
Augmenting Automated Control Software to

Interact with Multiple Humans

C. Martin, D. Schreckenghost, R. P. Bonasso

NASA Johnson Space Center, TRACLabs
1012 Hercules, Houston TX, 77058, USA

cmartin@traclabs.com, ghost@ieee.org, r.p.bonasso@jsc.nasa.gov

Abstract
It is clear that automated control systems for applications
such as power generation and advanced life support do not
operate in isolation. Unfortunately, support for interaction
with humans often lags support for basic automation
functionality in the development of such systems. Two
goals of the Distributed Collaboration and Interaction (DCI)
project are to (1) enhance interaction capabilities between
humans and autonomous systems and (2) better understand
design requirements for future autonomous systems to
support this enhanced interaction. This paper describes
current work in DCI with respect to a command and
authorization capability. This capability provides a
coordination mechanism through which humans and an
autonomous control agent can take actions on the same
underlying hardware system with a decreased risk of
interfering with each other's commands.

Introduction

Autonomous systems deployed to realize control
automation are needed to reduce human workload, to
increase efficiency, and to perform routine operations,
such as vigilant monitoring or continuous iteration through
processing cycles. Such automation does not operate in
isolation. The automation must be deployed in an
environment, and this environment typically contains
humans who are affected by or overseeing its operation.
Humans must explicitly interact with the automation for
tasks such as supervisory monitoring, modifying goals,
repairing underlying hardware or software, responding to
anomalies, and taking advantage of opportunities.
 Unfortunately, practical and cultural considerations
(Schreckenghost et al., 2002) drive designers to give the
basic functionality of the automation both priority and
temporal precedence over supporting interaction in the
development of such systems (i.e., the system must be
shown to work before interaction with humans becomes a
priority). As a result, automated control systems are not
typically designed from the outset to fully support
interaction with humans, even though designers may
recognize this need or plan to address it in the future.
 This paper describes one element of our current research
to both (1) enhance interaction capabilities between

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

humans and autonomous systems and (2) better understand
design requirements for future autonomous systems to
support this enhanced interaction. In pursuit of the first
goal, we have developed a Distributed Collaboration and
Interaction (DCI) environment that allows humans to
interact with automated control agents whose function is
not primarily human-centric but who must be supervised
by or coordinated with humans (Martin et al., 2003). In
particular, this paper describes a command and
authorization capability recently developed for the DCI
environment. This capability provides a coordination
mechanism through which humans and a control agent can
take actions on the same underlying physical system with a
decreased risk of interfering with each other's commands.
 In pursuit of the second goal, we hope use our
experience with the DCI environment to define
requirements, which can be considered up front with other
functional design requirements to make the automated
control systems interaction-ready. In doing so, we hope to
enable future designs for autonomous systems to support
enhanced interaction with humans from the ground up.
One critical element of our approach is to avoid placing the
entire burden of supporting human interaction on the
automation itself. Because autonomous control systems
must often handle time-critical tasks, we want to avoid
introducing extra processing overhead in the autonomous
system, when possible. Our approach uses augmenting
software that is tightly coupled to the automation through
shared models or data but has its own processing
resources. The separation of processing for interaction
into augmenting software has the added benefit of
accommodating the natural lag between implementing
basic automation and interaction capabilities. With respect
to the command and authorization capability, we aim to
define what models and data should be made visible by the
autonomous system as well as what basic functionality the
autonomous system must exhibit to allow interaction.
 The treatment of interaction among humans and
automated control systems as a coherent design and
research issue is a relatively new endeavor. This paper
describes our approach through DCI. The following
section describes the automated control system to which
we have applied our current research. The command and
authorization capability is then presented in detail. The
paper concludes with a summary of contributions and
lessons learned as well as a discussion of future work.

Automation for the Water Recovery System

Our work to enhance human interaction with autonomous
control systems builds on our previous experience
developing automation for advanced life support at
Johnson Space Center (JSC) since 1995 (Bonasso et al.,
2003; Schreckenghost et al., 2002). The work described in
this paper has been applied to the advanced Water
Recovery System (WRS) (Bonasso et al., 2003). The WRS
removes organic and inorganic materials from wastewater
(hand wash, shower, urine and respiration condensate) to
produce potable water. The hardware and control software
for the WRS operated unattended in a continuous 24/7
integrated test from January 2001 through April 2002,
(Bonasso et al., 2003). The WRS is comprised of four
subsystems as pictured in Figure 1:
(1) The biological water processor (BWP) removes
organic compounds and ammonia by circulating the water
through a two-stage bioreactor. The first stage uses
microbes to consume the organic material using oxygen
from nitrate molecules. The second stage uses microbes to
convert the ammonium to nitrate.
(2) The reverse-osmosis (RO) subsystem removes
inorganic compounds from the output of the BWP, by
forcing the water to flow at high pressure through a
molecular sieve. The sieve rejects the inorganic
compounds, concentrating them into brine. At the output
of the RO, 85% of the water is ready for post-processing,
and 15% of the water is brine.
(3) The air evaporation system (AES) removes the
concentrated salts from the brine by depositing it on a
wick, blowing heated air through the wick, and then
cooling the air. The inorganic wastes are left on the wick
and the condensate water is ready for post processing.
(4) The post-processing system (PPS) makes the water
potable by removing the trace inorganic wastes and
ammonium using a series of ion exchange beds and by
removing the trace organic carbons using a series of ultra-
violet lamps.

 These subsystems are loosely coupled, and their primary
interdependencies are related to input and output of the
water to be processed. In total, the automated control
system for the WRS manages more than 200 sensors
(measuring pressure, temperature, air and water flow rates,
pH, humidity, dissolved oxygen, and conductivity) and
actuators (including pumps, valves, ultra-violet lamps, and
heaters). The automated control system uses a layered
control architecture, called 3T (Bonasso et al., 1997),
which has been applied to control both robots and
advanced life support systems. 3T's top tier is a
hierarchical task net (HTN) planner, the plans of which are
executed through a reactive middle tier that in turn
manages the sensors and actuators of the hardware via a
low-level control tier.

Commanding the WRS
Although the 3T-based automated control system operates
the WRS hardware unattended most of the time, there are
several cases in which humans must also take actions on
the life support system. Actions that humans take can be
either manual or mediated. Manual actions are those that
the human carries out directly on the life support system
hardware, for example, physically turning a valve. A
human conducts mediated actions by giving instructions to
the automation software, which carries out the actions.
Mediated actions can be requested from other external
sources as well, including software elements of the DCI
system. In contrast, automated actions are those taken by
the control software during its normal operation without
any requests from an external source. Manual and
mediated actions are needed for two possible reasons (1)
the action must be manual because the automation has no
appropriate actuator or (2) the action could be carried out
either by a human or via the software but is motivated by
circumstances outside the scope of normal operation for
the automation. An RO slough, as described in the
following subsection, exemplifies the latter.
 When a human wishes to perform actions on the WRS
using the DCI command and authorization capability, he or
she requests the appropriate commanding permission1 for a
particular activity. To grant commanding for a given
activity, DCI must first, if possible, grant authorization for
the set of manual or mediated actions required by the
activity, and then reconfigure the WRS hardware and
control automation to the proper state required for those
actions. In general, the reconfiguration process may
include setting the states of particular hardware such as
valves open/closed or pumps on/off, adjusting the
autonomy of the automation to allow for manual actions
(Schreckenghost et al., 2002), bringing the state of the
system to a particular point such as getting tube pressures

1
 Throughout the paper, the term “authorization” implies a license to take

action on the WRS. We use the term “commanding” to convey this
authorization plus whether the system is ready for the execution of a
particular activity associated with a pre-defined procedure, which may
contain multiple manual or mediated actions.

Biological Water
Processor (BWP)

Reverse
Osmosis

(RO)

Post
Processing

System
(PPS)

Air Evaporation
System (AES)

85%

15%

15%

100%

100%

100%

100%

Water Recovery System (WRS)

Figure 1. WRS Subsystems

and temperatures within a specified range, or commanding
a subsystem to a particular processing mode. The
following subsection describes the current support
implemented for commanding and authorization in the
DCI system, which includes a subset of these
reconfiguration steps.

Current Support for Commanding the WRS
The command and authorization capability in DCI
coordinates multiple humans and the control automation,
allowing each to take actions on the same underlying
hardware system without interfering with ongoing tasks.
Our current work concerning command and authorization
interactions addresses the coordination of multiple humans
with each other and with the automation before, during,
and after the execution of human-initiated actions on the
WRS hardware. We currently support these four activities:

• BWP nitrifier slough – The biofilm that grows on the
insides of the tubes in the nitrifying portion of the BWP
will thicken over time, slowly constricting the passage
of water and air. To minimize clogs, the control system
periodically sloughs the biofilm by sharply increasing
the airflow. This automatic slough is only partially
effective, and eventually a human is required to
manually slough the nitrifier. The configuration for this
activity requires ensuring that water is flowing in the
BWP, as well as suspending the automatic shutdowns
(ASDs) that the control automation will normally enact
if tube pressure readings go outside the nominal range.

• RO slough – Inorganic deposits may accumulate inside
the RO’s tubular membranes. If the water flow is
reversed, a small ball in each tube will slide along the
tube length, sloughing this buildup away. The
automated control system carries out this RO slough at a
predetermined frequency. If the RO output quality
degrades, a human may manually command the control
system to slough the membranes again. This is the only
mediated action we currently support. Reconfiguration
for this activity requires the RO to be shutdown.

• RO membrane change out – Eventually the RO
membranes lose their efficiency and must be physically
replaced. The RO is shutdown, and the upstream and
downstream subsystems are placed in standby mode.

• BWP pressure calibration – Pressure sensors are the
primary input used to control the BWP. These sensors
require calibration about every three months. In order to
conduct the calibration, the BWP must be disconnected
from the downstream subsystems and placed in a
standby mode.

Actions required to achieve the reconfiguration necessary
for these activities may be either manual or mediated. In
the current system, reconfiguration affects both hardware
(the states of eight valves and ten pumps) and software (the
operating characteristics of the automated control system).
When possible, commanding is granted for concurrent
tasks, which must have compatible configurations.

Commanding and Authorization in DCI

In general, the command and authorization capability is
needed in DCI to allow humans and control automation to
make efficient progress toward their individual goals
without (1) the risk of having their work immediately
undone or destroyed (2) the risk of interfering with or
preventing the work of others and (3) the risk of putting
the underlying hardware system in an unsafe state (for
example, a state where pumps may be damaged by
attempting to pull water from a blocked source).
 In the DCI environment, each user is represented by an
Ariel agent (Martin et al., 2003), which acts as a liaison
between the user and the rest of the software environment,
including the automated control agent. An Ariel agent
provides a human-centric interface into the software
environment and provides a number of services including
notification, task tracking, and location tracking. In
particular, the Ariel agent provides a Command and
Authorization Service, which assists its user with
command and authorization requests. Figure 2 shows the
Ariel agents, the WRS system and the following two
components:
• Command and Authorization Manager (CAM). The
CAM accepts requests for commanding from users through
their Ariel agents. Each request is associated with an
activity that the user wishes to perform. The CAM first
queries the AFC (see next bullet) for information about the
effects of the requested activity as well as any
configuration conflicts between the current system
configuration and the configuration required for the
activity (currently, only hardware conflicts are reported).
The Managing Authorizations section, below, describes
how the CAM uses the results of this query to grant or
deny authorization. If authorization is denied, this result is
returned to the user along with a description of the
configuration conflicts. If authorization is granted, and the
user wishes to continue, the CAM asks the AFC to carry
out any required reconfiguration on the WRS. Once the
reconfiguration, if any, is complete, the CAM informs the

Augmentation for
Commanding

(AFC)

WRS
Automated

Control Agent

WRS Life
Support

Hardware

WRS

Command and
Authorization

Manager (CAM)

Command/
Authorize

(CAS)

Interrupt
Handle
(IHS)

Task
Status
(TSS)

Interactive
Procedure

(IPS)

Interactive
Event
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management

(SMS)

ARIEL

User Interface

Ariel 1

Person 1

User Interface

Ariel 2

Command/
Authorize

(CAS)

Interrupt
Handle
(IHS)

Task
Status
(TSS)

Interactive
Procedure

(IPS)

Interactive
Event
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management

(SMS)

ARIEL

Person 2

commanding requests,
returns authorization and

reconfiguration results

queries for effects
of activities

reconfig requests

query current
system config

reconfig
commands

manual
actions

Figure 2. Commanding and Authorization in DCI

user through his or her Ariel that the WRS is ready to
command. The user can then proceed with the actions
required by the procedure for the requested activity. When
the user has completed the activity, he or she requests the
CAM to release commanding for the activity. The CAM
informs the AFC that the activity's reconfiguration is no
longer required and then releases the authorization.
• Augmentation for Commanding (AFC). The AFC is a
piece of augmenting software in the DCI architecture
(shown by the dotted lines indicating tight coupling to the
WRS). It is coupled to the automated control system in
that they share static models of both the physical WRS
system and the procedures that can be performed on the
system (including reconfiguration procedures). Using
these models, the AFC predicts how various activities will
affect the WRS. The AFC can also query the WRS control
agent dynamically to get the current system configuration.
 We found that models of reconfiguration procedures
could be used to (1) determine what parts of the WRS
would be affected by (reconfiguring for) an activity and (2)
allow the AFC to trigger the WRS control agent to perform
the reconfiguration necessary. Except for mediated
activities, such as the RO slough, models of
reconfiguration procedures were not originally developed
for the WRS control agent because they were not necessary
for autonomous operation. In support of the DCI
commanding capability, we added models of the
reconfiguration procedures for the other three activities
described above. In the future, we also plan to add
procedure models of the actual manual activities. This will
further help us determine how the WRS would be affected:
by both the body of the activity itself and the
reconfiguration (initial and final). Because the human
actions during the RO slough activity are mediated by the
control system, the WRS already has a model for this
activity.
 When the CAM queries the AFC about the effects of an
activity, the AFC provides two results. First, the AFC
decomposes the associated reconfiguration procedure (as
well as the activity’s procedure model, if available) to
determine and return all components of the WRS that may
be affected by the activity. In the current implementation,
this result is highly abstracted and consists of an indicator
for the highest-level system or subsystem that is affected.
This system/subsystem approach is made extensible by
also returning the specific decomposition of subsystems
that are affected by the reconfiguration (in the future,
subcomponents of the subsystems may also be used here).
Second, the AFC queries the WRS automated control agent
for the current system configuration (i.e., the current state
of the eight valves and ten pumps) and returns a list of
conflicts between the current state and the state required
after reconfiguration. The CAM uses the first result to
determine whether to grant authorization for the activity,
as described in the next section, and passes the second set
of results back to the user.
 If the CAM asks the AFC to reconfigure the WRS for a
requested activity, the AFC triggers the WRS control agent

to perform the reconfiguration procedure, if any. During
the course of the reconfiguration, some manual actions
may also be required. When it is time for a manual
reconfiguration action, the WRS control agent, through the
AFC, CAM, and the Ariel agent’s user interface requests
the user to perform the action and waits for a return
indication from the user that it is accomplished. This
feedback from the user is needed because manually
operated physical devices are not normally instrumented
for computers, so manual actions are not easily observable
by the software for tracking a user’s progress in the
reconfiguration. Once all reconfiguration actions have
been completed, the CAM informs the user that the WRS
is ready for commanding.

Managing Authorizations

Authorization to act on the WRS is managed by the CAM.
The CAM is centralized to provide synchronized access
from multiple entities (various Ariel agents and, in the
future, the automated control system itself) to a single
model describing which entities hold which authorizations.
In general, granting authorization to one entity for a given
scope of action blocks other entities from receiving
authorization overlapping that scope until the first
authorization is released. This blocking authorization
paradigm prevents multiple entities from acting on the
WRS simultaneously for activities within the same scope,
which may therefore conflict or interfere with one another.
Because multiple entities can request authorization
simultaneously, the CAM’s synchronized access to the
authorization model, along with the requirement to obtain
authorization to act on the system before reconfiguring for
a particular activity, prevents simultaneous conflicting
actions (including reconfiguration actions) from being
performed.
 When possible, the CAM should authorize concurrent
activities. We believe that the maximum concurrency
without risking conflicts can be achieved by authorizing
activities Act1 and Act2 concurrently as long as (1) their
configurations do not conflict and (2) no action taken for
Act1 (during reconfiguration or the procedure itself)
affects the same component or state value (i.e., tube
pressure) as any action taken for Act2, and vice versa. For
our initial approach, we used models already within the
WRS control agent to support command and authorization
and limited our development of new models.
Unfortunately, (1) the existing models for the required
configurations are not detailed enough to guarantee no
conflicts (e.g., they have not been extended to include
required state values or operating characteristics of the
automation) and (2) we do not have models of the
procedures for activities that require only manual action.
Although we did develop models of the required
configurations for each activity, we found that actions
during activities may still conflict, even when the
configurations are compatible. Until we extend these
models, we have initially adopted a conservative approach

to authorization that works well with the existing models
but does not allow the maximum possible authorization
concurrency. The approach is conservative in that it locks
authorization for an entire subsystem (e.g. the RO) if any
component of that subsystem is affected by an activity (by
the reconfiguration - or the activity itself if a model exists),
and it locks authorization for the entire WRS if multiple
subsystems or the dependencies between subsystems (e.g.
water flow) are affected. For the small set of actions and
scenarios we have considered, the conservative nature of
this approach has not been a disadvantage.
 When a user requests commanding permission for a
given activity from the CAM, the CAM obtains
information about the highest-level system or subsystem
affected by the activity from the AFC. The CAM
translates the system/subsystem decomposition into a
model of scopes for granted authorization. Let Φ be the
set of all system components such that authorization can be
assigned for the scope of that component. For the current
implementation Φ = {WRS, BWP, RO, AES, PPS}. For
the variables x and y, let x, y ∈ Φ. Let Sub(x, y) define a
predicate that indicates whether component x is a
subsystem or subcomponent of component y in a
hierarchical decomposition of the system. For the current
implementation, the following hold: Sub(BWP, WRS),
Sub(RO, WRS), Sub(AES, WRS), Sub(PPS, WRS).
 Let α be the set of all agents (including humans and the
automated control agent) that can act on the system. For
the variables a and b, let a, b ∈ α. Let Auth(a, x) define a
predicate indicating that agent a has authorization to act
over the scope of system component x.
 The CAM uses the following rule to assign
authorizations: When b requests Auth(b, x), then grant
Auth(b, x) if and only if no other agent holds the
authorization for x, for any of x’s subsystems, or for any
component that has x as a subsystem. In other words,
when request(Auth(b, x)),

if ∀ a, ¬Auth(a, x)
 ∧ ∀ a, ∀ y, Sub(x, y) ⇒ ¬Auth(a, y)
 ∧ ∀ a, ∀ y, Sub(y, x) ⇒ ¬Auth(a, y)
then Auth(b, x).

 The current CAM implementation assumes that every
entity requesting authorizations possesses the necessary
credentials (authentication, skills, and/or certificates) for
the authorization to be granted. We would like to add
credential checking in the future. However, it is not
currently critical in our application because (1) we assume
all possible users (NASA crew) are highly trained and (2)
our authorization process is used primarily for
coordination rather than access control. Although users
must log in to use DCI (authentication), they can currently
act on the WRS by circumventing DCI completely. Users
are motivated to request commanding permission through
DCI primarily to minimize the risk of conflicts and to
obtain assistance from the AFC in reconfiguring the WRS
for the desired activity.

 If the CAM denies a user authorization to act on the
system, the user should (by policy) wait until the
authorization can be granted before taking any action.
However, enforcing such a lockout could prevent a user
from taking needed action in an emergency, which is a
particularly troubling prospect with respect to a critical life
support system. The development and use of more
sophisticated models for the effects of activities on the
system will allow us to avoid being overly conservative,
maximizing the number of activities we can authorize
concurrently. However, these advances will not address
situations in which a low-priority ongoing activity may
block authorization for an emergent higher-priority
activity. We are currently working on building a user
override capability for denied authorizations as well as
policies for notifying other users who are impacted when
such overrides are exercised.
 The current WRS implementation offers limited options
for enforcement of either denied authorizations or denied
system access in general. There is some password
protection for mediated actions, but anyone could
theoretically walk up to the system and power down a
pump at any time. We hope to improve enforcement as the
override capability is developed. Suri et al describes
relevant previous work on policy enforcement (Suri et al.,
2003). In the interim, when an authorization is denied, the
CAM reports back to the requesting user the set of pre-
existing authorizations that conflict with the request as well
as the list of conflicts between the current system
configuration and the requested activity’s configuration.
The highly trained user can consider this information to
determine how to proceed. He or she may ask other users
holding a conflicting authorization to release it, or he or
she may proceed manually with the desired reconfiguration
and activity with foreknowledge of possible conflicts that
may arise. Although much work remains, making users
aware of possible conflicts arising from ongoing activities
by other users on the WRS is an important first step toward
supporting the coordination of multiple humans and an
automated control agent working on the same underlying
physical system.

Conclusions and Future Work

Two research goals for the DCI project are addressed by
our current work to support commanding and authorization
for action by multiple humans and an automated control
agent on the same physical system. In support of the first
goal, to enhance interaction capabilities between humans
and autonomous systems, we have enhanced coordination
among users by making them aware of possible conflicts
arising from ongoing activities by other users on the WRS
system. Further, as an integral part of processing a
human’s request to perform an activity on the physical
system, we provide previously unavailable assistance in
reconfiguring the system for that activity. By suspending
or modifying automatic responses in the control system for
the duration of human-initiated activities, we have also

enhanced coordination between humans and the
automation. To provide these capabilities, we use models
of system connectivity and configuration that previously
existed in the automation, and we created new models of
the reconfiguration procedures needed to support four
human activities. We developed new ways to interpret
these models (for example, examining a procedure to
determine its effects on the system), and we updated the
automation to perform the newly modeled reconfiguration
procedures when requested. Finally, we developed and
implemented a conservative policy for granting
authorization to act on the system, which ensures that no
more than one user at a time has authorization at a given
scope.
 In support of the second goal, to better understand
design requirements for future autonomous systems to
support enhanced interaction, we have determined that
such systems should support sophisticated models of the
effects of activities, including those consisting of manual
actions, as well as the reconfiguration procedures required
to support those activities. Because designers can never
know all needed human-initiated procedures prior to
system deployment, there should be a mechanism for
dynamically adding these models and procedures (ideally
without taking the system offline to do so). Finally, the
automated system must exhibit some form of adjustable
autonomy to suspend or modify its operation for the
duration of a human-initiated activity.
 We have identified a great deal of future work with
respect to both goals. First and foremost, we need deeper
and more comprehensive models. In order to move
beyond our conservative approach to authorization, we
need to extend both the breadth of models for activities
(modeling the effects of manual and mediated actions in
the body of procedures rather than only the configurations
required as initial conditions) and the depth of these
models (modeling not only hardware states such as pump
on/off but also required operating parameters and
performance constraints such as required pressure or
temperature ranges). Once these models are available, we
can update our authorization policies to permit more
informed concurrency by using a more detailed
understanding of the possible conflicts revealed by these
models. We will also investigate using reconfiguration and
procedure models that account for potential procedural
changes, which may be required at loss of capability due to
system faults. Sometimes these changes require a change
in scope of authorization.
 We would like to further enhance our authorization
capabilities by supporting credential checking as well as
authorization enforcement and override capabilities. To
support override capabilities, we are currently beginning to
explore how reconfiguration should be managed for
multiple (possibly overlapping) required configurations.
This work focuses on determining the target system state
once commanding for a particular activity is complete. We
have developed preliminary algorithms to determine which
reconfiguration actions can be “undone” and which actions

shouldn’t be undone because they overlap with required
configurations for concurrently authorized activities. As
the models of required system configuration for each
activity become more sophisticated, determining the target
system reconfiguration before and after commanding will
also become more demanding.
 Finally, we plan to extend this work to better support
coordination with the autonomous system. This additional
support would include (1) extending supported activities to
those containing a mixture of manual, mediated, and
automated actions, (2) making more extensive use of the
adjustable autonomy and traded control capabilities of the
automation, and (3) granting explicit authorizations to the
automation in addition to humans such that humans are
protected from unknowingly acting on the system when the
automation is performing a critical operation. Although
much work remains to fully support human commanding
and authorization in coordination with autonomous
systems, the preliminary work presented in this paper
provides both enhanced capabilities and encouragement
that we have defined a reasonable path forward.

References

Bonasso, R. P., Firby, J. R., Gat, E., Kortenkamp, D.,
Miller, D. P., and Slack, M. G. 1997. Experiences with
an Architecture for Intelligent, Reactive Agents. Journal
of Experimental and Theoretical Artificial Intelligence 9:
237-256.

Bonasso, R. P., Kortenkamp, D., and Thronesbery, C.
2003. Intelligent Control of A Water Recovery System:
Three years in the Trenches. AI Magazine 24 (1): 19-44.

Martin, C. E., Schreckenghost, D., Bonasso, R. P.,
Kortenkamp, D., Milam, T., and Thronesbery, C. 2003.
An Environment for Distributed Collaboration Among
Humans and Software Agents. In Proceedings of 2nd
International Conference on Autonomous Agents and
Multi-Agent Systems, 1062-1063. Melbourne, Australia.

Schreckenghost, D., Thronesbery, C., Bonasso, R. P.,
Kortenkamp, D., and Martin, C. E. 2002. Intelligent
Control of Life Support for Space Missions. IEEE
Intelligent Systems 17 (5): 24-31.

Suri, N., Bradshaw, J. M., Burstein, M., et al. 2003.
DAML-based Policy Enforcement for Semantic Data
Transformation and Filtering in Multi-agent Systems. In
Proceedings of Second International Joint Conference
on Autonomous Agents and MultiAgent Systems, 1132-
1133. Melbourne, Australia.

