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Abstract

Although recent (physical) robots have powerful sensors and
actuators their abilities to show intelligent behavior is often
limited. One key reason is the lack of an appropriate spatial
representation. Spatial knowledge plays a crucial role in navi-
gation, (self- and object-)localization, planning and reasoning
for physical grounded robots. However, it is a major difficulty
of most existing approaches that each of these tasks imposes
heterogeneous requirements on the representation. In this pa-
per, we propose an egocentric representation, which relies on
1-D ordering information that still provides sufficient allo-
centric information to solve navigation and (self- and object)
localization tasks. Furthermore, we claim that our approach
supports an efficient, incremental process based on a simple
1D-representation. We conclude with a more abstract quali-
tative spatial representation.

Introduction
One major difficulty is that each of the navigation and lo-
calization tasks imposes heterogeneous requirements on the
representation. While the purpose of the navigation- and lo-
calization process is to build up a precise, in the majority of
cases allocentric static representation, planning and reason-
ing require more abstract, often egocentric representations.
In this paper, we propose an egocentric representation which
relies on 1-D ordering information, that provides sufficient
allocentric information to solve the mentioned tasks: anego-
centric, extended panorama. Furthermore, we claim that our
approach supports an efficient, incremental process based
on a simple 1D-representation for dynamic self-localization
tasks and conclude with a more abstract qualitative spatial
representation.

While qualitative knowledge representation was one of
the central topics of AI research almost two decades ago,
qualitative spatial knowledge representation has gained
strong interest especially in the last decade resulting in many
promising approaches which have been used successfully
in several areas of applications (e.g., traffic monitoring,
geographical information systems (Fernyhough and Hogg
2000), (Cohn and Hazarika 2001)). However, these ap-
proaches have been rarely used in robotics.
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It was shown that, based on a precise allocentric represen-
tation, physical environments can be adequately described
in terms of qualitative spatial knowledge i.e., topological,
metric and ordinal descriptions (Kuipers 2000), (Yeap and
Jefferies 1999). For all these types of qualitative knowl-
edge, expressive representations with powerful inference
mechanisms have been developed (popular examples can
be found in: for metric representations (e.g., (Clementiniet
al. 1997)), for topological representations (e.g., (Renz and
Nebel 1999)) and for ordinal representations (e.g. (Frank
1996))). However, the requirements for dynamic environ-
ments based on egocentric input data differ significantly
from those in allocentric environments with almost perfect
information.

Motivated from recent results in the cognitive science (see
section ,,Related Work” for details) we propose in this paper
a flexible, egocentric spatial representation, which is based
on ordering information: anegocentric, extended panorama
(EEP). We argue that the proposed sets of EEP provide a re-
liable basis for re-orientation and are expressive enough to
represent a large set of relevant spatial descriptions at dif-
ferent levels of granularity, which are required to describe
complex, coordinated behavior in real-time environments.
Additionally, we motivate that an EEP can be maintained
efficiently and in a flexible manner.

The rest of the paper is organized as follows: in the next
section we investigate the problem and the resulting require-
ments in more detail. In section three we have a look on the
previous work, focusing on cognition and panorama repre-
sentations. In section four we finally introduce ourextended
panoramamodel. We discuss advantages and disadvantages
of our approach and conclude with a brief a outlook with
respect to future work.

Motivation
Modeling complex behavior imposes strong requirements on
the underlying representations. The representation should
provide several levels of abstraction for activities as well as
for objects. For both types of knowledge, different represen-
tations were proposed and it was demonstrated that they can
be used successfully. Activities can, e.g., be described ad-
equately with hierarchical task networks (HTN) which pro-
vide clear formal semantics as well as powerful, efficient
(planning-) inferences (see e.g. (Erolet al. 1994)). Ob-



jects can be described either in ontology-based languages
(e.g., OWL (Smithet al. 2003)) or constraint-based lan-
guages (e.g., (John 2000)). Both types of representations
allow for the representation of knowledge at different levels
of abstraction according to the specific requirements of the
domain/task. In physically grounded environments, the use
of these techniques requires an appropriate qualitative spa-
tial description in order to relate the modeled behavior to the
real world. In the following three subsections we investigate
the key problems and as a consequence, the requirements on
qualitative spatial representations in order to model complex
physically grounded behaviors. As an example scenario we
use theRoboCupdomain.

Allocentric and Egocentric Representations
During the modeling of behavior patterns we have to decide
whether we would like to use an egocentric or an allocentric
representation. In an egocentric representation, spatial rela-
tions are usually directly related to an agent by the use of an
egocentricframe of referencein terms like, e.g.,left, right,
in front, behind. As a consequence, when an agent moves
through an environment, all spatial relations need to be up-
dated. On the other hand, representations based on an allo-
centric frame of reference remain stable but are much harder
to acquire. Additionally, the number of spatial relations
which have to be taken into account may be much larger
because we have to consider the relations between each ob-
ject α and all other objects in the environment, whereas the
number of relations in egocentric representations can be sig-
nificantly smaller.

(a) Allocentric relations (b) Egocentric relations

Figure 1: Allocentric vs. egocentric spatial relations

The decision whether to use an allocentric or an ego-
centric frame of reference has to be made with respect to
the additional domain-specific aspects. An interesting phe-
nomenon, when looking into the didactic literature about,
e.g., sports (Lucchesi 2001) we often find that (strategic
and tactical) knowledge is described in both, egocentric and
allocentric terms, whereas, e.g., the literature about driv-
ing lessons strongly relies on purely egocentric views. At
least one of the reasons are that the latter representation
seems to provide better support for acting directly in physi-
cally grounded environments, since perception as well as the
use of actuators are directly based on egocentric representa-
tions. In addition, egocentric representations provide better
support for rotation and translation invariant representations
when used with a qualitative abstraction (see the next sec-

tion for more details). A clear disadvantage is that an ego-
centric spatial descriptionsSpDesΘ1 of an agentΘ1 cannot
be communicated to and used by another agentΘ2 either
without a transformation fromSpDesΘ1 into SpDesΘ2 or
the use of an intermediate allocentric model, which provides
a common frame of reference.

Although the recent literature about spatial reasoning
seems to favor allocentric representations, we claim, that the
computational model of anegocentric extended panorama,
which is mainly based on an egocentric representation, pro-
vides clear advantages.

Related Work

Our approach is motivated by both, cognitive aspects and
AI-based representations. Therefore, we divide this section
in two subsections accordingly.

Cognition: Dynamic, Egocentric Spatial
Representations

The fact that even many animals (e.g., rodents) are able to
find new paths to familiar objects seems to suggest that spa-
tial relations are encoded in an allocentric static,,cognitive
map”. This almost traditional thesis is supported by many
spatial abilities like map navigation and mental movement
humans are able to perform (many literature about this topic
has been published beginning with (Tolman 1948); another
popular example is: (OKeefe and Speakman 1978)). Wang
and Spelke (Wang and Spelke 2002) argue that these obser-
vations and results can be explained in two different ways,
either by updating the egocentric movement in an allocen-
tric map using movement information, or in contrary, that
humans build a complete egocentric representation and are
able to map between different views. Recent studies pro-
vide strong evidence for the latter thesis. The predictions of
both do not differ essentially, they assume that allocentric
information is crucial for many spatial tasks and will there-
fore be provided in either way. The underlying assumption
of the sophisticated series of experiments1 done by Wang
(Wang 2000) and (Wang and Spelke 2000) was that the rela-
tions remain stable in an allocentric,cognitive mapindepen-
dent from egocentric movements, i.e., although the process
of path integration is error-prone, the allocentric relations
will not change, given that they are based on a cognitive
map. When errors arise because of path integrations, the
error rate (configuration error) should be the same for all
allocentric relations; otherwise they rely on an egocentric
representation. The results indicate clear evidence for ego-
centric representations. These results have been confirmed
in a series of differently designed experiments e.g. (Roskos-
Ewoldsenet al. 1998), (Sholl and Nolin 1997), (Easton and
Sholl 1995) and (Garsoffkyet al. 2002).

1Most experiments choose a spatial updating task which refers
to ,,the ability of a moving person to mentally update the location of
a target initially seen, heard, or touched from a stationary point.”
(in (Loomiset al. 2002) pp.335 c.).



AI: Dynamic, Egocentric Spatial Representations

A lot of approaches of spatial reasoning focus on the rep-
resentation of large scale space. Large scale space can
for instance be defined as,,space (that) is a significantly
larger scale than the observations available at an instant”
(Kuipers and Levitt 1988). Based on these complex repre-
sentations, different powerful inference methods have been
developed which allow for reasoning on cardinal directions
(Frank 1996), distance representations (e.g., (Clementiniet
al. 1997)) and topological representations (e.g., (Cohnet al.
1997)) on qualitative spatial representations. Most of these
approaches, however, are based on allocentric views with
precise information.

As a result, knowledge-based systemswith spatial reason-
ing focus on domains like geographical information systems
(GIS). When addressing domains with egocentric views,
ranging from sports (e.g., soccer, football) to traffic, the
lack of a precise, allocentric world model makes it diffi-
cult to apply these approaches. Instead we have to combine
missing as well as uncertain knowledge. In order to build
more abstract qualitative representations on different levels
of granularity, we first have to handle these problems. In-
stead of building an allocentric world model, we propose
an approach that directly relies on an egocentric (and there-
fore dynamic) representation. Schlieder ((Schlieder 1996),
(Schlieder 1993)) proposed thepanoramaapproach to qual-
itative spatial reasoning. This approach is based on a sim-
ple qualitative abstraction: the use of 1D-information (i.e.,
ordering information) in order to represent egocentric 2D-
scenarios.

The Panorama Approach The concept of panorama rep-
resentation has been studied extensively in the course of
specialized sensors (e.g., omnivision, see, e.g., (Zheng and
Tsuji 1992)). We present an extended approach based on the
panorama approach.

A complete, circular panorama can be described as a3600

view from a specific, observer-dependent point of view. Let
P in figure 2(a) denote a person, then the panorama can be
defined as the strict ordering of all objects:house, woods,
mall, lake. This ordering, however, does not contain all or-
dering information as described by the scenario 2(a). The
mall is not only directly between thewoodsand thelake,
but more specifically between the opposite side of thehouse
and thelake (the tails of the arrows). In order to repre-
sent the spatial knowledge described in a panorama scenario,
Schlieder (Schlieder 1996) introduced a formal model of a
panorama.

Definition 1: (Panorama) Let Θ= {θ1, . . . , θ2} be a set of
pointsθ ∈ Θ andΦ = {φ1, . . . , φn} the arrangement of
n-1 directed lines connectingθi with another point ofΘ,
then the clockwise oriented cyclical order ofΦ is called
the panorama ofθi.

As a compact shorthand notation we can de-
scribe the panorama in figure 2(b) as the string
< A,C,D,Bo,Ao,Co,Do,B >. Standard letters
(e.g., A) describe reference points, and letters with a follow-
ing o (e.g., Ao) the opposite side (the tail side). Because of

(a) Concrete panorama (b) Abstract panorama

Figure 2: Panorama-views

the cyclic structure of the panorama the complete panorama
has to be described byn strings with n letters, withn
being the number of reference points on the panorama. In
our example, the panorama has to be described by eight
strings. Furthermore, the panorama can be described as a
set of simple constraintsdl(vp, lm1, lm2)2. Based on this
representation, Schlieder (Schlieder 1993) also developed
an efficient qualitative navigation algorithm.

Applying the panorama representation to competitive
and cooperative scenarios for instance, we can infer
groups of competitive and/or cooperative agents, given
that we are able to distinguish them physically, i.e
the basic panorama has to be differentiated slightly to
Pbasic =< Opponent, Own, OCdl >, with Opponent ∈ P
andOwn ∈ OP the set of observed points andOCdl a set of
direct-left-ordering constraints.

The panorama representation has an additional, more im-
portant property: one of the major difficulties in planning
complex coordinated behaviors in dynamic, physical envi-
ronments is to identify stable situations. As a consequence,
we would like to describe behavior on different levels of
granularity according to the time scale and we want to iden-
tify situations that are similar enough to apply planned be-
havior. Therefore, spatial representations should abstract
from irrelevant details. One way to achieve this is to use
a representation which is invariant with respect to rotation
and translation, like the panorama. Applied to theRoboCup
domain, a translation- and rotation-invariant representation
would allow to describe a behavior that is independent from
the (exact) location of an agent on the field and that is on the
other hand invariant to the orientation of the agent. Figure
shows a situation with a concrete attack of the white team.
Describing behavior for this situation relies on the orienta-
tion of the configuration of observed points but does not rely
on the specific position according to the length of the field,
i.e., even if the same configuration is found ten meters be-
hind the current position, the same models of behavior can
be applied. A more appropriate representation for this sce-
nario is described in figure 3(b).

But evidently, not every behavior can be described in such
an abstract manner. In order to model complex, coordi-
nated behaviors, often more detailed ordinal information is
involved. Additionally, different metric (e.g. distance) in-

2Short fordirect−left(viewpoint, landmark1, landmark2).



(a) Allo-centric view (b) Ego-centric, invariant
View

Figure 3: Pseudo-ordinal information

formation is required in some situations. In the following
section, we show how the panorama can be extended so that
more detailed ordinal and metric information can be intro-
duced.

Extended Panorama Representations
In order to use an egocentric spatial representation some in-
herent problems have to be solved: how can an agent update
his position without the use of an allocentric map? How can
spatially grounded egocentric knowledge be communicated
and exchanged so that coordinated behavior becomes possi-
ble? The answers to these questions have to be given with
respect to some basic conditions:

1. Updating has to be efficient since egocentric spatial re-
lations change with every movement, i.e., the updating
process itself and the underlying vision process.

2. The resulting representation should provide the basis for
qualitative spatial descriptions at different levels of gran-
ularity.

3. The resulting representation should provide different lev-
els of abstraction, i.e., rotation and/or translation invari-
ance.

4. The process of mapping egocentric views should rely on
a minimum of allocentric, external information.

Our answers to these questions will be given in two parts.
In the first section we investigate the questions for agents
moving between landmarks and in the second section we
consider the case of agents moving within landmarks (e.g.,
rooms). In the last subsection we show how this approach
can be extended according to different levels of granularity.

An Egocentric Frame of Reference
The most direct way to extend the panorama representation
is to introduce an egocentric frame of reference. Therefore,
we introduce the heading of an agent into the panorama (as-
suming that an agent at least knows his relative orientation
according to his individual sensors). Defining the heading
as front, we can easily introduce theback/behindside as
the opposite direction and furthermore left and right as a

900 angle distance from the heading. Figure 3(b) shows
an example leading us to the followingextended panorama
for player7: < 4, 5o, L, 6, 8o, 3o,B, 4o, 5, R, 6o, 8, 3, F >.
Although this representation does not provide exact ordi-
nal information, it allows to infer an ordinal interval for a
given landmarkθ1 according to its ego-centric orientation
OrdEgo4 = {left, right, front, behind}3. In our exam-
ple, we know that player5 and the opposite of player4 are
between the back- and right side. Therefore, a panorama
with an egocentric frame of reference can be defined as
PERP = {DLM,Refego, OC} (ERP) withDLM as a set
of possiblydynamiclandmarks, an ordinal ego-centric ref-
erence systemRefego and a set of ordering constraintsOC.
Since this representation integrates only additional ordinal
information, it is still invariant according to translation and
rotation and hence this representation is abstract enough to
provide spatial information which can be applied for nu-
merous different situations4. In the following, we assume
that each agent uses an egocentric frame of reference either
within and outside a landmark.

Outside Landmarks: (Re-)Orientation
The use of egocentric representations relies on an efficient
way to update spatial relations. In contrast to allocentric
representations, spatial relations in egocentric representa-
tions have to be updated not only because of changes in
the environment but also because of the movement of the
agent itself. Therefore, the use of egocentric representations
strongly relies on an efficient mechanism for path integra-
tion and re-orientation, i.e., to detect changes in relation to a
previously observed view. Since the exchange of spatial in-
formation is a crucial requirement in multiagent systems, we
need a mechanism to transform egocentric representations
into each other. Motivated by cognitive observations (see
section ), we propose an incremental approach that uses ge-
ometric (and therefore allocentric) properties of given land-
marks in a qualitative panorama representation. The result-
ing representation builds the foundation for re-orientation
and path integration as well as for communicating spatial
knowledge.

In a re-orientation task we can resort the knowledge about
the previous position of an agent. Therefore, we concentrate
on an incrementally updating process, based on the follow-
ing assumptions:

1. It is known that the configuration of perceived landmarks
A,B, ... ∈ L either form a triangle- or a parallelogram
configuration (e.g. either by vision or by use of back-
ground knowledge).

2. The positionsPt−1 of an agentA in relation toL at time
stept− 1 is known.

The panorama landmark representation (LPT ) of a triangle
configuration can be defined as follows:

3Different egocentric reference systems may be used at differ-
ent granularities according to the requirements of the domain.

4The more fine-grained the introduced egocentric frame of ref-
erence is, e.g., 8 instead of 4 directions, the more precise the repre-
sentation, but without any new quality (sensory) information.



Definition 2: (Triangle Landmark Panorama) Let PA

denote the position of an agentA and CT (ABC) the
triangle configuration formed by the set of points
A,B,C in the plane. The lineLPA/V P is the line of
vision from PA to VP, with VP being a fixed point
within CT (ABC). Furthermore,LOrth(PA/V P ) be the
orthogonal intersection ofLPA/V P . The panoramic
ordering information can be described by the orthogonal
projection P (PA, V P,CT (ABC)) of the points ABC
ontoLOrth(PA/V P ).

Therefore, moving around a triangle configurationCT (ABC)

results in a sequence of panoramas which qualitatively de-
scribes the location of the observer position. A360o move-
ment can be distinguished in six different qualitative states:

Observation 1: (Triangle Landmark Panorama Cycle)
The landmark panoramic representations resulting from
the subsequent projection P (PA, V P,CT (ABC))
by counter-clockwise circular movement
around VP can be described by the follow-
ing ordered, circular sequence of panoramas:
(CAB), (ACB), (ABC), (BAC), (BCA), (CBA)

When we observe the panorama(BAC) of a triangle
configurationCT (ABC) and the agent is moving counter-
clockwise, the next panorama to appear is(BCA). The
ordered sequence is circular in the sense that when the
agent moves counter-clockwise, starting at(CBA) the next
panorama is the first in observation 4.1:(CAB). The di-
agram 4(b) illustrates this property. Moving in the other
direction just reverses the ordering in which the landmark
panoramas will appear.

These properties hold for all triangle configurations: For
each landmark panorama the landmark panorama directly
left as well as at the right differ in exact two positions that
are lying next to each other (e.g.,(ABC), (BAC) differ
in the position exchange betweenA and B. These posi-
tion changes occur exactly when the vision lineLPA/V P

intersects the extension of one of the three triangle lines:
LAB , LAC , LBC . Starting with a given line (e.g.,LAB) and
moving either clock- or counter-clockwise, the ordering of
line extensions to be crossed is fixed for any triangle con-
figuration. This property holds in general for triangle con-
figurations but not e.g. for quadrangle configurations (ex-
cept for - for some special cases as we will see in the next
subsections). Since (almost) each triplet of landmarks can
be interpreted as a triangle configuration, this form of qual-
itative self-localization can be applied quite flexibly with
respect to domain-specific landmarks. The triangle land-
mark panorama, however, has (at least) two weaknesses:
The qualitative classification of an agent’s position into six
areas is quite coarse and, triangle configurations are some-
what artificial constructs that are rarely found in natural en-
vironments when we consider solid objects5. A natural ex-
tension seems to be applying the same idea to quadrangles.

5The triangle configuration can be applied generally to any
triple of points that form a triangle - also to solid objects. The
connecting lines pictured in the graphics 4(a) and 5(a) are used to
explain the underlying concept of position exchange (transition)

(a) Triangle panorama con-
struction by projection (result
here: (ACB))

(b) Circular representation of
panoramic ordering informa-
tion for triangles

Figure 4: The triangle panorama

The most direct approach is to interpret a quadrangle as a
set of two connected triangles sharing two points by a com-
mon line so that each quadrangle would be described by a
set of two triangle panoramas (e.g. ((BCA)(CDA))). With
this approach, the space around a quadrangle would be sep-
arated into ten areas and it would therefore be more expres-
sive than the simple triangle panorama. It can be shown
that eight of the resulting triangle landmark panorama (one
for each triangle of the quadrangle) can be transformed into
quadruples. We simply transform e.g. a rectangle into a
landmark panorama representation (e.g. the above given tu-
ple ((BCA)(CDA)) can be transformed into (BCDA) without
loss of information). The expressiveness of the other two
landmark panoramas is weaker: they have to be described as
a disjunction of two quadruple tuples6. Since the expressive-
ness is weaker and the landmark panorama representation of
a quadruple tuple panorama representation is much more in-
tuitive we focus on the latter.

Definition 3: (Parallelogram Landmark Panorama)
Let PA denote the position of an agentA andCP (ABC)

the parallelogram configuration formed by the set of
points A,B,C, D the plane. The lineLPA/V P is the
line of vision from PA to VP, with VP being a fixed
point within CP (ABCD). FurthermoreLOrth(PA/V P ) be
the orthogonal intersection ofLPA/V P . The landmark
panoramic ordering information can then be described by

6The detailed proof will take too much space here. But the ba-
sic proof idea is quite straightforward: each panorama transition
happens because of the intersection of the landmarks’ line exten-
sions with the line of vision of the moving agent, so the number
of disjoint lines (multiplication by 2, since each line is intersected
twice) specifies the number of transitions and therefore the num-
ber of distinguishable areas. The loss of expressiveness of two
of the triangle tuples can be explained in the same way: assume
that the quadrangleABCD is defined by the two trianglesABC
andADC sharing the diagonal AC. Position changes of the points
B/D cannot be distinguished since they happen in two different
triangles, which are not in relation to each other. Alternatively,
we can show that the number of resulting ordering constraints is
smaller.



the orthogonal projectionP (PA, V P,CP (ABCD)) of the
pointsABCD ontoLOrth(PA/V P ).

Moving around a parallelogram configurationCP (ABCD)

also results in a sequence of landmark panoramas which de-
scribes the location of the observer position qualitatively. A
360o movement can be split into twelve different states:
Observation 2: (Parallelogram Panorama Cycle)The

panoramic landmark representations resulting from
the subsequent projectionP (PA, V P,CP (ABCD))
by counter-clockwise circular movement
around VP can be described by the follow-
ing ordered, circular sequence of panoramas:
((BCAD), (BACD), (ABCD), (ABDC), (ADBC),
(DABC), (DACB), (DCAB), (CDAB), (CDBA),
(CBDA), (BCAD))

(a) Parallelogram panorama
construction by projection
(result here: (BACD))

(b) Circular representation of
panoramic ordering informa-
tion for parallelograms

Figure 5: Parallelogram panorama

The two presented landmark panoramas can be mapped
quite flexibly onto landmarks that can be found in natural
environments. While solid objects often form rectangle con-
figurations, irregular landmarks can be used in combination
as a triangle configuration, since this approach is not strictly
restricted to point-like objects. An interesting extension is to
build up more complex representations by using landmark
configurations as single points in larger landmark configura-
tions. This allows to construct nesting representations which
support different levels of granularity according to the re-
quirements of the domain (e.g., in the traffic domain: lo-
cation relative to a single house vs. location relative to a
complete block).

Generally, the panorama representation, which results
from monitoring landmarks can be useful for applications in
several ways: in a re-orientation task an agent knows at least
to some extent where it has been. Based on this informa-
tion, the circular panorama landmark representation can tell
us which hypotheses are plausible according to previous in-
formation. Given the last landmark panorama according to a
triangle configurationTrABC was(ACB) and the currently
perceived landmark panorama seems to be(BCA). We can
conclude that this perception has a high probability to be
wrong. Without taking odometry data into consideration,
we know that the agent would have missed two panorama
landmarks:(ABC) and(BAC)- which is highly implausi-
ble for most scenarios. Panorama landmark information may

also be used in exactly the other direction, in order to vali-
date odometry data. Furthermore, the landmark panorama
can help to focus perception in a qualitative self-allocation
task. In the transition of one panorama landmark into an-
other exactly one position change is performed. Given the
landmark panorama(ABC) was seen in the triangle con-
figurationTrABC and the agent is moving clockwise it is
known thatBC will change position. Therefore, the percep-
tion ofA is without any use for updating the qualitative posi-
tion of the agent. Furthermore, the panorama landmark rep-
resentation is not only useful for position updating but also
for re-orientation without knowledge about the previous po-
sition. Just the perception of the partial landmark panorama
AB of a triangle configurationTrABC provides us with two
hypotheses about the current position: (CAB) and (ABC).
In order to validate which hypothesis holds we just have to
find out whetherC appears on the left side ofA or on the
right side ofB.

Finally we have to mention that a landmark panorama
provides a stable basis for qualitative, ordinal, spatial de-
scriptions (e.g. left of, right of), since it is, clearly, sensitive
to rotation but invariant to transition.

Within Landmarks: Spatial Frames of Reference
Moving within spatial landmarks is interpreted in a specific
way as moving within a spatially restricted area, e.g., a room
or a building. The properties of ordering information, i.e.,
panorama representation, differ significantly from the case
where an agent is moving outside of landmark areas. While
in the latter case the landmark panorama changes in accor-
dance with the agents movement, the panoramic, ordering
information remains stable in spite of a change of viewpoint
caused by movement. This allows us to interpret the config-
uration of points as domain-specific, allocentric frames of
reference (FoR). In the soccer domain, different landmarks
can be used intuitively do define a rectangle configuration,
e.g., our own or the opposite goal, the left or right intersec-
tion point of the mid-line with the outer line7. In egocentric
views, the reference systems can be easily defined in terms
of physical properties of the agent itself. Since the refer-
ence system is not based on perceptional input, it can be
defined in any way as long as it preserves a900 distance
between the basic four directions. Since the angular dis-
tances between the marks of an egocentric view have equal
distance by definition (e.g.,900 distance between front and
left, behind and right), it is not necessary to explicitly repre-
sent them. For domain-specific allocentric frames we gener-
ally lose information because the angular distance depends
on the properties of the domain. Choosing an appropriate
FoR should be done carefully since it is necessary to per-
ceive at least two reference points to retrieve information
about the current position based strictly on ordering infor-
mation. Referring to the example in figure 3(a), we de-
scribe the pseudo-allocentric ordinal panorama for player 7
as< 4o,N, 3o, 8o, 6, E, 4, S, 8,W, 6o, 5 > while using our
own and the opponent goal as fixed landmarks. Given that

7In the physical RoboCup leagues: SSL, MSL andSony Legged
Leaguethere exists a fixed set of labeled landmarks.



we have chosen the opponent half of the field as the desired
FoR, the above described problem would have arisen.

Although a domain-specific allocentric panorama does
not provide a real allocentric view, it nevertheless provides
the foundation for communication about spatial content and
therefore for coordinated behavior. On this basis, player 7
can tell e.g. another player where he wants to pass a ball or
where he expects a player to move. Furthermore, together
with an egocentric FoR, an allocentric FoR significantly in-
creases the precision of the ordering information just by in-
troducing additional landmarks.

Seeing some points of a chosen FoR provides an agent
usually only with coarse information about the position rel-
atively to the used FoR. Much better results can be generated
when the panorama representation is enhanced with quanti-
tative or qualitative angle information8.

Extending Panorama Representations

Egocentric and allocentric panoramas describeordinal in-
tervals(e.g. player 4 is between east and south), increasing
the numbers of reference points minimizes theordinal inter-
valsand therefore increase ordinal precision. This approach
is somehow limited because all fixed reference points have
to be defined in a domain-dependent way. Therefore, it can
be difficult to define a large set appropriate fixed reference
points, especially, since reference points should be easy to
perceive from different locations for all agents that partic-
ipate in a coordinated behavior. Furthermore, they should
have a similar distance between each other in order to pro-
vide a uniform granularity.

Given the case that fixed reference points cannot be de-
fined, absolute angle distance between two possibly dy-
namic points (i.e. agents) can be used to increase ordinal
precision instead (see figure ). Angle distance should be
mapped on an absolute qualitative scale with equal distance.
Given a fixed angle distance of300 we are able to distin-
guish the location of an object, e.g.north/west(NW)and
west/north(WN)instead of somewhere betweennorth and
west. If we are able to distinguish between300 angle dis-
tances, we can even classify, e.g., betweenW, WNW, NW,
NNW, N. The choice between the two approaches depends
on the characteristics of domains and on the quality of the
perceptional input. As both approaches result in the same
panorama representation, it is even possible to use both ap-
proaches simultaneously depending on the specific situation.
Another way to adapt anextended panoramato specific sit-
uations can be achieved by using different reference systems
on different levels of granularity. For more abstract planning
phases, e.g., in HTN-planning or in situations with imprecise
information, more coarse information can be handled with
restricted reference systems. On the other hand, in detailed
planning phases or in situations where more detailed infor-
mation is required, a more finely grained reference system
can be chosen.

8This information will, in most cases, be generated anyway by
the vision process during the calculation of the panoramic repre-
sentation.

(a) Distances in a panorama (b) A hybrid approach

Figure 6: Different combinations of EPO- and PAPO-
panoramas

Depending on the specific domain and the specific situ-
ation, different variations and combinations of panoramic
representations can be built.

Discussion and Future Work
Navigation, localization, planning and reasoning for phys-
ical grounded robots imposes strong but heterogeneous re-
quirements on the underlying spatial representation in terms
of abstraction and precision. One crucial property is the
dependency on allocentric information, e.g., to communi-
cate knowledge and to coordinate behaviors. In contrast to
many other approaches to this topic which try to generate
allocentric maps, we proposed a newegocentricapproach
based on recent results from cognition. Allocentric informa-
tion is retrieved by a the qualitative description of landmarks
based on ordering information. Two cases have to be con-
sidered: inside and outside of landmarks. While the quali-
tative panorama representation of the latter is dynamic in a
predictable way as stated in the two observations described
above, the panorama representation inside a landmark (e.g.,
a room) is stable and can therefore be used as an allocen-
tric frame of reference. We assume that panorama ordering
information can be generated by the vision process with lim-
ited effort, since it relies on pure geometric, and not on any
domain-specific knowledge like color and texture (and also
not on distance information). Nevertheless, we do not state
that these qualities of information are generally not relevant
We believe instead that they can be integrated into the ex-
tended panoramic representation EEP in a straightforward
fashion and be that they can be combined in a flexible way.
Furthermore, these representations provide abstractions in
terms of translation, and/or rotation invariance which allows
us also to identify stable and similar situation.

Although a detailed analysis of the relation to the recent
cognitive results is out of the scope of this paper, we would
like to mention that the extended panorama representation
shows several properties which are observed in recent ex-
periments: e.g., translation tasks seem to be performed more
easily and accurately than rotation tasks. A panorama repre-
sentation will behave very much in the same manner because
of the translation invariance. Additionally, this approach
may help to explain when participants why build a new ego-
centric representation instead of classifying it into a given
one. Taking the general concept of similarity as complexity



of transition, as, e.g., proposed in (Hahnet al. 2003), we
can use the defined panorama cycles to determine the com-
plexity of movement around a set of objects. Furthermore,
the panoramic representation relies on the same kind of in-
formation: purely geometric properties as, e.g., proposed by
(Wang and Spelke 2002) (among others). A detailed analy-
sis is in preparation.

Several tasks remain to be done. Currently, we are de-
veloping a re-orientation vision module based on panorama
representation and test it with the Sony Aibos. Perhaps even
more promising as a result of an easier and more robust fea-
ture extraction, we try to integrate a panorama representation
in an omnivision module. Although we use a panorama rep-
resentation already in our simulation league team, we have
to prove that it will also work with real vision data in phys-
ical grounded environments. Additionally, we need a more
complete theoretical analysis, especially for thewithin land-
mark scenario.
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