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Abstract

I propose a conceptual framework for emotions accord-
ing to which they are best understood as the feedback
mechanism a creature possesses in virtue of its func-
tion to learn. More specifically, emotions can be neatly
modeled as a measure of harmony in a certain kind of
constraint satisfaction problem. This measure can be
used as error for weight adjustment (learning) in an un-
supervised connectionist network.

As might be expected of a philosopher, I don’t have
empirical results; instead, I’ll briefly suggest here how an
information-theoretic approach to emotions might fit into
a broader conceptual framework. I can only hope these
thoughts will help inform the fascinating science that is be-
ing done in this area, about which I am still only learning.

Functions and Creatures
Intuitively, many things in the world have functions—they
are “supposed to” do something. Hammers are supposed to
drive nails, and hearts are supposed to pump blood. Some-
thing has a function, roughly, if it was designed to produce
a certain effect. This design process, in turn, is basically
one of feedback, encouraging some effects and discourag-
ing others. The design can be a result of intelligence, as
when we build a better mousetrap. Alternatively design can
arise from a non-intelligent process like natural selection.1

I use this popular philosophical notion of function to char-
acterize my own idiosyncratic notion of a creature. To be
a creature, roughly, is to possess at least one function that
can be performed autonomously—that is, solely through the
performance of sub-functions.2 The intuition is that crea-
tures are things with “wants” (broadly speaking) in the world
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1This is a loose but neutral characterization of some more pre-
cise philosophical approaches to functions, which turn out to be
surprisingly tricky to characterize. See (Manning 1998) for a brief,
helpful overview.

2I emphasize that this is rough, especially the ‘autonomy’
clause. But I think this is okay; I only lean on the functional ap-
proach.

that they “try” to achieve through their sub-functions. Plants
want their leaves aimed at the sun, robins want to stay warm
in winter, and humans want better local theater.

My characterization has what may seem a strange conse-
quence: a thermostat counts as a creature. A thermostat has
a function to regulate room temperature, which it does au-
tonomously through its internal function to correlate a wire
coil and a heater switch. In virtue of this internal function it
“wants”, loosely speaking, for the room to be some temper-
ature. I embrace this as the natural result of two advantages
of my characterization: first, it allows creatures to be me-
chanical or biological—it is not chauvinist about who can be
intelligent. Second, it captures our intuition that intelligence
is a matter of degree on a very wide spectrum. Naturally the
thermostat is about as simple and unintelligent as a creature
can be, but it is a creature by my account nonetheless.

Creatures and Learning
A particularly sophisticated creature, unlike our thermostat,
will have sub-functions designed to alter other sub-functions
in the direction of fulfilling its more basic functions. A
mouse, for example, can alter its cognitive dispositions to
behavior when it runs a maze a few times. A function to
adjust cognitive functions is just a capacity to learn. Learn-
ing allows creatures to adapt better to local environments for
the better achievement of their goals—in other words, on a
popular account of intelligence, learning allows for greater
intelligence.

Put another way, a learning function designs some other
cognitive function by giving it feedback, inhibiting bad ef-
fects and encouraging good effects. That means, in turn, that
the learning function serves as an internal measure of error
for the system. This measure of error implicitly contains
both a representation of the goal state the creature would
“like” to be in, and a representation of the creature’s cur-
rent state with respect to that goal. That is to say, crea-
tures that learn have both conations (desire-like states) and
cognitions (belief-like states). The general form of unsu-
pervised learning involves, then, a matching of conations to
cognitions. A creature is functioning better as a self-teacher,
you might say, to the extent that it can minimize these in-
ternal error measures. The process of learning can be de-
scribed as a creature’s attempting to match its cognitions to
its conations—attempting to match its representation of how



things are to its representation of how it would “like” things
to be.

Let me briefly indicate how this could be implemented
computationally. The creature will have, in virtue of its de-
sign, various hardwired conative and cognitive mechanisms.
A mouse cannot easily learn away its desire for food, nor
can it easily learn away its basic visual inputs. A complex
creature with many sub-functions may at any time have con-
flicting hardwired or learned demands that need resolving.
Each error measure—each pair of cognition and conation—
becomes a soft constraint, no one of which is decisive, but
each one of which has some claim on revising the crea-
ture’s thinking system. Represent these cognition and cona-
tion pairs as nodes in a connectionist network with positive
weight between them. Furthermore some of the cognitions,
and some other of the conations, will have default activa-
tion from the creature’s basic hardwiring endowed it by the
world—this can be represented in a network with a posi-
tive connection to a strongly activated “world node”. In the
mouse, for example, a desire for food and a retinal cell im-
pulse would have such strong default activation. Of course
this default activation can be overruled; any one conation or
cognition can be given up for a balance of satisfying the oth-
ers. The network then calculates behavior, given inputs, as
a coherence problem.3 Learning, finally, can be modeled as
a weight-adjustment problem (within externally determined
constraints) toward maximizing the overall potential coher-
ence of the system.

Learning and Emotion
The account of emotions that falls out is simple: emotions
are something like reports of the coherence levels between
cognitions and conations, for the purpose of feedback and
learning.

Let me try to make this more plausible. An intelligent
agent will have, at any time, a degree of positive or nega-
tive desire for p (represented as activation on an interval of
[−1, 1]) and a correlated degree of positive or negative belief
that p. When many of its desires match many of its beliefs
in level of activation, it is intuitively “happy”. Things are
as the creature “wants” them to be, and so there should be
positive reinforcement of whatever has led to this state. No-
tice that creatures can be happy (in the sense of positive af-
fect) even when in fact they are being deceived, and their de-
sires are not satisfied. They are happy because their desires
seem to be satisfied; their cognitive representations match
their conative ones. On the other hand, a thinker with many
mismatches between beliefs that p and desires that p will
thereby feel compelled to change its situation. There will
be internal, negative reinforcement for what led to the cur-
rent state. It seems natural to say such a creature is sad, or
anxious, or both.

The result is much like the cognitive appraisal theory of

3Actually, it’s more like what philosophers have come to call
a matter of “foundherence”, since there are defeasible foundations
to the problem represented in the default nodes connected to the
world. This proposal builds on work by Paul Thagard toward mod-
eling cognitive coherence; see especially (Thagard 2000).

emotions, according to which emotions are (or are the re-
sult of) a comparison of cognitive and conative appraisals of
a situation.4 But according to the proposed version, these
“cognitive appraisals” do not have to occur at the proposi-
tional level. Emotions can result from the cognitive pro-
prioceptions of low-level bodily processes as well, as work
such as Antonio Damasio’s would have it.5 And the pro-
posal can also explain in part why emotions are so central
to decision-making. According to the proposal, emotions
amount to feedback about how the agent is doing. Without
such feedback, it’s understandable why an agent like Phineas
Gage had a hard time attaining his desires.

Though computational aspects build on work by Thagard,
the theoretical foundations of my account make for different
implications, especially when it comes to emotions. Tha-
gard’s model of “emotional coherence” in HOTCO is differ-
ent in kind from his other models.6 HOTCO requires adding
separate “valence” values for nodes in addition to their acti-
vation levels, and separate weights between nodes for flow
of emotional valence. As I’ve suggested, my guess is that
emotions are not matters for coherence calculations, but are
themselves manifestations of internal monitoring of coher-
ence and incoherence.

In summary, then: suppose thinking better is better adapt-
ability in fulfillment of basic creaturely goals. It seems a
major contributor to such adaptability is a capacity for learn-
ing, which I propose is a feedback mechanism reporting co-
herence levels among cognitions and conations as an error
measure. These reports of coherence levels to be used for
learning are, plausibly, just the emotions.
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