Avoiding the Karel-the-Robot paradox: A framework for making
sophisticated robotics accessibte

Douglas Blank
Computer Science
Bryn Mawr College
Bryn Mawr, PA 19010
dblank@cs.brynmawr.edu

Holly Yanco
Computer Science
Univ. of Mass. Lowell
Lowell, MA 01854
holly@cs.uml.edu

Abstract

As educators, we are often faced with the paradox of
having to create simplified examples in order to demon-
strate complicated ideas. The trick is in finding the right
kinds of simplifications—ones that will scale up to the
full range of possible complexities we eventually would
like our students to tackle. In this paper, we argue that
low-cost robots have been a useful first step, but are now
becoming a dead-end because they do not allow our stu-
dents to explore more sophisticated robotics methods.
We suggest that it is time to shift our focus from low-
cost robots to creating software tools with the right kinds
of abstractions that will make it easier for our students to
learn the fundamental issues relevant to robot program-
ming. We describe a programming framework called
Pyro which provides a set of abstractions that allows stu-
dents to write platform-independent robot programs.

Introduction

TheKarel-the-robotenvironment was designed to intro-
duce structured imperative programming to beginning
programming students (Richard E. Pattis 1981). In a
similar way, inexpensive robots have made introductory
Al topics accessible to a wide range of students, from
K-12 to the college level. The availability of low-cost
robots has led to their widespread use in the undergrad-
uate artificial intelligence curriculum (Meeden 1996;
Turneret al. 1996; Kumar & Meeden 1998; Beer, Chiel,
& Drushel 1999; Harlan, Levine, & McClarigan 2001,
Wolz 2001; Gallagher & Perretta 2002; Klassner 2002).
Although this trend has been a tremendous help in
bringing robotics to students, we believe these low-cost
robot platforms often lead to a robotics dead-end, much
the same way that over reliance on the Karel environ-
ment did to advanced programming paradigms. While
low-cost robots, like the Karel environment, provide

*This work was supported in part by NSF CCLI grant DUE
0231363.
Copyright(© 2004, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Lisa Meeden
Computer Science
Swarthmore College
Swarthmore, PA 19081

Deepak Kumar

Computer Science

Bryn Mawr College
Bryn Mawr, PA 19010

dkumar@cs.brynmawr.edumeeden@cs.swarthmore.edu

a wonderful motivation and a great starting point, the
paradox is that they often trap the student in a single
paradigm, or worse, a single hardware platform.

There are several problems with the use of low-cost
robots in education. The first problem is that every robot
platform comes with its own, often proprietary, devel-
opment tools that are substantially different from other
platforms. Often the primary programming languages
used are different as well. More problematic may be a
complete change in paradigm from one robot to another.
Consequently, even if one were to invest in learning to
use one robot platform, probably none of the code, and
possibly little of the knowledge would transfer to a dif-
ferent platform. This situation is perhaps similar to the
one in the early days of digital computers when every
computer had a different architecture, a different assem-
bly language, and even a different way of storing the
most basic kinds of information.

Secondly, we believe that many robot programming
paradigms do not easily support more sophisticated sen-
sors. For example, low-cost robots often only come
equipped with infrared range sensors. Some can be
expanded to include sonar range sensors or even laser
range sensors. However, we suspect that if even more
sophisticated sensors were to become affordable, we
would be unable to utilize them because there is no
easy way of integrating them into existing robot soft-
ware paradigms. That is, sophisticated sensors may be
hardware accessible, but not conceptually accessible by
the student. The problem is that thameworkdoesn't
pedagogically scale well.

We believe that the proliferated use of robots in Al
education will result not from low-cost hardware plat-
forms, but from accessibility of these platforms via
common conceptual foundations that would make pro-
gramming them uniform and consistent. Our position
is defined more by striving for a lower learning cost
of robotics without sacrificing the sophistication of ad-
vanced controllers.

Our goal is to reduce the cost of learning to program



robots by creating uniform conceptualizations that are behaviors independent of the size, weight, and shape of
independent of specific robot platforms and incorpo- arobot. Consider writing a robot controller for obstacle
rate them in an already familiar programming paradigm. avoidance that would work on a 24-inch diameter, 50-
Conceptualizing uniform robot capabilities presents the pound Pioneer2 robot as well as on a 2.5-inch diameter,
biggest challenge: How can the same conceptualization 3-ounce Khepera. This was made feasible by making

apply to different robots with different capabilities and
different programming API's? Our approach, which has

been successful to date, has been shown to work on sev-

eral robot platforms, from the most-expensive research-
oriented robot, to the lowest-cost LEGO-based ones.
We are striving for the “write-once/run-anywhere” idea:
robot programs, once written, can be used to drive
vastly different robots without making any changes in

the code. This approach leads the students to concen-

trate more on the modeling of robot “brains” by allow-
ing them to ignore the intricacies of specific robot hard-
ware. More importantly, we hope that this will allow
students to gradually move to more and more sophis-
ticated sensors and controllers. In our experience, this
more generalized framework has resulted in a better in-
tegration of robot-based laboratory exercises in the Al
curriculum. It is not only accessible to beginners, but

is also usable as a research environment for robot-based

modeling.

The Pyro Framework

We have been developing a robot programming frame-
work that we call Pyro for Python Robotics (Blank,
Meeden, & Kumar 2003). As the name suggests, most
of the framework is written in Python. Python is an
easy-to-read scripting language that looks very similar
to pseudocode. Python fits very well with our goals in
that it is easy for beginning students to learn, and yet it
also supports many advanced programming paradigms,
such as object-oriented and functional programming
styles. It also integrates easily with C and C++ code
which makes it possible to quickly incorporate existing
code. The C/C++ interface also lets one put very ex-
pensive routines (like vision programs) at lower levels
for faster runtime efficiency. One interesting reason for
using Pyro is that the entire software, from the OpenGL
interface to the neural network code, can be explored
by the student. In addition, advanced students can copy
the code into their own space and change anything that
interests them.

We have also used Pyro with beginning programmers
and non-programmers. For example, in an introduction
to cognitive science course, Pyro can be used like one
would use LEGO-based robots. However, the students
need not learn a new interface as they explore other con-
trol paradigms, such as fuzzy logic, neural networks, or
genetic algorithms.

In addition to the unified framework, we have created
simple abstractions that make the writing of basic robot

the following abstractions:

Range Sensors:Regardless of the kind of hardware
used (IR, sonar, laser) sensors are categorized as
rangesensors. Sensors that provide range informa-
tion can thus be abstracted and used in a control pro-
gram.

Robot Units: Distance information provided by range
sensors varies depending on the kind of sensors used.
Some sensors provide specific range information,
like distance to an obstacle in meters or millimeters.
Others simply provide a numeric value where larger
values correspond to open space and smaller values
imply nearby obstacles. In our abstractions, in addi-
tion to the default units provided by the sensors, we
have introduced a new measuaapbot unit: 1 robot
unit is equivalent to the diameter of 1 robot, whatever
it may be.

Sensor Groups: Robot morphologies (shapes) vary
from robot to robot. This also affects the way sen-
sors, especially range sensors, are placed on a robot’s
body. Additionally, the number of sensors present
also varies from platform to platform. For example, a
Pioneer2 has 16 sonar range sensors while a Khepera
has 8 IR range sensors. In order to relieve a program-
mer from the burden of keeping track of the num-
ber of sensors (and a unique numbering scheme), we
have createdensor groupsfront, left, front-left, etc.
Thus, a programmer can simply query a robot to re-
port its front-left sensors in robot units. The values
reported will work effectively on any robot, of any
size, with any kind of range sensor, yet will be scaled
to the specific robot being used.

Motion Control: Regardless of the kind of drive
mechanism available on a robot, from a program-
mer’s perspective, a robot should be able to move for-
ward, backward, turn, and/or perform a combination
of these motions (like move forward while turning
left). We have created three motion control abstrac-
tions: translate, rotate, andmove. The latter sub-
sumes both translate and rotate and can be used to
specify a combination of translation and rotation. As
in the case of range sensor abstractions, the values
given to these commands are independent of the spe-
cific values expected by the actual motor drivers. A
programmer only specifies values in a range -1.0..1.0
(see examples below).

Services: The abstractions presented above provide a
basic, yet important functionality. We recognize that
there can be several other devices that can be present



from pyro.brain import Brain

class Avoid(Brain):
def wander(self, minSide):
robot = self.getRobot()

#if approaching an obstacle on the left side, turn right
if robot.get(’range’,'value’, front-left’,’minval’) < minSide:

robot.move(0,-0.3)
#if approaching an obstacle on the right

side, turn left

elif robot.get(range’,'value’,'front-right’,’minval’) < minSide:

robot.move(0,0.3)
#else go forward
else:
robot.move(0.5, 0)
def step(self):
self.wander(1)

def INIT(engine):
return Avoid('Avoid’, engine)

Figure 1: An obstacle avoidance program in Pyro

on a robot: a gripper, a camera, etc. We have de-
vised aserviceabstraction to accommodate any new
devices or ad hoc programs that may be used in robot

scribed in the previous section. Itis written in an object-
oriented style, and creates a class cal@did which
inherits from a Pyro class calldgrain. Every Pyro

control. For example, a camera can be accessed by brain is expected to havestep method which is ex-
a service that enables access to the features of the ecuted on every control cycle. The brain shown will

camera. Further, students can explore vision process-

ing by dynamically and interactively sequencing and
combinindfilters.

In the following section we explore an example that

utilizes these abstractions and demonstrates the effec-

tiveness of these abstractions in writing generic robot
controllers.

An Example

In this section, we’ll use the example of avoiding ob-
stacles to demonstrate the unified framework that Pyro
provides for using the same control program across
many different robot platforms.

Direct control is normally the first control method in-
troduced to students. It is the simplest approach be-
cause sensor values are used to directly affect motor
outputs. For example, the following pseudocode rep-
resents a very simple algorithm for avoiding obstacles.

if approaching an obstacle

on the left side, turn right
if approaching an obstacle

on the right side, turn left
else go forward

The program shown in Figure 1 implements the

pseudocode algorithm above using the abstractions de-

cause the robot to continually wander and avoid obsta-
cles until the program is terminated.

It is not important to understand all the details of
Pyro implementation, but the reader should notice that
the entire control program is independent of the kind of
robot and the kind of range sensor being used. The pro-
gram will avoid obstacles when they are within 1 robot
unit of the robot’s front left or front right range sensors,
regardless of the kind of robot.

After learning about direct control, students can
move to any of the other control paradigms. The
paradigms selected would depend upon the course that
Pyro was being used for. In a course that empha-
sized robotics, the next paradigm would most likely
be behavior-based control. An Al or machine learn-
ing course would likely skip behavior-based control and
move immediately to neural-network-based control.

Currently, the following modules are implemented
and extensive course-style materials are available: di-
rect control, sequencing control, behavior-based con-
trol, neural network-based learning and control, self-
organizing maps and other vector quantizing algo-
rithms, computer vision, evolutionary algorithms, and
multi-robot control. Other paradigms and modules are
planned in the future. These will include logic-based
reasoning and acting, classical planning, path planning
and navigation. Pyro is an open-source, free software



project, and we hope to get contributions from other in-
terested users.

Conclusions

We have argued that it is more important to strive for
easily learnable robot programming interfaces than for
low-cost robot platforms. We have tried to avoid the
Karel-the-robotparadox by carefully designing useful
and universal conceptualizations. These conceptualiza-
tions not only make the robot programs more versatile,
they also help in robotics research. Specifically, the
modeling of robot behaviors can now be tested on sev-
eral robot platforms without having to change the pro-
grams. This adds much credibility to the tested models
as the results will have been confirmed on several robot
platforms.

We believe that the current state-of-the-art in robot
programming is analogous to the era of early digital
computers when each manufacturer supported different

architectures and programming languages. Regardless

of whether a computer is connected to an ink-jet printer
or alaser printer, a computer today is capable of printing
on any printer device because device drivers are inte-
grated into the system. Similarly, we ought to strive for
integrated devices on robots. Obviously we're not there
yet. Our attempts at discovering useful abstractions are
a first and promising step in this direction. We believe
that discoveries of generic robot abstractions will, in the
long run, lead to a much more widespread use of robots
in education and will provide access to robots to an even
wider range of students.

Acknowledgments

Pyro source code, documentation and tutorials are avail-
able atwww.PyroRobotics.org. This work is
funded in part by NSF CCLI Grant DUE 0231363.

References

Beer, R. D.; Chiel, H. J.; and Drushel, R. F. 1999. Us-
ing Autonomous Robotics to Teach Science and Engi-
neering.Communications of the ACM.

Blank, D.; Meeden, L.; and Kumar, D. 2003. Python
robotics: an environment for exploring robotics be-
yond legos. IrProceedings of the 34th SIGCSE techni-
cal symposium on Computer science education, 317—
321. ACM Press.

Gallagher, J. C., and Perretta, S. 2002. WWW Au-
tonomous Robotics: Enabling Wide Area Access to a
Computer Engineering PracticurRroceedings of the
Thirty-third SIGCSE Technical Symposium on Com-
puter Science Educatidsv(1):13-17.

Harlan, R. M.; Levine, D. B.; and McClarigan, S.
2001. The Khepera Robot and the kRobot Class: A
Platform for Introducing Robotics in the Undergrad-
uate Curriculum. Proceedings of the Thirty-second
SIGCSE Technical Symposium on Computer Science
Education33(1):105-109.

Klassner, F. 2002. A Case Study of LEGO Mindstorms
Suitability for Artificial Intelligence and Robotics
Courses at the College LevelProceedings of the
Thirty-third SIGCSE Technical Symposium on Com-
puter Science Educatids¥(1):8-12.

Kumar, D., and Meeden, L. 1998. A Robot Labora-
tory for Teaching Artificial Intelligence Proceedings

of the Twenty-ninth SIGCSE Technical Symposium on
Computer Science Educati@d(1).

Meeden, L. 1996. Using Robots As Introduction to
Computer Science. In Stewman, J. H., dlgceed-
ings of the Ninth Florida Artificial Intelligence Re-
search Symposium (FLAIRS), 473-477. Florida Al Re-
search Society.

Richard E. Pattis. 198Karel the Robot. John Wiley
and Sons, Inc.

Turner, C.; Ford, K.; Dobbs, S.; and Suri, N. 1996.
Robots in the classroom. In Stewman, J. H., Bto-
ceedings of the Ninth Florida Artificial Intelligence
Research Symposium (FLAIRS), 497-500. Florida Al
Research Society.

Wolz, U. 2001. Teaching Design and Project Man-
agement with LEGO RCX Robot®roceedings of the
Thirty-second SIGCSE Technical Symposium on Com-
puter Science Educatid3B(1):95-99.



