
TRIPOD – Computer Vision for Classroom Instruction and Robot Design

Paul Y. Oh

Drexel University, Philadelphia PA, Email: paul@coe.drexel.edu

Summary

TRIPOD is free and open source software for rapidly
developing computer vision applications. With such
software, robot vision systems can be developed, tested
and validated. This paper presents a step-by-step tu-
torial where live video is thresheld to display the cor-
responding binary image. This simple exercise serves
to illustrate the realization of a robot vision system. A
LEGO Mindstorms Vision Command module, which
is a Logitech USB camera, is used. Platform develop-
ment is in ANSI C/C++ on a Windows PC without
low-level Windows programming.

Keywords: computer vision, robotics, USB cameras,
LEGO, real-time, image processing

1 Introduction

In recent years, the emergence of hardware to rapidly
prototype robots and software to test algorithms have
made an impact on robotics education. LEGOs, pro-
grammable embedded microcontrollers and MATLAB
are some examples of tools which students can prac-
tice real-world hands-on robot design. Lacking how-
ever, are non-proprietary, affordable, easy-to-use and
customizable software tools to design robot vision sys-
tems. While affordable hardware like USB webcams,
firewire cards and lens-on-a-chip boards are ubiqui-
tous, software tools to visually servo robots are not
widely available. Although computer vision packages
are commercially available, they are often too expen-
sive or have too steep a learning curve to implement
effectively in the classroom. As such, despite its im-
portance and significance, students rarely get hands
on experience in designing vision systems in robotics
and artificial intelligence courses. While there are
computer vision courses, often only static image files
are used. Robot vision systems often demand visual-
servoing where live video is processed in a closed-loop
feedback loop that is designed to handle processing
delays and robot dynamics [4].

This paper describes a computer vision software pack-

Figure 1: TRIPOD’s Windows’ interface. Top and
bottom viewports respectively display the live camera
field-of-view and processing results (left). Develop-
ment just involves inserting ANSI C/C++ algorithms
in the template, indicated by the boxed areas (right).

age called TRIPOD: Template for Real-time Image
PrOcessing Development. A screenshot is provided
in Figure 1. It was designed for classroom imple-
mentation and addresses the need for a flexible plat-
form to rapidly design robot vision systems. To
reach the widest possible audience, TRIPOD was de-
signed to use affordable USB Logitech cameras 1 and
is programmable in ANSI C/C++. TRIPOD runs
on Windows-based PCs with the Microsoft Visual
C++ 6.0 compiler since most students can easily find
such platforms on campus or configure ones at home.
TRIPOD is free open source software and does not
require low-level Windows programming knowledge.
The software provides a pointer to the frame’s pixel
data to enable one to focus on image processing. For
example, textbook computer vision algorithms [2] like
Sobel edge filters and sum-of-square difference track-
ers have been easily implemented in ANSI C on TRI-
POD. To illustrate TRIPOD as a potential classroom
tool for robot vision instruction, a tutorial of binariz-
ing live video is given in this paper. Section 2 provides
the coding objective while Sections 3 and 4 present

1For example, the Logitech Quickcam or LEGO Vision Com-
mand Camera, are color cameras that cost less than 50 US
dollars.

step-by-step instructions and code commentary. Sec-
tion 5 concludes with map of future work.

2 Coding Objective

In computer vision, a “Hello World” type program
would be the generation of a binary image. Here,
pixels below a pre-defined threshold are made black
while the remaining pixels are set white as shown in
the bottom viewport of Figure 1. Such binarization
is often performed as a pre-processing step for algo-
rithms like edge detection and tracking. Pseudocode
for example:

for(row = 0; row < H; row++) {

for(col = 0; col < W; col++) {

if(grayImage[row, col] < threshold)

/* make pixel black */

binaryImage[row, col] = 0;

else

/* make pixel white */

binaryImage[row, col] = 255;

}

}

where an 8-bit grayscale image, grayImage with
(W×H) pixels is read. Here, W is the width (number of
columns), H is height (number of rows) and threshold
is a pre-defined value ranging from 0 to 255 used to
generate the binarized image binaryImage.

Given the popularity of LEGO Mindstorms in
robotics education and experimentation, TRIPOD
was designed to work with the LEGO Vision Com-
mand camera. This Mindstorms product is actually
a 24-bit color Logitech USB camera but its accompa-
nying image processing software is very limited. To
overcome this, TRIPOD interfaces into Logitech’s free
Quickcam software developers kit (QCSDK) 2. TRI-
POD thus permits one to concentrate on computer
vision algorithm in ANSI C/C++ while avoiding low
level Windows programming like DirectX.

Step-by-step instructions for generating a binarized
view of live video, as shown in Figure 1, follows. This
was tested on a Pentium III 500 MHz, 128 MB RAM
running Windows 98 and LEGO Mindstorms Vision
Command camera. Microsoft Visual C++ 6.0 is used
and only minimal MFC knowledge is assumed.

2http://developer.logitech.com/sdk

Figure 2: Visual C++ 6.0 screenshot when creating a
Win32 application

3 Step-by-Step Instructions

TRIPOD will be used to create a program with two
viewports. The top viewport will display live video
captured by the camera while the bottom viewport
displays a binarized version.

STEP 1: Create Win32 Application

From the menubar choose File-New and select Win32
Application. For the Location, choose C:\tripod and
type brinarize for the Project name. Note: the
spelling has an “r” in brinarize.exe). The Win32
check box should be checked. When your screen looks
like Figure 2, click the OK button.

STEP 2: Create MFC Project

After clicking OK above, Choose Empty Project when
prompted by the popup box for a project type. When
the Finish button is clicked VC++ automatically
creates the project’s structure and makefiles. Click
the FileView tab (near the screen’s bottom) and the
Source, Header and Resource folders can be seen.
From the menubar choose File-Save All and then
Build-Rebuild All. There should be no compile errors
since these folders are currently empty.

STEP 3: Applications folder

Using Windows Explorer, copy the TRIPOD template
files from the C:\tripod folder to the application
project folder, for example, C:\tripod\brinarize

StdAfx.h, resource.h, tripod.cpp,

Figure 3: Clicking FileView enables all files in the
Source, Header and Resource folders to be seen.

tripod.h, tripod.rc, tripodDlg.cpp,

tripodDlg.h, videoportal.h,

videoportal.cpp.

The res folder must be copied as well. In VC++,
choose FILE-Save All.

STEP 4: Include TRIPOD files

In VC++, click the FileView tab and expand
brinarize files to see folders named Source Files,
Headers Files and Resources. Click the Source Files
folder once and then right click and choose Add Files.
Figure 3 should result.

Browse to C:\tripod\brinarize and add
tripod.cpp. Expand the Source Files folder
and one should see tripod.cpp listed as shown in
middle image Figure 3. Repeat the above, adding the
following files to the Source Files folder:

tripod.rc, tripodDlg.cpp, videoportal.cpp

Next, add the following files to the Header Files folder:

StdAfx.h, tripod.h, resource.h,

tripodDlg.h, videoportal.h

Once all these files have been added, the workspace
tree should look like the left image in Figure 3.

STEP 5: Include QCSDK and MFC Shared DLLs

QCSDK include files need to be added to the project.
From the menubar click Project-Settings. Next, click
on the root directory brinarize and then the C/C++
tab. Under the Category combo pulldown box choose
Preprocessor. In the Additional Include Directories
edit box, type \QCSDK1\inc. This results in Figure 4
(left).

Next, click the General tab and under the Microsoft
Foundations Class pulldown menu, choose Use MFC
in a shared DLL as shown in the Figure 4 (right).

Finish off by clicking OK. Next, save all work by click-
ing File-Save All. Next compile the project by choos-
ing Build-Rebuild All.

STEP 6: Add Image Processing Code

The TRIPOD source, header and resource files used
in the previous steps grab the color image frame, con-
verts the red, green and blue pixels into a grayscale
value, and stores the frame pixels into a malloc’ed
row-column vector. All that remains is to add image
processing routines. The added code (see Appendix
Section 6) goes in the tripodDlg.cpp file, under the
CTripodDlg::doMyImageProcessing function.

STEP 7: Save, Compile and Execute

Once image processing algorithms have been imple-
mented choose File-Save All and compile by choosing
Build-Rebuild All. Upon successful compile, choose
Build-Execute brinarize.exe. The application should
launch, successfully thresholding and displaying real-
time binarized images as was shown in Figure 1.

4 Code Commentary

TRIPOD files and classes are structured so that image
processing algorithms can be written in ANSI C/C++
and inserted in CTripodDlg::doMyImageProcessing

(copy of which is in Appendix Section 6). This is
possible by providing pointers to pixel data arranged
in row-column vector format that is refreshed at frame
rate.

4.1 Destination and Source Bitmaps

The variables m destinationBmp and sourceBmp re-
late to pixel data as follows. ANSI C/C++ program-
mers will recognize that in doMyImageProcessing,
the code nested between the two for loops is ANSI
C. m destinationBmp is a pointer to an array of pix-
els and *(m destinationBmp + i) is the value of the

Figure 4: Screenshot after including QCSDK and MFC Shared DLLs

Figure 5: Image data represented as a matrix (left)
and row-column vector right

i’th pixel. The two for loops read, process and
write every pixel in the image. After cycling through
the array, a final m destinationBmp results and can
be displayed. doMyImageProcessing and displaying
m destinationBmp runs in real-time (30 frames/sec)
if the nested code is not computationally intensive,
like simple threshold or centroid calculations.

m destinationBmp points to a 24-bit grayscale
bitmap. It is 320 pixels wide by 240 pixels
high. It is malloc’ed and created in the func-
tion grayScaleTheFrameData. In this function,
sourceBmp points to the actual pixel data in the 24-
bit RGB color image captured by the camera. Being
RGB, each pixel in sourceBmp is represented by three
bytes (red, green and blue).

The reason for creating m destinationBmp is that of-
ten, computer vision developers use grayscale images
to reduce computation cost. If you need color data,
then just use sourceBmp.

4.2 Row-Column Vector Format

An image is an arranged set of pixels. A 2-dimensional
array like myImage[r,c] where r and c are the pixel’s
row and column positions respectively, is an intuitive

arrangement as illustrated in Figure 5 (left). For ex-
ample, myImage is a (3 × 4) image having three rows
and four columns. myImage[2,1], which refers to the
pixel at row 2 column 1, has a pixel intensity value J .

An alternative arrangement, often encountered in
computer vision, is the row-column format which uses
a 1-dimensional vector and shown in Figure 5 (right).
A particular pixel is referenced by:

(myImage + r*W + c)

where myImage is the starting address of the pixels, r
and c are the pixel’s row and column positions respec-
tively , and W is the total number of columns in the
image (width in pixels). To access the pixel’s value,
one uses the ANSI C de-referencing operator:

*(myImage + r*W + c)

For example for r=2, c=1 and W=4, then (myImage

+ r*C + c) yields (myImage + 9). In vector form
myImage[9], which is the same as *(myImage + 9),
has the pixel value J .

The row-column format has several advantages over
2D arrays. First, memory for an array must be allo-
cated before run-time. This forces a programmer to
size an array according to the largest possible image
the program might encounter. As such, small images
requiring smaller arrays would lead to wasted mem-
ory. Furthermore, passing an array between functions
forces copying it on the stack which again wastes
memory and takes time. Pointers are more compu-
tationally efficient and memory can be malloc’ed at
run-time. Second, once image pixels are arranged in

row-column format, you can access a particular pixel
with a single variable, as well as take advantage of
pointer arithmetic like *(pointToImage++). Arrays
take two variables and do not have similar arithmetic
operators. For these two reasons row-column formats
are used in computer vision, especially when more
computationally intensive and time-consuming image
processing is involved.

4.3 24-bit Bitmap Images

A 24-bit image uses three bytes to specify a single
pixel. Often these bytes are the pixel’s red, green
and blue (RGB) contributions. RGB is also known
as the Truecolor format since 16 million different
colors are possible with 24-bits. As mentioned
above, m destinationBmp and sourceBmp are 24-
bit grayscale and Truecolor images respectively.
m destinationBmp makes all three bytes of a single
pixel equal in intensity value. The intensity is a gray
value computed from the amount of red, green and
blue in the pixel. As such ∗(m destinationBmp

+ i), ∗(m destinationBmp + i + 1), and
∗(m destinationBmp + i + 2) are made equal (see
the function grayScaleTheFrameData for details).
Referring to Appendix Section 6, thresholding sets
these three bytes to either black or white.

Bitmaps, the default image format of the Windows
operating system, can be saved to a disk file and typ-
ically have a .BMP filename extension. Bitmaps can
also exist in memory and be loaded, reloaded, dis-
played and resized. There are two caveats to using
bitmaps. First, pixels are stored from left-to-right
but bottom-to-top; when a bitmap is viewed, pixels
towards the bottom are stored closer to the image’s
starting address. Second, a pixel’s color components
are stored in reverse order; the first, second and third
bytes are the amounts of blue, green and red consecu-
tively. Again, the grayScaleTheFrameData function
can be referenced to see this reverse-ordering of color.

4.4 Code Operation

The flowchart in Figure 6 shows brinarize.exe’s
function calling sequence. A Window’s application
begins with a call to OnInitDialog. Code here ini-
tializes the sizes for the two videoportals. A call to
allocateDib allocates memory to display both the
image captured by the camera and the image result-
ing from doMyImageProcessing, like binarizing.

The Logitech SDK defines a variable flag
called NOTIFICATIONMSG VIDEOHOOK and goes

Figure 6: The loop in the flowchart above executes
doMyImageProcessing on every frame.

true whenever the camera acquires a new im-
age frame. After OnInitDialog, the code in
OnPortalNotificationProcessedview checks
for this flag and executes. Code here then as-
signs the pointer lpBitmapPixelData to the
frame’s pixel data, grayscales the color image,
executes any computer vision algorithm stored in
doMyImageProcessing. The image processing results
are then displayed through displayMyResults

which uses the MFC function StretchDIBits

to stretch a device-independent bitmap im-
age to fit the videoportal’s display window. If
doMyImageProcessing is not computationally time-
consuming, OnPortalNotificationProcessedview

will execute at 30 frames/sec.

5 Conclusions

This paper presented TRIPOD, a free and open source
software, for developing computer vision applications.
Creating TRIPOD was motivated by two reasons.
First, there is a dire need for non-proprietary, cus-
tomizable and affordable software tools to rapidly de-
sign robot vision systems. Second, such tools would
serve well in the classroom by providing hands-on ex-
perience in real-world robot vision design. As such,
TRIPOD was designed to work with USB cameras like
the LEGO Vision Command. A detailed step-by-step
tutorial was presented to illustrate the development
process. Beyond binarized images, algorithms like de-

Figure 7: TRIPOD Edge detection application.

tecting edges (see Figure 7 and colors, tracking re-
gions and counting objects have also been tested and
implemented on TRIPOD [3] 3. Beta versions of TRI-
POD have been tested by several university robot labs
including Drexel, Columbia, Harvard, Texas A&M,
Brown, USC, CMU and Rutgers, with positive feed-
back.

Indeed there are other computer vision packages for
Windows. The Intel OpenCV [1] and Microsoft’s Vi-
sion SDK are powerful packages but have steep learn-
ing curves. Commercially available packages also ex-
ist but often are proprietary and involve run-time li-
censes. As such, they do not lend themselves to class-
room implementation. Matlab’s Image Processing
Toolbox, while excellent for computer vision courses,
works only with static images and thus ill-suited for
teaching visual-servoing design. As such, TRIPOD
reaches a wider audience; USB cameras and ANSI
C/C++ programming give students affordable hands-
on instruction on computer vision and visual-servoing
development. The author is currently developing a
Linux version called TRIPODx that will leverage the
Bt8x8 chipset.

3Such algorithms and TRIPOD are downloadable from the
author at http://www.boondog.com

References

[1] Bradski, G., “The OpenCV Library – An open-
source library for processing image data,” Dr.
Dobb’s Journal, pp. 120-125, November 2000

[2] Myler, H.R., The Pocket Handbook of Image
Processing Algorithms in C, Prentice Hall, 1993.

[3] Oh, P.Y., Green, W.E., “A Kite and Teleop-
erated Vision System for Acquiring Aerial Im-
ages”, IEEE Int Conf Robotics and Automation
(ICRA), pp. 1404-09, Taiwan, September 2003.

[4] Oh, P.Y., Allen, P.K., “Visual Servoing by Parti-
tioning Degrees of Freedom,” IEEE Transactions
on Robotics and Automation, V17, N1, pp. 1-17,
February 2001

6 Appendix

Source code for the doMyImageProcessing function.
Pixel processing, thresholding for example, occurs in
the the nested for loops.

void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)

{

// doMyImageProcessing: This is where you’d write your own image processing code

// Task: Read a pixel’s grayscale value and process accordingly

unsigned int W, H; // Width and Height of current frame [pixels]

unsigned int row, col; // Pixel’s row and col positions

unsigned long i; // Dummy variable for row-column vector

BYTE thresholdValue; // Value to threshold grayvalue

char str[80]; // To print message

CDC *pDC; // Device context need to print message

W = lpThisBitmapInfoHeader->biWidth; // biWidth: number of columns

H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

// In this example, the grayscale image (stored in m_destinationBmp) is

// thresholded to create a binary image. A threshold value close to 255

// means that only colors close to white will remain white in binarized

// BMP and all other colors will be black

thresholdValue = 150;

for (row = 0; row < H; row++) {

for (col = 0; col < W; col++) {

// Recall each pixel is composed of 3 bytes

i = (unsigned long)(row*3*W + 3*col);

// Add your code to operate on each pixel. For example

// *(m_destinationBmp + i) refers to the ith pixel in the destinationBmp

// Since destinationBmp is a 24-bit grayscale image, you must also apply

// the same operation to *((m_destinationBmp + i + 1) and

// *((m_destinationBmp + i + 2).

// Threshold: if a pixel’s grayValue is less than thresholdValue

if(*(m_destinationBmp + i) <= thresholdValue)

*(m_destinationBmp + i) =

*(m_destinationBmp + i + 1) =

*(m_destinationBmp + i + 2) = 0; // Make pixel BLACK

else

*(m_destinationBmp + i) =

*(m_destinationBmp + i + 1) =

*(m_destinationBmp + i + 2) = 255; // Make pixel WHITE

}

}

// To print message at (row, column) = (75, 580). Comment if not needed

pDC = GetDC();

sprintf(str, "Binarized at a %d threshold", thresholdValue);

pDC->TextOut(75, 580, str);

ReleaseDC(pDC);

