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Abstract

This paper summarizes our efforts to bring together and
extend the best in current theory and technologies for
teamwork-centered autonomy for space applications.
Traditional planning technologies at the foundation of
intelligent robotic systems typically take an autonomy-
centered approach, with representations, mechanisms, and
algorithms that have been designed to ingest a set of goals
and output a complete plan in the most efficient and sound
fashion possible. A teamwork-centered autonomy approach,
on the other hand, takes as a beginning premise that people
are working in parallel alongside autonomous systems, and
hence adopts the stance that the processes of understanding,
problem solving, and task execution are necessarily
incremental, subject to negotiation, and forever tentative.
Thus, a successful approach to teamwork-centered
autonomy will require that every element of the autonomous
system be designed to facilitate the kind of give-and-take
that quintessentially characterizes natural and effective
teamwork among groups of people. We briefly describe the
major components of this approach and current efforts to
apply and evaluate its utility from both human-centered and
cost-benefit perspectives.

Introduction

Because ever more powerful intelligent agents will interact
with people in increasingly sophisticated and essential
ways, greater attention must be given to the technical and
social aspects of human-agent teamwork. Although recent
descriptive and theoretical research have begun to elucidate
the principles of human-agent teamwork in realistic
settings [7], the implementation of these principles in
operational scenarios has been impeded by the lack of
suitable teamwork-centered autonomy technologies.

Traditional planning technologies at the foundation of
intelligent robotic systems typically take an autonomy-
centered approach, with representations, mechanisms, and
algorithms that have been designed to ingest a set of goals
and output a complete plan in the most efficient and sound
fashion possible. A teamwork-centered autonomy
approach, on the other hand, takes as a beginning premise

that people are working in parallel alongside autonomous
systems, and hence adopts the stance that the processes of
understanding, problem solving, and task execution are
necessarily incremental, subject to negotiation, and forever
tentative. Thus, a successful approach to teamwork-
centered autonomy will require that every element of the
autonomous system be designed to facilitate the kind of
give-and-take that quintessentially characterizes natural
and effective teamwork among groups of people. This
represents an important departure from past work in
autonomy, which has historically ignored such issues in
core design of supporting technologies—token gestures to
tack on a thin veneer of human interface as an afterthought
notwithstanding!

Moreover, past research has paid scant attention to the
development and use of targeted methodologies and
metrics to understand, measure, and predict the impact of
autonomous agent systems that work closely and
continuously with people in realistic work settings.
Evaluating and predicting this impact can be done from
two perspectives: human-centered and cost-benefit. From a
human-centered evaluation perspective, we want to draw
from and extend previous research on human-computer
interaction to answer questions about operator impact on
the use of autonomous agent technologies, and elucidate
aspects of system design that will lead to the development
of technologies that work well with space scientists and
other operators. A well-designed system minimizes
interaction time, defined as the time required for a human
to interact with the system, and maximizes neglect time,
defined as the time that transpires between human-machine
interactions. From a cost-benefit perspective, because
autonomous systems typically involve significant
development costs over extended periods of time, we need
to be able to justify the investment in such systems in joint
human-agent work settings, and compare them to scenarios
involving either exclusively human or exclusively robotic
alternatives.

From this perspective, four aspects of a teamwork-centered
autonomy approach merit particular attention in our
research approach:



e careful observation, modeling, and simulation of
work practice;

* teamwork policies that embody a body of
principles of natural and effective human-robotic
interaction derived from this observation,
modeling, and experimental interventions;

* collaborative planning technologies that are
designed from the ground up to support partial
sharing and incremental revision of plan state;

* appropriate evaluation methodologies extended
and applied, first, to determine how well the joint
human-agent systems being studied achieve their
intended effects in various work settings—and to
discover and assess their unintended effects—and,
second, to provide continuous feedback into the
loop of ongoing modeling and design refinement.

In this paper we outline new aspects of an effort we have
recently undertaken to bring together and extend the best in
current theory and technologies for teamwork-centered
autonomy. This approach involves the following
components:

e Brahms, a simulation environment with a rich
library of models of human and agent activity in a
variety of space environments [10; 15];

e KAo0S, a set of services oriented to the
management of policies specifying natural and
effective teamwork behavior [5; 6; 7; 9];

* A Collaboration Management Agent (CMA),
based on a framework for collaborative planning
uniquely suited to the incremental addition and
removal of constraints and the development of
partial plan solutions [2; 3; 4].

* Extensions and applications to formal
methodologies to analyze and compare the
performance and effectiveness of autonomous
systems from both the human-centered [12; 13]
and cost-benefit [17] perspectives.

This new research draws on our experience in previous
research to develop theory and tools supporting human-
agent teamwork in space applications [1; 7; 8; 16]
Extending these previous components to support a CMA,
which is built on a planner designed from the ground up to
support human collaboration, will allow us to accelerate
the transition of teamwork-centered autonomous systems
from design and simulation to effective implementation
and operation.

The relationship between these components is significant
and synergistic. The rich model provided by Brahms of
activities, humans, agents, and objects that are part of those
activities represents the dynamic decision context that
tunes KAoS policies and informs CMA problem-solving
functionality. CMA manages problem-solving interaction
among humans and agents within the bounds of KAoS
policy constraints and consistent with the situational
context provided by the Brahms model. The policy
specification, representation, conflict resolution, and
enforcement mechanisms of KAoS will assure that a

coherent set of teamwork policies for safe and effective
human-agent interaction can be continuously in effect
throughout the ongoing problem-solving and human-agent
interaction processes.
Our current research applications require both a
continuation of full-scale field tests in joint human-robotic
simulated surface exploration experiments [11; 16] as well
as limited-objective experiments that will be performed at
the IHMC human-robotic testbed site. Consistent with our
work practice orientation, we rely heavily on simulation
and field-testing as a guide to the design of work systems
that use autonomous agents to support human activity.
The following sections briefly describe the major elements
of our approach, including:

* Observing, modeling, and simulating work

practice;
* Collaborative problem solving in human-agent
teams;
* Teamwork policies and mechanisms;
¢  Evaluation methodologies.

Observing, Modeling, and Simulating Work Practice

Results from previous field tests that show just how many
practical challenges face humans and robots just to jointly
perform basic logistical activities as part of simulated
surface exploration, let alone their science missions [11;
16]. Although previous field tests uncovered these
challenges, time and resources did not always allow for full
analysis of their causes or for exploration of solutions.
Making extensive use of the Brahms modeling and
simulation environment, we are using post hoc analyses of
past field test data as well as data from new field studies
and limited objective tests to develop aspects of Brahms
models for teamwork-centered autonomy for extended
human-robotic surface exploration missions, under
different assumptions of crew size, mission duration,
current and future robotic capabilities, and so forth.

As one example, field test data show that communication
breakdowns are frequent and more attention needs to be
paid to the development of requirements and capabilities in
support of human team members under conditions of
frequent disconnected operation. We are currently
performing a careful analysis of examples of human
planning to understand how they can inform our
understanding of how to build effective collaborative
planning systems. The role of high-level policies to ensure
astronaut safety and control of agent behavior under all
circumstances is being examined, as well as policies for
adjustable autonomy. In later phases of our study, dealing
effectively with resource limitations (e.g., CPU, power,
bandwidth, time) and real-time recovery from buggy
software or malfunctioning hardware will be an additional
important focus based on our observations in the field.

One of the most significant limitations of the current
Mobile Agents Architecture (MAA) being deployed in
planetary surface exploration studies is that agents do not
use a model of teamwork to help coordinate their



interactions with humans and other agents. As one
consequence, the agents are not able to process more than
one request at a time, nor to associate a series of tasks or
requests that support a common team goal. Agents need to
be able to draw connections between requests from
different agents, prioritize which request they should
handle first, and keep other team members appropriately
informed of the status of the discharge of team goals.
Within the annual full-scale field tests each spring, we plan
to apply models and policies for teamwork to MAA.
Moreover, while the MAA currently supports the EVA
astronauts during the EVA in capturing science and
biosensor data, it offers no help for astronauts needing to
store this data in the habitat, nor is there support for the
crew to access this data either during or after the EVA for
science analysis and discussions with other crewmembers.
We are extending the multiagent teamwork model to
handle for data storage and access environment for
planetary EVAs.

Collaborative Problem Solving in Human-Agent Teams

The collaboration management agent (CMA) is designed to
support human-agent, human-human, and agent-agent
interaction and collaboration within mixed human-robotic
teams. While it will always be the case that agents may
operate autonomously without the support of the CMA, our
goal is to show that when the CMA is “in the loop” the
overall activities of the human and autonomous agents are
more coordinated and efficient. By implementing the CMA
as an optional “assist” to the agents rather than a
coordinator that must be consulted for every aspect of
agent interaction we avoid concerns of having a team of
agents depend on a single central processor that might
become inoperable or simply just be out of communication
range. The CMA improves overall effectiveness during
those times that it is available.

The CMA interacts with individual agents in order to 1)
maintain an overall picture of the current situation and
status of the overall plan, as complete as possible based on
available reports, 2) detect possible failures that become
more likely as the plan execution evolves and invoke
replanning; 3) evaluate the viability of proposed changes to
plans by agents, 4) manage re-planning when situations
exceed the capabilities of individual agents, including
recruiting more capable agents to perform the re-planning,
5) manage the re-tasking of agents when changes are made,
6) adjust its communications to the capabilities of the
agents (e.g., graphical interfaces work well for a human but
wouldn’t help most other agents). For example, the CMA
allows agents with limited planning capabilities to benefit
from planning assistance from other more capable agents
when problems arise. Consider a non-planning agent that
cannot continue executing its plan because of some
obstacle. It reports the problem and waits. Although the
CMA has the ability to resolve some problems
autonomously, in this case, let’s say it decides that it
requires human assistance. The CMA then reports the

problem to a human who interacts with it to explore the
problem and decide on a solution. The CMA collaborates
in this process, evaluating proposed solutions to find
potential problems. Once a solution is found, the CMA
then manages the tasking to ensure all the individual agents
change their plans as needed. And when changes are made
to the overall plan—say, by a human in response to an
unexpected situation, all the agents involved in the changes
have to be re-tasked in a manner that is consistent with
organizational policies, approved procedures, and socially-
acceptable practices. Since the agents will be in different
states based on how much of their original plan they have
executed, the CMA must support further negotiation and
re-planning among team members before the overall plan is
deemed viable and put into execution.

Core research issues we are currently addressing include 1)
the development of a temporal representation of the
situation and of collaborative goals and plans that supports
re-planning; 2) the development of an ontology of
collaborative problem-solving and the types of interactions
agent’s perform when collaborating; 3) the development of
intention recognition algorithms that can identify the
intended collaborative act from user input; 4) the
development of an agent communication language that will
work across Brahms, CMA, and KAoS; 5) representing and
reasoning about the capabilities of agents to assist in
automatic tasking; 6) modeling communicative capabilities
to facilitate agent communication across agents of very
different capabilities; and 7) the development of effective
human interfaces for interaction with the CMA. While we
support a multi-modal spoken language interface for the
human team members, we are using an existing technology
base [3] and so this is not be a focus of the current
research.

Teamwork Policies and Mechanisms

Whereas early research on agent teamwork focused mainly
on agent-agent interaction, teamwork principles have now
been proposed in the context of human-agent interaction
[5; 7]. The vision of future human-robotic operations is that
of loosely coordinated groups of humans and agents [14].
As capabilities and opportunities for autonomous operation
grow in the future, autonomous agents will perform their
tasks for increasingly long periods of time with only
intermittent supervision. Most of the time routine operation
is managed by the agent software that controls these
vehicles while the human crews perform other tasks.
Occasionally however, when unexpected problems or
novel opportunities arise, operators must assist the agents.
Because of the loose nature of these groups, such
communication and collaboration must proceed
asynchronously and in a mixed-initiative manner. Humans
must quickly come up to speed on situations with which
they may have had little involvement for hours or days.
Then they must cooperative effectively and naturally with
the agents as true team members.



This vision points to two major opportunities for KAoS
policy and domain services in the context of the current
research:

* the use of policy to assure that unsupervised
autonomous agent behavior is kept within safe and
secure limits of prescribed bounds, even in the
face of buggy, poorly designed, unsophisticated,
or malicious agent code;

* the use of policy to assure effective and natural
human-agent team interaction, without individual
agents having to be specifically programmed with
the knowledge to do so.

Current rigid and simplistic approaches supporting
maintenance of joint team goals among autonomous agents
are not up to the task of supporting mixed groups of
humans and agents. Over the past few years, we have been
engaged in the process of abstracting the results of work
practice studies and field tests into declaratively-specified
teamwork policies in KAoS to support close and
continuous interaction among agents and people [5].
Policy-based mechanisms embedded within the robots aim
to enable a high-level of trust and efficiency. For example,
policies governing sensitive or risky behavior attempt to
ensure that the robots operate safely, robustly, and strictly
within the range of permitted action even in the face of
system failures, loss of communication capabilities,
potentially buggy software, or human error. Policies
regulating adjustable autonomy for surface exploration
scenarios are being designed and tested to appropriately
offload human tasks as needed while assuring that final
decision authority rests with people. Coordination policies
working in conjunction with collaborative planning
capabilities and work practice models are designed to make
sure that interaction is as effective and natural as possible,
with the robots assuming the role of true team players
alongside the humans.

One limitation of previous versions of KAoS is that the
user interface for creating and deploying policies (i.e.,
KPAT) was oriented toward technical specialists. We
would like to see whether we can make the policy
management capabilities invisible to the astronauts
working with the astronauts, i.e., to make it seem that they
are just giving advice to the robot, when in reality behind
the scenes policies are being created, deleted, and
maintained. In addition to KPAT, we have begun
developing dynamic visualization components coupled
with spoken dialogue that will integrate with information
provided by CMA and Brahms.

Building on the work of previous NASA IS-sponsored
research, our new work will put us in a position to verify
the effectiveness of KAoS policies and services through a
series of tests assessing survivability (ability to maintain
effectiveness in the face of unforeseen software or
hardware failures), safety (ability to prevent certain classes
of dangerous actions or situations), predictability (assessed
correlation between human judgment of predicted vs.
actual behavior), controllability(immediacy with which an
authorized human can prevent, stop, enable, or initiate

agent actions), effectiveness (assessed correlation between
human judgment of desired vs. actual behavior), and
adaptability (ability to respond to changes in context).

Evaluation Methodologies

Besides these issues in developing a viable approach to
teamwork-centered autonomy, we note that appropriate
methodologies and metrics for comparing and evaluating
the performance and effectiveness of mixed human-agent
teams are lacking. Evaluating and predicting this impact
can be done from two perspectives: human-centered and
cost-benefit.

From a human-centered evaluation perspective, we want to
draw from and extend previous research on human-
computer interaction to answer questions about the
development of technologies that work well with space
scientists and other operators [12]. A well-designed system
minimizes interaction time, defined as the time required for
a human to interact with the system, and maximizes neglect
time, defined as the time that transpires between human-
machine interactions [13].

Once the first version of the base system is complete, we
propose to begin two iterative parallel approaches for the
human-centered evaluation of the system:

e The first approach uses secondary task
experiments in a laboratory setting to evaluate the
cognitive impact of a new autonomous system.
This approach assesses neglect tolerance and
interaction efficiency by creating artificial loads
on the operator. Under these artificial load
conditions, task-relevant performance is
measured. By associating the relationship between
load and performance, predictions can be made
about how new autonomy, new activities, or new
mission conditions will affect performance.

* The second approach models limiting cases of
human-machine interaction. This approach
describes the maximum number of human
activities that can be performed using various
interaction technologies. By associating various
technologies with a maximum activity number,
predictions can be made about how performance
will decline or improve as new autonomy, new
activities, or new mission conditions are
introduced.

Our primary contribution will be to extend our current
evaluation methodology so that it can be used in the
proposed project. The element of this project that most
need to be addressed in the methodology is the distribution
of abilities across human and heterogeneous artificial
agents. As results from laboratory experiments are
obtained, they will be incorporated as part of the limited-
objective and full-scale field experiments.

Several methodologies have been proposed in the planning
and business literature to measure performance,
effectiveness, or cost efficiency of tasks and processes
from a cost-benefit perspective. While these existing



methodologies have been useful in the study of profit-
based enterprises, they have to be modified to satisfy the
particular requirements of research-oriented organizations
such as NASA. We are currently assimilating the literature
on cost analysis, benefit analysis, research and
development evaluation studies in the context of metrics
for evaluation of human-computer interaction, so that in
later phases of the research we will be able to analyze
issues specific to NASA needs, focusing on the unique
properties of agent-based systems and the output
productivity of research activities. A well-grounded
methodology will also require the analysis of existing
surveys and new interviews of humans developing and
interacting with autonomous systems, analysis of their
various costs (e.g., development, customization,
implementation, learning curve, failures, breakdowns, etc.),
analysis of their various benefits (cost efficiencies time
efficiencies, learning by doing), and analysis of
comparable methodologies in the literature. By year two of
the research, we will have brought the first version of the
methodology to a point that it can be used in conjunction
with the field tests.
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