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Introduction
We are interested in projecting emotions as a tool for ap-
proximating computationally intensive sequential decision-
making models of single-agent systems. Specifically, we be-
lieve that affect can be used to tradeoff computational com-
plexity with quality of the solution, thereby producing ap-
proximations that compare favorably with other approxima-
tion techniques. Our research is predicated on the thesis that
cognitive appraisal of the environment induces internal emo-
tions that in turn affect the agent’s decision-making process.
In order to validate our thesis, we require a computational
model for capturing the dynamics of emotions and generat-
ing behaviors characteristic of several emotional states.

We are especially interested in modeling affective agent
planning in stochastic domains where the agent is unaware
of its current state (e.g. its physical location), but receives
a series of percepts that may guide it. In this context
we propose utilizing a decision-theoretic framework called
Partially ObservableMarkov DecisionProcess (POMDP).
Solution of a problem modeled as a POMDP, produces
a policy that controls agent planning. Exact solutions of
POMDPs are intractable spurring interest into approxima-
tion techniques that compute near-optimal solutions using
less running time. Towards this end, we propose employ-
ing affect as a justification for reducing the size of the input
POMDP model, and therefore the computational complex-
ity of its solution. In doing so, we not only demonstrate the
feasibility of employing affect as a potential approximation
technique, but also present a computational model that can
generate behaviors characteristic of several emotions.

The primary contributions of this paper are twofold: We
explore the feasibility of employing affect to produce near-
optimal approximations to optimal plans in less time. Sec-
ondly, we propose a hybrid agent architecture that employs a
reactive finite state machine based metareasoner and a delib-
erative POMDP based planner, to model different affective
behaviors. We validate our claims through experimentation
on an example toy problem domain.

The remainder of this paper is structured in the following
manner. In the next section we discuss some related work
and put our model in the proper context. Thereafter we in-
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troduce the planning model, followed by our affect-based
approximation technique. Finally, we test our technique on
an example problem domain and report our findings.

Related Work
In (Gmytrasiewicz & Lisetti 2001) a decision-theoretic ap-
proach to formalizing emotional behavior was introduced.
This paper builds on the earlier work by utilizing a specific
decision-theoretic model, and applying it to a problem do-
main. Fellous et al. (Fellous & Hudlicka 1996) have put for-
ward a classification system for organizing different compu-
tational models of emotions. In this system, our decision-
theoretic model will be classified as a high-level mecha-
nism model capable of modeling planning behaviors char-
acteristic of several affective states. Several bodies of re-
search (Elliott 1992; Gratch 1999) have observed subjec-
tively, the influence of emotions on immediate actions and
planning. Velasquez (Vel’asquez 1998) specifically looks
into emotion-based decision-making but does not utilize
decision-theoretic models. In contrast, we present aconcrete
framework applicable to several domains, and show how it
can be engineered to produce emotional behavior. Addition-
ally, rather than reacting to an emotion eliciting condition,
our model generates appropriate long-term plans.

Planning Model
We model the agent’s planning process as a Partially Ob-
servable Markov Decision Process(POMDP) (Cassandra,
Kaelbling, & Littman 1994). A POMDP describes a
stochastic control process, and is formally defined as a sex-
tuplet P = (S, A,Θ, T, O, R, H)whereS is a set of world
states;A is a set of agent actions;Θ is a set of observations;
T : S×A→ Π(S) is a set of transition probabilities between
states that describe the dynamic behavior of the modeled en-
vironment (Π(·) denotes a probability distribution);O : S×A
→ Π(Θ) gives a probability distribution over the observa-
tions given the action and the resulting state;R : S×A×S
→ < models payoffs associated with each transition; and 0
≤ H ≤ ∞ is the planning horizon or the future lookahead
while planning. Since the agent is unaware of its state, it
maintains a probability distribution (belief) over all possible
states. The decision (or planning) problem in the context
of POMDP requires one to find an action or a sequence of



actions for one or more belief states that optimizes the objec-
tive reward function. The belief state compactly represents
all information available to the agent at the time of selection
of the optimal action.

The problem of designing optimal plans for POMDPs is
PSPACE-complete (Papadimitriou & Tsitsiklis 1987). Sev-
eral approximation techniques (Lovejoy 1991) attempt to
tradeoff computational complexity with the quality of the
solution. However, the resulting bounds on drop in quality
are loose, and frequently produces highly sub-optimal be-
havior.

Approximation Method
Both classical and decision-theoretic planning mechanisms
have typically followed a paradigm of rationality which
shuns the effect of human-like emotions. However, Dama-
sio’s investigations (Damasio 1994) uncovered evidence that
too little emotion can also impair decision-making. Moti-
vated by these investigations, we are exploring the idea of
using affect to approximate the ”rational” exact model.

Affect-based Model Approximation

Our approximation method exploits the idea that certain
emotions such asPanic, and Anger cause the agent to
deliberate less, consider only certain action alternatives,
and/or change their goals (reward functions). Specifically,
aPanicked agent may consider only escape, and anAngry
agent may shorten its deliberation process. Subsequently,
we use affect as a means of reducing the size of the POMDP
model, and thereby the time and space its takes to produce
a solution. LetP’ = (S, A’, Θ’, T’, O’, R’, H’) be the plan-
ning model of an emotional agent. We termP’ to be an
approximation ofP, P’ ≈ P, and observe thatA’ ⊆ A, Θ’
⊆ Θ, and/orH’ ≤ H. This potential reduction in the size of
the original model directly translates into a reduction in the
computation time of the solution.

The POMDP definition requires specification of several
agent parameters. Tuning these parameters permits us to
model behaviors characteristic of several emotions. There-
fore, we put forward POMDPs assufficiently expressive
frameworks that are capable of modeling the cognitive as-
pects of many emotions. Rather than simply reacting to an
emotion, these frameworks produce distinct plans that are
characteristic of the agent’s current emotional state.

Emotion Transition Model

Akin to a human being living his day-to-day life, an affective
agent experiences a gamut of emotions, whose transitions
are triggered by environmental percepts. Hence, computa-
tional models that capture emotional transformations are re-
quired to model affective behavior of an agent.

Picard (Picard 1995) proposes the use of HMMs for cap-
turing the dynamics of emotional states. In this work, we
utilize FSMs for modeling emotional transformations. One
reason for selecting FSMs is that efficient algorithms ex-
ist (Trakhtenbrot & Brzdi 1973) for learning FSMs from a
small set of labeled data.
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Figure 1: A deterministic FSM with three emotional states,
and two environmental percepts.

A FSM is formally defined as a quadrupletF =
{S, s0, Σ, T } whereS is the set of states;s0 ∈ S is the
start state;Σ is the input alphabet responsible for causing the
transitions; andT is the transition function,T : S×Σ → S.
An agent whose emotional state transformation is modeled
as a FSM,F , exhibits behavior befitting of the current (emo-
tional) state ofF . When an environmental percept,o ∈ Σ,
arrives, the agent may alter its emotional state as governed
by T . The agent then displays behavior characteristic of
its new emotional state. Here we assume that the environ-
mental percepts satisfy theemotion eliciting conditionsas
defined by Elliott (Elliott 1992) and therefore activate the
appropriate emotion in the agent.

Experimental Evaluation
To simulate a dynamic environment and emotion eliciting
conditions we use a modified version of theWumpus World
toy problem given in Russell and Norvig (Russell & Norvig
1995).

Example Problem Domain
In the Wumpus World problem, an agent must reach the gold
location, grab the gold, and arrive at a specific location with
the gold while avoiding the Wumpi. We ran our experiments
on a world that has4 × 4 locations, one moving Wumpus,
and a single stationary gold. The agent can perform 5 actions
(move north, south, west, east, and grab gold) and receive 4
observations (stench, glitter, both, and none). We modify
the original problem to a dynamic one by including a mov-
ing Wumpus. The Wumpus moves one location at a time in
the horizontal direction, and on reaching the end of the row,
it reappears at the start of the row and resumes its movement.
Additionally, the Wumpus produces a stench that is evident
to the agent when it is within two locations of the Wumpus
in the horizontal or vertical direction (but not diagonal). The
speed of movement of the Wumpus serves as a knob to con-
trol the dynamism of the Wumpus World. The gold produces
a glitter which is observable by the agent when the agent is
within two locations of the gold in the horizontal or vertical
direction(but not diagonal). Fig. 2 shows our toy problem.

Both, the actions and the observations are deterministic.
The agent receives a reward of 1000 points for arriving at
the goal state, a penalty of 10,000 points for colliding with
the Wumpus, and a penalty of 1 point for each other ac-
tion taken. On reaching the goal state, or colliding with the
Wumpus, the current trial ends and a new one begins.

The movement of the Wumpus is synchronized with a
clock timer that ticks with a constant frequency. The
agent moves only when its deliberation is complete and has
yielded an action. Consequently, excessive deliberation by
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Figure 2: An example Wumpus World. The agent must ar-
rive with the gold at the location marked with a ”X”.

the agent will result in a ”no-op”, though the environment
may continue to change.

Affective Agent Design
The FSM shown in Fig. 3 captures the changes in the
agent’s emotional state and is formally defined as:F =
{S, s0,Σ, T } whereS = {Contented,Panic,Fear,Elation};
s0 = Contented;Σ = {Smell,Glitter,Both,None}; andT is
as shown.
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Figure 3: Emotional transformations in the Wumpus World

We have identified four basic emotions that an affective
agent will realistically experience in our Wumpus World.
Initially, the agent isContented, but a percept ofSmell, or
Both, will induce an emotion ofFear in the agent, due to the
presence of the Wumpus nearby. A further percept ofSmell,
or Bothwill inducePanic in the agent. A percept ofGlitter,
will cause the agent to feelElated due to the absence of any
nearby threats. The emotions ofFear, Panic, andElation
cause the agent to alter its original planning model.

The exact (rational) planning model,P , employed by an
agent in the Wumpus World is defined as follows. The state
of the agent,S, is completely captured using the variables:
Location of Agent, Agent Possesses Gold, Location of Wum-
pus; the set of actions:A = {North, South, West, East,
Grab}; the set of observations:Θ = {Smell, Glitter, Both,
Neither}. Furthermore, both, actions and observations are
deterministic. The reward function,R, is defined below:

R =





1000 if agent arrives at the pre-defined
location with the gold;

−10, 000 if the agent collides with a Wumpus;
−1 otherwise.

For each of the four emotional states introduced pre-
viously, a specific planning model is engineered. Each
planning model is tailored to produce a plan that is distinc-
tive of the corresponding emotion.

Contented The corresponding planning model will
consume the maximum possible time in computing an
optimal plan. The agent’s decision-making process is
described by the planning model,Pc = P, where P was
defined above. The plans generated by a contented agent
are similar to those generated by an affectless agent.

Fear The corresponding planning is myopic, solving
the associated model over a reduced time horizon. The
planning model is defined asPf = (S, A,Θ, T, O, R, Hf );
whereHf < H; and all other parameters retain their original
meaning inP.

Panic The planning exhibits myopic behavior. Further-
more, the sole intention is to move away from the existing
threat quickly. This disposition leads to a shortening of
the planning horizon, and a reduction of the action-space
to include only those actions that cause movement. The
decision-making process is defined asPp = (S, Ap, Θ, Tp,
Op, R, Hp) whereAp = {north, south, west, east} ⊂ A;
Hp < H; Tp andOp reflect the changed action set; and the
remaining parameters retain their original meaning inP.

Elation The agent attempts to reach the gold location as
quickly as possible. In the process, it ignores any existing
threats, and blindly pursues the gold. This translates into a
shortening of the planning horizon, and a transformation of
the reward function to reflect its altered preferences. The
planning model is defined asPe = (S, A,Θ, T, O, Re, He)
where

Re =
{

1000 if agent grabs gold;
−1 otherwise.

He < H; and the remaining parameters retain their original
meaning inP.

Performance Evaluation
In this subsection, we report on preliminary empirical results
in support of our hypothesis that affect-based plans are close
approximations of exact plans. We also compared the per-
formance of an agent exhibiting several emotions, with that
of an agent exhibiting a single emotion. Additionally, we
varied the dynamism of the problem domain, and observed
the performances of the different agents.

The performance of an agent is measured as the sum of re-
wards accumulated during arun. A run consists of an agent
starting at some random location in a randomly generated
Wumpus World, and attempting to reach the pre-defined lo-
cation with the gold while avoiding the Wumpus. We ex-
perimented with three different agents:Agent 1which is the
baseline program that lacks any emotional capability, and
generates its plans using the exact planning model. Suppose
that during its deliberation,Agent 1consumes time ta1 be-
fore coming up with the next best action;Agent 2which is
the test program utilizes the FSM in Fig 3 that captures the
emotional state transformations. Let its average deliberation
time be ta2; andAgent 3which remains in a constantPanic
state. LetAgent 3’s deliberation time be ta3. We observed
the following ascending relationship between the delibera-
tion times of the agents:ta3 < ta2 < ta1

Our testing method consisted of isolating a sample of 16
randomly generated worlds from the population, fixing a



speed of movement for the Wumpus, introducing the agents
in the sample worlds, and noting the sum of rewards accu-
mulated during each run of the agent.

In Fig. 4, we show the means with error bars (95% CI)
of rewards accumulated by each of the 3 agents during their
runs in the sample worlds. These results were compiled us-
ing the following observations: ta1 = 18 secs, ta2 = 6 secs,
and ta3 = 2 secs. We used Wumpus speeds (tw) of 18 secs, 9
secs, and 2 secs.

Figure 4: Histogram comparing performances of the agents
for various Wumpus speeds.

When tw=18 secs (no time pressure), the affective agent
(Agent 2) does only marginally worse than the affectless
agent (Agent 1). This result suggests that our affect-based
approximation method produces plans that are near-optimal.
Interestingly, when we increase the dynamism of the world
(tw=9 secs),Agent 2performs significantly better thanAgent
1. Since tw < ta1, Agent 1gets killed by the Wumpus fre-
quently. In contrast,Agent 2’s fast emotional responses pre-
vent it from being killed frequently. Interestingly,Agent 3
whose responses are also fast, performs poorly. One reason
for its poor performance is the sub-optimal quality of the
plan it constantly generates, causing it to take far more steps
(and sometimes even get stranded in a corner) to reach the
goal. On further increasing the speed of the Wumpus, no
agent performed significantly better.

Our experimental results suggest that approximating
plans using affective behavior does not significantly com-
promise the quality of these plans. Additionally, since the
approximated models have smaller sizes, the correspond-
ing plans consume less space and are generated in less time.
However, the resulting computational savings may be some-
what offset by the increased number of steps that the sub-
optimal plans may induce. In general though, we observed
that an affective agent completes its run in less time, than an
affectless agent.

Discussion and Future Work
In this paper, we adopted the normative method of decision-
theoretic planning, for modeling emotional behavior. We
showed the ability of POMDPs to generate plans charac-
teristic of many discrete, pure emotions, simply by tuning
the input parameters. Furthermore, we adopted finite-state

machines as fast and memory-less computational devices
for modeling emotional transitions. Our experiments show
that the combination of a fast meta-level emotion transi-
tion model, and object-level planning model is capable of
producing a variety of human-like affective behaviors in an
agent. Rather than tediously crafting subjective interpreta-
tions of emotional behaviors, researchers can avail of prin-
cipled frameworks such as POMDPs to produce emotional
behavior. Additionally, our research shows that it is possi-
ble to produce affective behavior that closely approximates
”rational” affectless behavior.

In our current implementation we modeled only basic
emotions. However, we believe the framework to be expres-
sive enough to model emotions of different granularities, and
mixtures. Additionally, several problem domains such as
dialog management and robot navigation exhibit conditions
that may elicit emotions and represent potential testbeds for
emotional architectures such as ours. Ongoing work in-
volves experimentation with one such real-world problem
domain.
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