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Abstract 
It is clear that automated control systems for applications 
such as power generation and advanced life support do not 
operate in isolation.  Unfortunately, support for interaction 
with humans often lags support for basic automation 
functionality in the development of such systems.  Two 
goals of the Distributed Collaboration and Interaction (DCI) 
project are to (1) enhance interaction capabilities between 
humans and autonomous systems and (2) better understand 
design requirements for future autonomous systems to 
support this enhanced interaction.  This paper describes 
current work in DCI with respect to a command and 
authorization capability.  This capability provides a 
coordination mechanism through which humans and an 
autonomous control agent can take actions on the same 
underlying hardware system with a decreased risk of 
interfering with each other's commands.   

Introduction 

Autonomous systems deployed to realize control 
automation are needed to reduce human workload, to 
increase efficiency, and to perform routine operations, 
such as vigilant monitoring or continuous iteration through 
processing cycles.  Such automation does not operate in 
isolation.  The automation must be deployed in an 
environment, and this environment typically contains 
humans who are affected by or overseeing its operation.  
Humans must explicitly interact with the automation for 
tasks such as supervisory monitoring, modifying goals, 
repairing underlying hardware or software, responding to 
anomalies, and taking advantage of opportunities.   
 Unfortunately, practical and cultural considerations 
(Schreckenghost et al., 2002) drive designers to give the 
basic functionality of the automation both priority and 
temporal precedence over supporting interaction in the 
development of such systems (i.e., the system must be 
shown to work before interaction with humans becomes a 
priority).  As a result, automated control systems are not 
typically designed from the outset to fully support 
interaction with humans, even though designers may 
recognize this need or plan to address it in the future.   
 This paper describes one element of our current research 
to both (1) enhance interaction capabilities between 
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humans and autonomous systems and (2) better understand 
design requirements for future autonomous systems to 
support this enhanced interaction.  In pursuit of the first 
goal, we have developed a Distributed Collaboration and 
Interaction (DCI) environment that allows humans to 
interact with automated control agents whose function is 
not primarily human-centric but who must be supervised 
by or coordinated with humans (Martin et al., 2003).  In 
particular, this paper describes a command and 
authorization capability recently developed for the DCI 
environment.  This capability provides a coordination 
mechanism through which humans and a control agent can 
take actions on the same underlying physical system with a 
decreased risk of interfering with each other's commands.   
 In pursuit of the second goal, we hope use our 
experience with the DCI environment to define 
requirements, which can be considered up front with other 
functional design requirements to make the automated 
control systems interaction-ready.  In doing so, we hope to 
enable future designs for autonomous systems to support 
enhanced interaction with humans from the ground up.  
One critical element of our approach is to avoid placing the 
entire burden of supporting human interaction on the 
automation itself.  Because autonomous control systems 
must often handle time-critical tasks, we want to avoid 
introducing extra processing overhead in the autonomous 
system, when possible.  Our approach uses augmenting 
software that is tightly coupled to the automation through 
shared models or data but has its own processing 
resources.  The separation of processing for interaction 
into augmenting software has the added benefit of 
accommodating the natural lag between implementing 
basic automation and interaction capabilities.  With respect 
to the command and authorization capability, we aim to 
define what models and data should be made visible by the 
autonomous system as well as what basic functionality the 
autonomous system must exhibit to allow interaction.   
 The treatment of interaction among humans and 
automated control systems as a coherent design and 
research issue is a relatively new endeavor.  This paper 
describes our approach through DCI.  The following 
section describes the automated control system to which 
we have applied our current research.  The command and 
authorization capability is then presented in detail.  The 
paper concludes with a summary of contributions and 
lessons learned as well as a discussion of future work. 



Automation for the Water Recovery System  

Our work to enhance human interaction with autonomous 
control systems builds on our previous experience 
developing automation for advanced life support at 
Johnson Space Center (JSC) since 1995 (Bonasso et al., 
2003; Schreckenghost et al., 2002).  The work described in 
this paper has been applied to the advanced Water 
Recovery System (WRS) (Bonasso et al., 2003).  The WRS 
removes organic and inorganic materials from wastewater 
(hand wash, shower, urine and respiration condensate) to 
produce potable water.  The hardware and control software 
for the WRS operated unattended in a continuous 24/7 
integrated test from January 2001 through April 2002, 
(Bonasso et al., 2003).  The WRS is comprised of four 
subsystems as pictured in Figure 1:  
(1) The biological water processor (BWP) removes 
organic compounds and ammonia by circulating the water 
through a two-stage bioreactor.  The first stage uses 
microbes to consume the organic material using oxygen 
from nitrate molecules.  The second stage uses microbes to 
convert the ammonium to nitrate. 
(2) The reverse-osmosis (RO) subsystem removes 
inorganic compounds from the output of the BWP, by 
forcing the water to flow at high pressure through a 
molecular sieve.  The sieve rejects the inorganic 
compounds, concentrating them into brine.  At the output 
of the RO, 85% of the water is ready for post-processing, 
and 15% of the water is brine. 
(3) The air evaporation system (AES) removes the 
concentrated salts from the brine by depositing it on a 
wick, blowing heated air through the wick, and then 
cooling the air.  The inorganic wastes are left on the wick 
and the condensate water is ready for post processing.  
(4) The post-processing system (PPS) makes the water 
potable by removing the trace inorganic wastes and 
ammonium using a series of ion exchange beds and by 
removing the trace organic carbons using a series of ultra-
violet lamps.   

 These subsystems are loosely coupled, and their primary 
interdependencies are related to input and output of the 
water to be processed.  In total, the automated control 
system for the WRS manages more than 200 sensors 
(measuring pressure, temperature, air and water flow rates, 
pH, humidity, dissolved oxygen, and conductivity) and 
actuators (including pumps, valves, ultra-violet lamps, and 
heaters).  The automated control system uses a layered 
control architecture, called 3T (Bonasso et al., 1997), 
which has been applied to control both robots and 
advanced life support systems.  3T's top tier is a 
hierarchical task net (HTN) planner, the plans of which are 
executed through a reactive middle tier that in turn 
manages the sensors and actuators of the hardware via a 
low-level control tier. 

Commanding the WRS 
Although the 3T-based automated control system operates 
the WRS hardware unattended most of the time, there are 
several cases in which humans must also take actions on 
the life support system.  Actions that humans take can be 
either manual or mediated.  Manual actions are those that 
the human carries out directly on the life support system 
hardware, for example, physically turning a valve.  A 
human conducts mediated actions by giving instructions to 
the automation software, which carries out the actions.  
Mediated actions can be requested from other external 
sources as well, including software elements of the DCI 
system.  In contrast, automated actions are those taken by 
the control software during its normal operation without 
any requests from an external source.  Manual and 
mediated actions are needed for two possible reasons (1) 
the action must be manual because the automation has no 
appropriate actuator or (2) the action could be carried out 
either by a human or via the software but is motivated by 
circumstances outside the scope of normal operation for 
the automation.  An RO slough, as described in the 
following subsection, exemplifies the latter.   
 When a human wishes to perform actions on the WRS 
using the DCI command and authorization capability, he or 
she requests the appropriate commanding permission1 for a 
particular activity.  To grant commanding for a given 
activity, DCI must first, if possible, grant authorization for 
the set of manual or mediated actions required by the 
activity, and then reconfigure the WRS hardware and 
control automation to the proper state required for those 
actions.  In general, the reconfiguration process may 
include setting the states of particular hardware such as 
valves open/closed or pumps on/off, adjusting the 
autonomy of the automation to allow for manual actions 
(Schreckenghost et al., 2002), bringing the state of the 
system to a particular point such as getting tube pressures 
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action on the WRS.  We use the term “commanding” to convey this 
authorization plus whether the system is ready for the execution of a 
particular activity associated with a pre-defined procedure, which may 
contain multiple manual or mediated actions. 
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and temperatures within a specified range, or commanding 
a subsystem to a particular processing mode.  The 
following subsection describes the current support 
implemented for commanding and authorization in the 
DCI system, which includes a subset of these 
reconfiguration steps. 

Current Support for Commanding the WRS 
The command and authorization capability in DCI 
coordinates multiple humans and the control automation, 
allowing each to take actions on the same underlying 
hardware system without interfering with ongoing tasks.  
Our current work concerning command and authorization 
interactions addresses the coordination of multiple humans 
with each other and with the automation before, during, 
and after the execution of human-initiated actions on the 
WRS hardware.  We currently support these four activities: 

• BWP nitrifier slough – The biofilm that grows on the 
insides of the tubes in the nitrifying portion of the BWP 
will thicken over time, slowly constricting the passage 
of water and air.  To minimize clogs, the control system 
periodically sloughs the biofilm by sharply increasing 
the airflow.  This automatic slough is only partially 
effective, and eventually a human is required to 
manually slough the nitrifier.  The configuration for this 
activity requires ensuring that water is flowing in the 
BWP, as well as suspending the automatic shutdowns 
(ASDs) that the control automation will normally enact 
if tube pressure readings go outside the nominal range. 

• RO slough – Inorganic deposits may accumulate inside 
the RO’s tubular membranes.  If the water flow is 
reversed, a small ball in each tube will slide along the 
tube length, sloughing this buildup away.  The 
automated control system carries out this RO slough at a 
predetermined frequency.  If the RO output quality 
degrades, a human may manually command the control 
system to slough the membranes again.  This is the only 
mediated action we currently support.  Reconfiguration 
for this activity requires the RO to be shutdown. 

• RO membrane change out – Eventually the RO 
membranes lose their efficiency and must be physically 
replaced.  The RO is shutdown, and the upstream and 
downstream subsystems are placed in standby mode.   

• BWP pressure calibration – Pressure sensors are the 
primary input used to control the BWP.  These sensors 
require calibration about every three months.  In order to 
conduct the calibration, the BWP must be disconnected 
from the downstream subsystems and placed in a 
standby mode. 

Actions required to achieve the reconfiguration necessary 
for these activities may be either manual or mediated.  In 
the current system, reconfiguration affects both hardware 
(the states of eight valves and ten pumps) and software (the 
operating characteristics of the automated control system).  
When possible, commanding is granted for concurrent 
tasks, which must have compatible configurations.   

Commanding and Authorization in DCI 

In general, the command and authorization capability is 
needed in DCI to allow humans and control automation to 
make efficient progress toward their individual goals 
without (1) the risk of having their work immediately 
undone or destroyed (2) the risk of interfering with or 
preventing the work of others and (3) the risk of putting 
the underlying hardware system in an unsafe state (for 
example, a state where pumps may be damaged by 
attempting to pull water from a blocked source).  
 In the DCI environment, each user is represented by an 
Ariel agent (Martin et al., 2003), which acts as a liaison 
between the user and the rest of the software environment, 
including the automated control agent.  An Ariel agent 
provides a human-centric interface into the software 
environment and provides a number of services including 
notification, task tracking, and location tracking.  In 
particular, the Ariel agent provides a Command and 
Authorization Service, which assists its user with 
command and authorization requests.  Figure 2 shows the 
Ariel agents, the WRS system and the following two 
components: 
• Command and Authorization Manager (CAM).  The 
CAM accepts requests for commanding from users through 
their Ariel agents.  Each request is associated with an 
activity that the user wishes to perform.  The CAM first 
queries the AFC (see next bullet) for information about the 
effects of the requested activity as well as any 
configuration conflicts between the current system 
configuration and the configuration required for the 
activity (currently, only hardware conflicts are reported).  
The Managing Authorizations section, below, describes 
how the CAM uses the results of this query to grant or 
deny authorization.  If authorization is denied, this result is 
returned to the user along with a description of the 
configuration conflicts.  If authorization is granted, and the 
user wishes to continue, the CAM asks the AFC to carry 
out any required reconfiguration on the WRS.  Once the 
reconfiguration, if any, is complete, the CAM informs the 
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user through his or her Ariel that the WRS is ready to 
command.  The user can then proceed with the actions 
required by the procedure for the requested activity.  When 
the user has completed the activity, he or she requests the 
CAM to release commanding for the activity.  The CAM 
informs the AFC that the activity's reconfiguration is no 
longer required and then releases the authorization. 
• Augmentation for Commanding (AFC).  The AFC is a 
piece of augmenting software in the DCI architecture 
(shown by the dotted lines indicating tight coupling to the 
WRS).  It is coupled to the automated control system in 
that they share static models of both the physical WRS 
system and the procedures that can be performed on the 
system (including reconfiguration procedures).  Using 
these models, the AFC predicts how various activities will 
affect the WRS.  The AFC can also query the WRS control 
agent dynamically to get the current system configuration.   
 We found that models of reconfiguration procedures 
could be used to (1) determine what parts of the WRS 
would be affected by (reconfiguring for) an activity and (2) 
allow the AFC to trigger the WRS control agent to perform 
the reconfiguration necessary.  Except for mediated 
activities, such as the RO slough, models of 
reconfiguration procedures were not originally developed 
for the WRS control agent because they were not necessary 
for autonomous operation.  In support of the DCI 
commanding capability, we added models of the 
reconfiguration procedures for the other three activities 
described above.  In the future, we also plan to add 
procedure models of the actual manual activities.  This will 
further help us determine how the WRS would be affected: 
by both the body of the activity itself and the 
reconfiguration (initial and final).  Because the human 
actions during the RO slough activity are mediated by the 
control system, the WRS already has a model for this 
activity.   
 When the CAM queries the AFC about the effects of an 
activity, the AFC provides two results.  First, the AFC 
decomposes the associated reconfiguration procedure (as 
well as the activity’s procedure model, if available) to 
determine and return all components of the WRS that may 
be affected by the activity.  In the current implementation, 
this result is highly abstracted and consists of an indicator 
for the highest-level system or subsystem that is affected.  
This system/subsystem approach is made extensible by 
also returning the specific decomposition of subsystems 
that are affected by the reconfiguration (in the future, 
subcomponents of the subsystems may also be used here).  
Second, the AFC queries the WRS automated control agent 
for the current system configuration (i.e., the current state 
of the eight valves and ten pumps) and returns a list of 
conflicts between the current state and the state required 
after reconfiguration.  The CAM uses the first result to 
determine whether to grant authorization for the activity, 
as described in the next section, and passes the second set 
of results back to the user. 
 If the CAM asks the AFC to reconfigure the WRS for a 
requested activity, the AFC triggers the WRS control agent 

to perform the reconfiguration procedure, if any.  During 
the course of the reconfiguration, some manual actions 
may also be required.  When it is time for a manual 
reconfiguration action, the WRS control agent, through the 
AFC, CAM, and the Ariel agent’s user interface requests 
the user to perform the action and waits for a return 
indication from the user that it is accomplished.  This 
feedback from the user is needed because manually 
operated physical devices are not normally instrumented 
for computers, so manual actions are not easily observable 
by the software for tracking a user’s progress in the 
reconfiguration.  Once all reconfiguration actions have 
been completed, the CAM informs the user that the WRS 
is ready for commanding. 

Managing Authorizations 

Authorization to act on the WRS is managed by the CAM.  
The CAM is centralized to provide synchronized access 
from multiple entities (various Ariel agents and, in the 
future, the automated control system itself) to a single 
model describing which entities hold which authorizations.  
In general, granting authorization to one entity for a given 
scope of action blocks other entities from receiving 
authorization overlapping that scope until the first 
authorization is released.  This blocking authorization 
paradigm prevents multiple entities from acting on the 
WRS simultaneously for activities within the same scope, 
which may therefore conflict or interfere with one another.  
Because multiple entities can request authorization 
simultaneously, the CAM’s synchronized access to the 
authorization model, along with the requirement to obtain 
authorization to act on the system before reconfiguring for 
a particular activity, prevents simultaneous conflicting 
actions (including reconfiguration actions) from being 
performed.   
 When possible, the CAM should authorize concurrent 
activities.  We believe that the maximum concurrency 
without risking conflicts can be achieved by authorizing 
activities Act1 and Act2 concurrently as long as (1) their 
configurations do not conflict and (2) no action taken for 
Act1 (during reconfiguration or the procedure itself) 
affects the same component or state value (i.e., tube 
pressure) as any action taken for Act2, and vice versa.  For 
our initial approach, we used models already within the 
WRS control agent to support command and authorization 
and limited our development of new models.  
Unfortunately, (1) the existing models for the required 
configurations are not detailed enough to guarantee no 
conflicts (e.g., they have not been extended to include 
required state values or operating characteristics of the 
automation) and (2) we do not have models of the 
procedures for activities that require only manual action.  
Although we did develop models of the required 
configurations for each activity, we found that actions 
during activities may still conflict, even when the 
configurations are compatible.  Until we extend these 
models, we have initially adopted a conservative approach 



to authorization that works well with the existing models 
but does not allow the maximum possible authorization 
concurrency.  The approach is conservative in that it locks 
authorization for an entire subsystem (e.g. the RO) if any 
component of that subsystem is affected by an activity (by 
the reconfiguration - or the activity itself if a model exists), 
and it locks authorization for the entire WRS if multiple 
subsystems or the dependencies between subsystems (e.g. 
water flow) are affected.  For the small set of actions and 
scenarios we have considered, the conservative nature of 
this approach has not been a disadvantage. 
 When a user requests commanding permission for a 
given activity from the CAM, the CAM obtains 
information about the highest-level system or subsystem 
affected by the activity from the AFC.  The CAM 
translates the system/subsystem decomposition into a 
model of scopes for granted authorization.  Let Φ be the 
set of all system components such that authorization can be 
assigned for the scope of that component.  For the current 
implementation Φ = {WRS, BWP, RO, AES, PPS}.  For 
the variables x and y, let x, y ∈  Φ.  Let Sub(x, y) define a 
predicate that indicates whether component x is a 
subsystem or subcomponent of component y in a 
hierarchical decomposition of the system.  For the current 
implementation, the following hold: Sub(BWP, WRS), 
Sub(RO, WRS), Sub(AES, WRS), Sub(PPS, WRS).   
 Let α be the set of all agents (including humans and the 
automated control agent) that can act on the system.  For 
the variables a and b, let a, b ∈  α.  Let Auth(a, x) define a 
predicate indicating that agent a has authorization to act 
over the scope of system component x.   
 The CAM uses the following rule to assign 
authorizations:  When b requests Auth(b, x), then grant 
Auth(b, x) if and only if no other agent holds the 
authorization for x, for any of x’s subsystems, or for any 
component that has x as a subsystem.  In other words, 
when request( Auth(b, x) ),   

if ∀ a, ¬Auth(a, x) 
 ∧  ∀ a, ∀ y, Sub(x, y) ⇒ ¬Auth(a, y) 
 ∧  ∀ a, ∀ y, Sub(y, x) ⇒ ¬Auth(a, y) 
then Auth(b, x). 

 The current CAM implementation assumes that every 
entity requesting authorizations possesses the necessary 
credentials (authentication, skills, and/or certificates) for 
the authorization to be granted.  We would like to add 
credential checking in the future.  However, it is not 
currently critical in our application because (1) we assume 
all possible users (NASA crew) are highly trained and (2) 
our authorization process is used primarily for 
coordination rather than access control.  Although users 
must log in to use DCI (authentication), they can currently 
act on the WRS by circumventing DCI completely.  Users 
are motivated to request commanding permission through 
DCI primarily to minimize the risk of conflicts and to 
obtain assistance from the AFC in reconfiguring the WRS 
for the desired activity.   

 If the CAM denies a user authorization to act on the 
system, the user should (by policy) wait until the 
authorization can be granted before taking any action.  
However, enforcing such a lockout could prevent a user 
from taking needed action in an emergency, which is a 
particularly troubling prospect with respect to a critical life 
support system.  The development and use of more 
sophisticated models for the effects of activities on the 
system will allow us to avoid being overly conservative, 
maximizing the number of activities we can authorize 
concurrently.  However, these advances will not address 
situations in which a low-priority ongoing activity may 
block authorization for an emergent higher-priority 
activity.  We are currently working on building a user 
override capability for denied authorizations as well as 
policies for notifying other users who are impacted when 
such overrides are exercised.   
 The current WRS implementation offers limited options 
for enforcement of either denied authorizations or denied 
system access in general.  There is some password 
protection for mediated actions, but anyone could 
theoretically walk up to the system and power down a 
pump at any time.  We hope to improve enforcement as the 
override capability is developed.  Suri et al describes 
relevant previous work on policy enforcement (Suri et al., 
2003).  In the interim, when an authorization is denied, the 
CAM reports back to the requesting user the set of pre-
existing authorizations that conflict with the request as well 
as the list of conflicts between the current system 
configuration and the requested activity’s configuration.  
The highly trained user can consider this information to 
determine how to proceed.  He or she may ask other users 
holding a conflicting authorization to release it, or he or 
she may proceed manually with the desired reconfiguration 
and activity with foreknowledge of possible conflicts that 
may arise.  Although much work remains, making users 
aware of possible conflicts arising from ongoing activities 
by other users on the WRS is an important first step toward 
supporting the coordination of multiple humans and an 
automated control agent working on the same underlying 
physical system. 

Conclusions and Future Work 

Two research goals for the DCI project are addressed by 
our current work to support commanding and authorization 
for action by multiple humans and an automated control 
agent on the same physical system.  In support of the first 
goal, to enhance interaction capabilities between humans 
and autonomous systems, we have enhanced coordination 
among users by making them aware of possible conflicts 
arising from ongoing activities by other users on the WRS 
system.  Further, as an integral part of processing a 
human’s request to perform an activity on the physical 
system, we provide previously unavailable assistance in 
reconfiguring the system for that activity.  By suspending 
or modifying automatic responses in the control system for 
the duration of human-initiated activities, we have also 



enhanced coordination between humans and the 
automation.  To provide these capabilities, we use models 
of system connectivity and configuration that previously 
existed in the automation, and we created new models of 
the reconfiguration procedures needed to support four 
human activities.  We developed new ways to interpret 
these models (for example, examining a procedure to 
determine its effects on the system), and we updated the 
automation to perform the newly modeled reconfiguration 
procedures when requested.  Finally, we developed and 
implemented a conservative policy for granting 
authorization to act on the system, which ensures that no 
more than one user at a time has authorization at a given 
scope. 
 In support of the second goal, to better understand 
design requirements for future autonomous systems to 
support enhanced interaction, we have determined that 
such systems should support sophisticated models of the 
effects of activities, including those consisting of manual 
actions, as well as the reconfiguration procedures required 
to support those activities.  Because designers can never 
know all needed human-initiated procedures prior to 
system deployment, there should be a mechanism for 
dynamically adding these models and procedures (ideally 
without taking the system offline to do so).  Finally, the 
automated system must exhibit some form of adjustable 
autonomy to suspend or modify its operation for the 
duration of a human-initiated activity.   
 We have identified a great deal of future work with 
respect to both goals.  First and foremost, we need deeper 
and more comprehensive models.  In order to move 
beyond our conservative approach to authorization, we 
need to extend both the breadth of models for activities 
(modeling the effects of manual and mediated actions in 
the body of procedures rather than only the configurations 
required as initial conditions) and the depth of these 
models (modeling not only hardware states such as pump 
on/off but also required operating parameters and 
performance constraints such as required pressure or 
temperature ranges).  Once these models are available, we 
can update our authorization policies to permit more 
informed concurrency by using a more detailed 
understanding of the possible conflicts revealed by these 
models.  We will also investigate using reconfiguration and 
procedure models that account for potential procedural 
changes, which may be required at loss of capability due to 
system faults.  Sometimes these changes require a change 
in scope of authorization.   
 We would like to further enhance our authorization 
capabilities by supporting credential checking as well as 
authorization enforcement and override capabilities.  To 
support override capabilities, we are currently beginning to 
explore how reconfiguration should be managed for 
multiple (possibly overlapping) required configurations.  
This work focuses on determining the target system state 
once commanding for a particular activity is complete.  We 
have developed preliminary algorithms to determine which 
reconfiguration actions can be “undone” and which actions 

shouldn’t be undone because they overlap with required 
configurations for concurrently authorized activities.  As 
the models of required system configuration for each 
activity become more sophisticated, determining the target 
system reconfiguration before and after commanding will 
also become more demanding.   
 Finally, we plan to extend this work to better support 
coordination with the autonomous system.  This additional 
support would include (1) extending supported activities to 
those containing a mixture of manual, mediated, and 
automated actions, (2) making more extensive use of the 
adjustable autonomy and traded control capabilities of the 
automation, and (3) granting explicit authorizations to the 
automation in addition to humans such that humans are 
protected from unknowingly acting on the system when the 
automation is performing a critical operation.  Although 
much work remains to fully support human commanding 
and authorization in coordination with autonomous 
systems, the preliminary work presented in this paper 
provides both enhanced capabilities and encouragement 
that we have defined a reasonable path forward. 
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