, &
Drushel 1999; Kumar 1998; Kumar & Meeden 1998). How-
ever, hands-on robotics benefits come at a variety of costs.
An educator choosing a specific robotics platform is limited
to the educational exercises possible with that platform. As

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

an example we look at the typical educational goal of teach-
ing localization.

Localization is the problem of determining the robot’s
current position. Methods can be characterized (Boren-
stein, Everett, & Feng 1996) into either relative or abso-
lute localization methods with the former category including
odometry (measuring wheel rotation) and inertial navigation
(measuring rate of rotation and acceleration), and the lat-
ter category including active beacons, artificial and natural
landmark recognition, and map matching. An educator can
teach one or more of these localization techniques depend-
ing on the platform’s capabilities and the students’ back-
ground preparation in mathematics and algorithms. With
respect to the platform the primary choices include sensor
variety and cost, and available processing power.

At the lowest cost end, an educator can teach localiza-
tion with any platform that includes a timer and a way to
record motor commands. Simple odometry or dead reckon-
ing can then be used to figure out where a robot has traveled
with respect to a known initial pose using simple trigonom-
etry. Although not universal, most low-cost platforms pro-
vide enough processing capability to compute trigonometric
equations, most likely in real time. Localization taught in
this way provides some educational value but is too inaccu-
rate to be built upon in further lessons, such as map building.

At a slightly higher cost is true odometry for localization,
using a sensor that measures wheel rotation, for example a
break beam IR attached to a Handy Board (Greenwald &
Kopena 2003), or an axle rotation sensor with the RCX.
These are very cheap sensors but are sufficient for educa-
tional purposes. These sensors permit the teaching of kine-
matics and inverse kinematics and provide localization that
can be reliably used for way-point navigation. With addi-
tional algorithmic lessons for error correction (Borenstein &
Feng 1995), these platforms can then be used to teach map
building or at least simple vector field histograms (Boren-
stein & Koren 1991). Note that adding a wheel rotation sen-
sor to a robot platform permits more advanced algorithms
for localization but is not worth the expense if the targeted
students are not ready for these algorithms. It is also not
worth the expense if the processing power of the target plat-
form can not compute the required equations (floating point
math) efficiently (in time and space) or cannot process the
rotation measurements rapidly. Another low cost method



for localization includes the use of a ground sensor, such
as a reflective optosensor, and artificial landmarks such as
black tape on a white background.

While these approaches to localization are educational,
they are not considered to be part of a modern artificial in-
telligence curriculum. A suitable educational lesson is to
teach a probabilistic method such as Monte Carlo localiza-
tion (Thrunet al. 2001). However, in order to teach such
methods the robot platform must be equipped with odometry
and a proximity sensor that is accurate enough to predictably
model the probability of a sensor reading in a given pose.
Low-cost IR-based proximity sensors are not sufficient for
this task and higher cost sonar-based proximity sensors are
still fairly noisy and difficult to use reliably on platforms
such as the Handy Board. The sensor of choice for Monte
Carlo localization, the laser range finder, is not yet available
with low enough power requirements or cost for low-cost
robot platforms. A recent paper (Doddset al. 2004) de-
scribes a step-by-step approach to teaching Monte Carlo lo-
calization using a camera, a laptop computer, and the odom-
etry built into the Evolution ER1 platform. The educational
value of this platform might justify its cost compared to a
Handy Board or RCX-based solution, especially if the nec-
essary processing power of the laptop computer can be inex-
pensively acquired.

Teaching Artificial Intelligence
Artificial intelligence encompasses methods for dealing with
uncertain and unknown environments. In (Greenwald &
Kopena 2003) we note that the infrared sensors used in our
robot building lab class were surprisingly unreliable. Stu-
dents reported frequent invalid readings in any non-shielded
application, making them useless as proximity sensors for
obstacle avoidance. We initiated a project to see whether
these sensors where actually useless or whether the sensor
processing needed to make use of the sensor readings was
more sophisticated than that being attempted by the students
(and taught in the introductory exercises). The resulting
project demonstrated not only that these inexpensive sen-
sors could be used for obstacle detection but that their inher-
ent unreliability provides a practical motivation for teaching
advanced artificial intelligence techniques for sensor pro-
cessing. We describe here how to take advantage of a low-
cost robot platform with inexpensive sensors to motivate and
teach the artificial intelligence topics ofneural networksand
Bayesian networks.

The goal of each exercise presented in this section is to
produce a program that takes as input four sensor readings
and returns as output a classification of whether or not an
obstacle is in the path of the robot. Specifically, the inputs
are two infrared sensors, one angled to the left front and the
other angled to the right front of the robot, and two photo-
cells (ambient light sensors), one pointing to the left front
and one pointing to the right front of the robot; as depicted
on the robot in Figure 1. The output is one of four values:
no obstacles, obstacle in center, obstacle on right, and obsta-
cle on left. Approaches that didn’t work include threshold-
ing and hysteresis with simple calibration of infrared sensors
to specific obstacle colors and room light situations as well

as manually derived dynamic calibration using the ambient
light sensors as filters. We describe three different artificial
intelligence methods that may be taught to produce this pro-
gram (1) neural networks, (2) naive Bayesian networks, and
(3) Bayesian networks.

Figure 1: The robot used for the educational exercises in this
paper. Notice the Handy Board, 2 forward-facing infrared
sensors and 2 forward-facing photocells (and a lot of tape).

A Low-Cost Robot Platform
The educational exercises discussed in this paper are
achieved using a mobile robot kit similar to those used else-
where; centering on the Handy Board (Martin 1999) mi-
crocontroller board, LEGO construction pieces, and sen-
sors built with parts from various vendors; and programmed
in the Interactive C programming language. A differen-
tial drive mobile robot is built that carries its own micro-
controller and batteries, and eventually includes paired for-
ward facing infrared and photosensors, a ground facing re-
flectance sensor, multiple bump switches, wheel encoders
for odometry, and a servo-mounted sonar module and pho-
tosensor. To help others replicate the educational exercises
in this paper, we sketch the major components of our mobile
robot kit in Table 1.

A similar kit may be constructed that substitutes theMind-
storms RCXand alternative sensors for the Handy Board.
The RCX differs from the Handy Board most significantly
in that it is limited to three sensor inputs and three motor out-
puts. Note that the robot used in the exercises in this section
does not require the sonar sensor, servo turret, or odometry
sensors. This makes the exercises more easily transferable
to other low-cost platforms such as the RCX.

Teaching Neural Networks
In this section we provide step-by-step instructions for us-
ing our low-cost robot platform to teach neural networks.
In the next section we extend this lesson to Bayesian net-
works. The following steps are described: (1) Building the
robot, (2) Gathering experimental data, (3) Designing a neu-
ral network, (4) Implementing the neural network, and (5)
Analyzing the results.

Step 1: Building the Robot The robot (depicted in Fig-
ure 1) is constructed from LEGOs, and it uses a Handy
Board as a computation platform and controller for the sen-
sors and motors. The motors each have their own set of



Category Total Pieces Details
Handy Board 1 Includes battery, adapter, and cables
Microswitches 4 Bump sensors, digital
Reflective optosensors 3 IR emitter/detector pairs, analog
Break beam optosensors2 IR, for odometry (analog or digital)
Photocells 3 Light sensors
Range sensor 1 Devantech SRF04 UltraSonic Ranger (or Polaroid 6500)
Motors 4 3 9-volt DC gear motors with cables and 1 servo motor
Wheels 22 Large drive wheels for better odometry; small wheels for casters
Gears 70 40, 24, 16, 8 tooth gears plus others; 6 hole pulleys for odomotry
Plates 300 widths: 6,4,2,1
Bricks 250 lengths: 16,12,10,8,6,4,2
Bushings 180 Full and half bushings
Pins 300 Various types
Axles 84 Various sizes
Misc. 50 Arms, cranks, connectors, flashlight, tape, toolbox with lock

Table 1: Low-Cost Robot Platform Parts List
gears, enabling them to transfer rotational power to their cor-
responding wheel. The wheels are placed on the left and
right of the robot, giving the robot a differential drive. This
enables the robot to move forward, backwards, turn left or
right, or pivot left or right. The gear ratio from each motor to
its wheel is 45 to 1, trading off speed for power. The head of
a plastic spoon is used as a front caster; it is glued to LEGO
pieces and attached so that the robot can slide stably on a
geometric plane.

There are four sensors connected to the robot: 2 infrared
receiver/transmitter pairs (IR sensors) and 2 ambient light
sensors (light sensors). Each IR sensor has a light sensor
associated with it. The light sensor is intended to provide
data about the amount of ambient light near the associated
IR sensor. The light sensor is placed to avoid the IR sensor’s
transmitter, while detecting the ambient light being received
by the IR sensor’s receiver.

The IR sensor transmits infrared light away from the
robot. Reflected IR signals are received if an object is suffi-
ciently near the sensor. The color, surface texture, angle, and
other factors affect the distance required to register reflected
IR signals in the IR sensor’s receiver. High amounts of re-
flected infrared light yield high signal values. If there is little
or no reflected infrared, the IR sensor’s receiver registers a
low signal value.

The sensors are placed approximately in a two-
dimensional plane. To differentiate between an obstacle on
the robot’s left or right, the IR sensors must be placed suffi-
ciently far apart. However, these sensors must not be placed
too far apart, or obstacles of small width located directly be-
tween the sensors will not be detected. IR sensors have a
very short range in which they are effective at detecting ob-
stacles (our sensors operate best at approximately 6 inches
from an obstacle, as determined by empirical analyses).

If the robot is moving towards an obstacle, early detection
is critical to prevent the robot from colliding with the obsta-
cle. The IR sensors must also be placed such that they will
receive reflected IR light in the robot’s path as soon as pos-
sible. This is achieved by placing the IR sensors along the
front edge of the robot (assuming a mostly forward moving

robot). The implemented robot has its IR sensors placed 6
inches apart along its leading edge.

The robot’s primary movement is forward, and its primary
method for changing directions is pivoting. The IR sensors
are each angled approximately 20 degrees away from the
center. This angling allows the robot to “see” obstacles at
the front corners of the robot. The ambient light sensors
are placed 10.5 inches apart on flat panels that are elevated
above the plane on which the IR sensors sit. The light sen-
sors point straight ahead, and are not shielded (although
more accurate information might be obtained by shielding
the light sensors from directed light).

Step 2: Gathering Experimental Data Training and val-
idation data is collected from a series of experiments. Each
experiment consists of reading samples from the robot’s sen-
sors while it is placed in a static environment. The robot
remains stationary during each experiment. The data read
from the sensors during an experiment is stored internally
on the robot, and transferred via a serial line to a desktop
computer for processing. The raw data is then processed
into a form that can be used for training or validating a neu-
ral network.

The objective of each experiment is to collect data from
the sensors that represent a specific state of the robot’s
world. In addition to the presence or absence of an obstacle,
there are several other parameters of the robot’s world that
affect sensor readings. For example, if a bright incandescent
light bulb is shining near the robot, the infrared sensors will
receive extra infrared light, even if no obstacle is present.
In order to generate a robust neural network that can detect
obstacles in a wide range of environments, it is necessary to
train on data that varies these environmental variables:

• Obstacle Position(4 states, primary parameter):

The presence of an obstacle is described in one of four
states:left, right, center, or none. Left indicates there is
an obstacle detected by the left IR sensor, and only this
sensor; similarly forRight. Center indicates there is an
obstacle detected by both IR sensors.Noneindicates that
neither IR sensor detects an obstacle.



• Obstacle Surface(2 states):
As infrared light reflects differently off of different sur-
faces, we use objects light in color with two different sur-
faces: dull andshiny. We used a dish towel as thedull
surface, and a plastic coated office binder as theshinysur-
face.

• Obstacle Distance(2 states):
The closer an object is to the sensors, the greater the signal
registered by the IR sensors. We test using two obstacle
distances:nearandfar. In our experiments,near is mea-
sured as approximately 1 to 2 inches, andfar is measured
as approximately 5 to 6 inches.

• Ambient Light(3 states):
Ambient light significantly affects the signal received by
the IR sensors’ receivers. If a lot of ambient light is
present, the IR sensors will deceptively register high sig-
nals. We use three states of ambient light in our experi-
ments:high, medium, andlow. High light is achieved by
using both the overhead room lights with fluorescent light
bulbs and a desk light with an incandescent bulb.Medium
light is achieved by using only the fluorescent overhead
lights. Low light is achieved by turning off all light in
the room and using a flashlight or the light of a computer
monitor to conduct the experiment. No sunlight is present
in either the experiments or demonstration of the robot.

There 12 possible combinations of states for each of the
obstacle positions,left, right, andcenter, and an additional
3 possible states (ambient light variation) when there is no
obstacle; for a total of 39 unique experiments. In each ex-
periment, 1000 samples from each sensor are recorded.

We note that the two different obstacles being used both
have relatively flat surfaces which are placed parallel to the
robot’s front edge in the experiments. The experimental ob-
stacles are not intended to model any particular obstacles,
but simply serve to alter the amount of light reflected in each
case. The obstacle distance parameter accounts for the vary-
ing readings caused by obstacles that are not parallel to the
robot’s front edge.

Step 3: Designing a Neural Network The inputs to the
neural network are:

1. Left Infrared Sensor Pair (LI)

2. Right Infrared Sensor Pair (RI)

3. Left Ambient Light Sensor (LA)

4. Right Ambient Light Sensor (RA)

Each sensor is analog, and the conversion to digital yields
an integer value in the range[0, 255]. Higher values indicate
lower sensor readings. For example, if there is very little
ambient light, LA and RA should return very high values
when sampled. For use in a neural network, each sensor
input Si is normalized to a floating point value in the range
of [0, 1]: Si = Si/255.

The outputs from the neural network are:

1. Obstacle on Left (O1)

2. Obstacle on Right (O2)

O1 O2 state
0 0 none
0 1 right
1 0 left
1 1 center

Table 2: The interpretation of obstacle position from the
neural network’s rounded outputs.

Each output is a floating point value in the range[0, 1].
For interpretation, the outputs are rounded to the closest in-
teger value:0 or 1. The values of the rounded outputs yield
the states described in Table 2.

We use a fully connected, feed forward neural network.
Back propagation updating has been used during the training
phase. The activation functiona(x) of each non-input node
is a logistic function:a(x) = 1/(1 + e−x).

As mentioned in the previous section, the raw data from
the robot is downloaded and processed into a form that can
be imported into standard neural network software. Any
neural network software may be used on the host computer
to design, train and validate the network. In our experiments
we use either JavaNNS or SNNS (Zellet al. 1992).

We divide the experimental data into a training set of 900
samples and a validation set of 100 samples, per experiment.
The validation set is used to avoid overfitting the network
to the training data. The experiments with no obstacle in
the robot’s sensor range were repeated 13 times in the train-
ing and validation set to give them an equal weight with the
experiments containing an obstacle. This results in 78000
patterns for use in training and validation.

The number of hidden layers in the neural network and the
number of neurons in each hidden layer are determined by
trial and error in our exercise. More sophisticated network
design methods may also be taught. The students might first
attempt to solve the problem with a single layer perceptron
network and then re-try the exercise with hidden layers, test-
ing whether or not this classification task is linearly separa-
ble. In our tests, a perceptron network was not as effective
as one with two hidden layers.

The best network we could design is depicted in Fig-
ure 2.i. This neural network consists of two hidden layers:
the first with 16 nodes, and the second with six nodes. Mean
squared error for both the training and validation set went to
zero in less than 50 training cycles.

Step 4: Implementing the Neural Network In order to
be incorporated into a robot control program, once a neural
network is designed, trained, and validated on the host PC it
must be converted into code that runs on the robot. A valu-
able feature of SNNS is its ability to automatically generate
C code, throughsnns2c(a tool included with SNNS distribu-
tions), to implement a neural network. However, the C code
generated will not compile for Interactive C (the primary
language used to program Handy Board-based robots). This
is due to the large memory usage and the linked list type data
structures used in the code generated bysnns2c. A source of
difficulty is that the Handy Board is not able to store and



i ii iii

Figure 2: (i) A neural network designed to demonstrate robust obstacle detection and classification using low-cost infrared
sensors. The network classifies obstacle location (none, center, left, right) given left and right infrared measurements and left
and right ambient light measurements. (ii) A naive Bayesian network for the same classification task. (iii) A Bayesian network
for the same classification task, removing the assumption of conditional independence of sensors given the cause (obstacle).

work with large stores of floating point numbers. We devel-
oped software that transforms the automatically generated
C code into legal Interactive C code. Our neural network
conversion software is limited to feed-forward neural net-
works using the logistic activation function, as described in
this paper. This software may be used on any SNNS sup-
ported platform. Note that since SNNS generates C code
this exercise can be ported to many existing low-cost robot
platforms.

To test whether or not the implemented neural network
provides useful classifications of obstacles from sensor data,
we downloaded the resulting Interactive C code to the robot
and incorporated it into a robot control program. The neural
network code itself is contained in a separate file and does
not contain any Handy Board specific instructions. We first
successfully tested the code in the same static environments
as used for gathering experimental data, using the LCD dis-
play to show the classification results in real-time. We then
tested the code by programming the robot to move in a
straight line until it encounters an obstacle (as determined
by the neural network code). If an obstacle is encountered
on the left, the robot backs up and pivots right to avoid the
obstacle. If an obstacle is encountered on the right, the robot
backs up and pivots left to avoid the obstacle. If an obsta-
cle is encountered in the center, the robot backs up to make
some turning room and pivots 180 degrees (turns around).

Step 5: Analyzing the Results Test runs of the resulting
neural network control code were successfully performed in
a variety of ad hoc, indoor obstacle courses. The trained
neural network is effective at detecting objects in most tested
conditions. Both moving objects (hands or feet), and static
objects (books, bags, boxes, and walls) are detected as ex-
pected. While we did not detect any decrease in classifi-
cation accuracy with robot movement, faster moving robots
had more difficulty reacting to a detected obstacle. The robot
used in this exercise is relatively slow (due to the high gear
ratio), and thus does not appear to be affected by potential
sensor illusions caused by movement. An interesting exten-
sion to this exercise would be to include robot speed as a
input to the neural network and gather data from dynamic
runs of the robot.

We empirically determined that the IR sensors used with
the robot are not capable of detecting dark obstacles. Neither
a black-shiny obstacle (a black, plastic office binder) nor a
black-dull obstacle (a black laptop bag) caused the sensors
to register values even slightly different from the those read-
ings taken when no obstacle is present. Thus, dark obstacles
were eliminated from the experiment. In real-world environ-
ments including dark obstacles, the robot will need a differ-
ent method for detecting dark obstacles. Obstacles that are
closer to dark than light in color simply take longer to reg-
ister as an obstacle, causing the robot to move closer to the
obstacle than expected.

The complete set of experimental data files (the train-
ing and validation sets) and the supporting scripts and
software are available athttp://www.cs.hmc.edu/
roboteducation .

Teaching Bayesian Networks

It is instructive for students to attempt the same classifica-
tion task using Bayesian networks. Bayesian networks may
be taught using a similar set of step-by-step instructions to
that of our neural network exercise. Steps 1 and 2 (building
the robot and gathering data) are identical. In fact we ex-
ploit this fact by using the data generated in our neural net-
work exercise to teach Bayesian networks in a non-robotics
course. As mentioned, this data is freely available for others
to replicate these exercises.

Our introduction to Bayesian networks lessons focus on
representations and inference algorithms that assume dis-
crete conditional probability tables. To adapt the neural net-
work data for these exercises we had to first discretize the
continuous data. We experimentally determined that using
four signal ranges per sensor variable was inadequate and
using 20 bins per variable led to huge tables. In the fol-
lowing exercises we discretize each sensor signal into 10
uniformly sized bins. Teaching Bayesian network represen-
tation and inference methods using continuous valued vari-
ables would avoid this step.

Our Bayesian network exercises consist of the following
abbreviated steps:

1. Build robot (see previous section)



2. Gather experimental data (see previous section)

3. Use the training data to build the full joint probability dis-
tribution table over all atomic events. While it is possible
to build the conditional probability tables directly from
the data, we found it instructive to have the students build
the full joint table and then implement marginalization
and normalization functions to obtain conditional distri-
butions from the joint.

4. Derive (from the joint) the conditional probability tables
needed to complete the naive Bayesian network depicted
in Figure 2.ii. The students first try to solve the classifica-
tion task using naive Bayesian networks before introduc-
ing more complex variable relationships.

5. Implement the naive Bayesian classification computation.

6. Evaluate the classification accuracy of the naive Bayesian
network on the validation set. Note that any fraction of the
original data may be set aside to provide separate training
and testing sets. For simplicity we used the original train-
ing set (90% of the data) for training and the validation
set (10% of the data) for testing.

7. Derive (from the joint) the conditional probability ta-
bles needed to complete the Bayesian network depicted
in Figure 2.iii. Note that this network removes some of
the conditional independence assumptions of the naive
Bayesian network and permits the students to evaluate any
increased classification accuracy due to the richer repre-
sentation.

8. Derive an equation to compute the maximum a posteriori
query for the obstacle variable given the sensor variables.
Implement this equation.

9. Evaluate the classification accuracy of the Bayesian net-
work on the validation set. Compare this classification
accuracy to that of the naive Bayesian network.

10. Implement stochastic sampling using likelihood weight-
ing to perform other (non-classification) queries on the
Bayesian network.

Comparing the naive Bayesian network of Figure 2.ii and
the Bayesian network of Figure 2.iii the students learn that
the Bayesian network captures additional influences among
variables compared to the naive Bayesian network. Theses
influences lead to better classification accuracy. Addition-
ally, modeling the data with a Bayesian network permits
the study of different inference algorithms with more varied
queries (other than classification). Although we employed
this exercise in a class without actual robots the use of data
from real robot experiments made the task more interesting
to the students.

In addition to teaching the students about different repre-
sentations for uncertainty, and differing inference algorithms
for classification, students can compare the classification ac-
curacy of the resulting Bayesian networks to the neural net-
work of the previous section. Other comparisons between
the two representation methods can be discussed such as the
“readability” of the resulting networks, continuous versus
discretized variables, and the ability to simultaneously cap-
ture both classification output and degree of belief in that

output with the Bayesian networks. A perceptron network
could also be trained from the data to provide a comparison
to the resulting neural network as well as the naive Bayesian
network.

Acknowledgements
We thank Yogi Mehta and Brian Summers for their efforts
in testing the Bayesian networks exercises. This research is
sponsored in part by a National Science Foundation (NSF)
Instrumentation Award under grant CISE-9986105.

References
Beer, R. D.; Chiel, H. J.; and Drushel, R. F. 1999. Us-
ing autonomous robotics to teach science and engineering.
Communications of the ACM42(6).
Borenstein, J., and Feng, L. 1995. Correction of systematic
odometry errors in mobile robots. InProceedings of the
1995 International Conference on Intelligent Robots and
Systems (IROS ’95).
Borenstein, J., and Koren, Y. 1991. The vector field his-
togram - fast obstacle avoidance for mobile robots.IEEE
Transactions on Robotics and Automation7(3):278–288.
Borenstein, J.; Everett, H. R.; and Feng, L. 1996.Where
am I? Sensors and Methods for Mobile Robot Positioning.
The University of Michigan.
Dodds, Z.; Santana, S.; Erickson, B.; Wnuk, K.; and Fis-
cher, J. 2004. Teaching robot localization with the Evo-
lution ER1. In Greenwald, L.; Dodds, Z.; Howard, A.;
Tejada, S.; and Weinberg, J., eds.,Accessible Hands-on
Artificial Intelligence and Robotics Education. American
Association for Artificial Intelligence Press.
Greenwald, L., and Kopena, J. 2003. Mobile robot labs:
On achieving educational and research goals with small,
low-cost robot platforms.IEEE Robotics and Automation,
Special Issue on Robotics in Education: An Integrated Sys-
tems Approach to Teaching10(2):25–32.
Kumar, D., and Meeden, L. 1998. A robot laboratory for
teaching artificial intelligence. InProceedings of the 29th
SIGCSE Technical Symposium on Computer Science Ed-
ucation (SIGCSE-98), volume 30(1) ofSIGCSE Bulletin,
341–344. New York: ACM Press.
Kumar, D. 1998. Curriculum descant, teaching about em-
bedded agents.SIGART Bulleting9(1):7.
Martin, F. G. 1999. The Handy Board technical reference.
Technical report, MIT.
Thrun, S.; Fox, D.; Burgard, W.; and Dellaert, F. 2001. Ro-
bust Monte Carlo localization for mobile robots.Artificial
Intelligence128(1-2):99–141.
Zell, A.; Mache, N.; Huebner, R.; Schmalzl, M.; Sommer,
T.; and Korb, T. 1992. SNNS: Stuttgart neural network
simulator. Technical report, Stuttgart.


