
Concurrent Discovery of Task Hierarchies

Duncan Potts
Computer Science and Engineering

University of New South Wales
Australia

duncanp@cse.unsw.edu.au

Bernhard Hengst
Computer Science and Engineering

University of New South Wales
National ICT Australia

bernhardh@cse.unsw.edu.au

Abstract

Task hierarchies can be used to decompose an intractable
problem into smaller more manageable tasks. This paper ex-
plores how task hierarchies can model a domain for control
purposes, and examines an existing algorithm (HEXQ) that
automatically discovers a task hierarchy through interaction
with the environment. The initial performance of the algo-
rithm can be limited because it must adequately explore each
level of the hierarchy before starting construction of the next,
and it cannot adapt to a dynamic environment. The contribu-
tion of this paper is to present an algorithm that avoids any
protracted period of initial exploration by discovering multi-
ple levels of the hierarchy simultaneously. This can signi£-
cantly improve initial performance as the agent takes advan-
tage of all hierarchical levels early on in its development. Ro-
bustness is also improved because undiscovered features and
environment changes can be incorporated later into the hierar-
chy. Empirical results show the new algorithm to signi£cantly
outperform HEXQ.

Introduction
Hierarchical decomposition is the only tractable way of
managing many complex systems in the real world. Engi-
neers, software programmers, architects, and indeed anyone
working on large dif£cult problems will naturally attempt to
break their work up into smaller more manageable compo-
nents. Often there is a degree of regularity in the problem
which cleverly designed components can exploit through
reuse. This is the basis of many CAD packages, planning
systems, and even computer languages.

When the complex problem is performing a task or reach-
ing a goal then we can refer to the decomposition as a task
hierarchy. Each abstract task in the hierarchy can be com-
pleted by acting out a sequence of sub-tasks. At the bottom
of the hierarchy the tasks are atomic and cannot be decom-
posed. These primitive tasks often involve basic interactions
with the environment. An autonomous system can therefore
use a task hierarchy for control. A model of the environ-
ment often aids in the construction of such a task hierarchy.
Indeed, as we shall see, the HEXQ (Hengst 2002) algorithm
discovers a speci£c hierarchical model of the environment
that can be directly translated into a task hierarchy.

Copyright c© 2004, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

De£ning a task hierarchy in advance requires detailed
knowledge of the environment, and a high level understand-
ing of how a problem can be decomposed effectively. As
well as requiring signi£cant time and effort, a prede£ned hi-
erarchy is in¤exible and may need to be completely re-built
when tackling other problems. The most common solution
to these limitations is to prede£ne a set of actions that are
abstract enough to remove the low level uncertainties when
dealing with sensor noise and small actuator movements, but
general enough to be reused. When also provided with a set
of pre- and post-conditions and perhaps other information,
these actions can be used by a planner to create a task hier-
archy.

In this paper we take a different approach that is more fa-
miliar to the reinforcement learning community where the
agent relies on far less domain knowledge. The agent only
knows the primitive actions that can be taken at any time,
but has no prior knowledge regarding the effects of these
actions. In addition the agent has no initial information re-
garding its goal, it simply receives a scalar reward value after
each primitive step. The agent must determine for itself the
actions that maximise this reward. Although this makes the
problem a lot harder, the additional ¤exibility and the pos-
sibility of discovering a more suitable hierarchy than one
obtained by a planner makes this a potentially fruitful area
of research.

The HEXQ algorithm exploits the fact that state informa-
tion is often provided by a number of prede£ned state vari-
ables, for example the input from different sensors. It dis-
covers low level tasks that manipulate a small subset of these
state variables. Increasingly complex tasks are then formed
from lower level tasks until the agent has a full task hierar-
chy that can control all state variables.

Completely de£ning the bottom level before tackling the
next may, however, be disadvantageous. For example, if
there are sparse goals in a large environment the agent must
perform enough exploration to £nd all of these goals before
constructing the lowest level. An agent may bene£t from
making quick inductive leaps and later correcting, back-
tracking or augmenting its knowledge if necessary. The con-
tribution of this paper is to show that there can be signi£cant
advantage in starting to form higher level concepts before
the lower level ones have been fully de£ned. The emphasis
is on concurrent construction of the multiple layers compris-

Figure 1: The taxi task.

ing a task hierarchy, and not on the concurrent learning at
multiple levels of a policy constrained by this hierarchy.

The next section describes how the HEXQ algorithm au-
tomatically constructs a task hierarchy. We argue that a
number of limitations of the algorithm can be £xed by con-
structing multiple levels of the hierarchy simultaneously,
and describe the concurrent HEXQ algorithm which is based
on a self-repairing hierarchy. We provide empirical results
to demonstrate the improvement with concurrency and con-
clude with a discussion and future work.

Automatic Discovery of Task Hierarchies
The Taxi Task
Dietterich (2000) introduced the taxi task to motivate his
MAXQ hierarchical reinforcement learning framework, and
the same example will be used throughout this paper.

In the 5× 5 grid world shown in Figure 1, a taxi started at
a random location must collect a passenger from one of the
specially designated locations R(ed), G(reen), Y(ellow) or
B(lue). For successful completion of the task the passenger
must be dropped off at their destination (also one of R, G, Y
or B). The taxi navigates around the world using four prim-
itive actions: North, South, East and West, which move
the taxi one square in the intended direction with 80% prob-
ability, and to the left or right of the intended direction with
10% probability each. Once at the passenger location the
taxi must perform the Pickup action, then navigate to the
destination and perform the Putdown action, thereby com-
pleting a trial. A reward of +20 is given for a successful
passenger delivery, a penalty of -10 for performing Pickup
or Putdown at the wrong location, and -1 for all other ac-
tions.

The taxi task can be formulated as an episodic Markov
decision problem (MDP) with the 3 state variables: Taxi Lo-
cation ∈ {0, . . . , 24}, Passenger Location ∈ {R, G, Y, B,
and Taxi}, and Destination ∈ {R, G, Y and B}. It is clear
that the policy of navigating to each starting and destination
location can be the same whether the taxi intends to collect
or drop off the passenger. The usual ¤at formulation of the
MDP will solve the navigation sub-task as many times as
it is repeated in the different contexts of passenger location
and destination.

The task can be solved ef£ciently using the task hierar-
chy in Figure 2. For example Go(20) can be used by Get
to collect the passenger from Y, and also by Put to drop

Figure 2: The MAXQ taxi task hierarchy.

off the passenger at Y. MAXQ uses this hierarchy to ob-
tain considerable savings in both storage and learning time
over a non-hierarchical learner (Dietterich 2000). How-
ever MAXQ places the burden of de£ning the hierarchy on
the programmer, who must specify the range of states for
each sub-task (active states), the termination states for each
sub-task classi£ed into undesirable (non-goal) and desirable
(goal) termination states, and the set of primitive and ab-
stract actions applicable in each sub-task.

HEXQ
The HEXQ algorithm automates the decomposition of such
a problem from the bottom up by £nding repetitive regions
of states and actions. These regions, and the different ways
the agent can move between them, form higher level states
and tasks. The next level is constructed by £nding repetitive
regions in this higher level representation. In this way each
level is built upon the preceding level until an entire task
hierarchy is constructed.

Representation of a primitive state s by a set of n arbitrar-
ily numbered state variables, s = {svi|i = 1, . . . , n}, plays
a signi£cant role in grounding the task hierarchy. HEXQ
decomposes the problem variable by variable.

Initially the variables are sorted by frequency of change.
The motivation behind this heuristic is to use the faster
changing variables to construct repetitive regions and as-
sociate variables that change value slowly with the dura-
tive context. In the taxi domain the passenger location and
destination change less frequently. The algorithm therefore
explores the behaviour of the taxi location variable £rst,
and makes this the lowest level state variable level1.svs =
{Taxi Location}.

The agent explores the state space projected onto the taxi
location variable using primitive actions. The region shown
in Figure 3 is formed using transitions that are found to be
invariant with respect to the context of the higher level vari-
ables, the passenger location and destination.

Some transitions are discovered not to be invariant with
respect to this context. For example, a pick up from taxi
location 0 may or may not succeed in picking up the pas-
senger, depending on whether the passenger is also at that
location. These unpredictable transitions are declared exits
and the corresponding states exit states. In this example ex-

Figure 3: The state transitions for the taxi location at level 1
in the hierarchy, showing the 8 exits.

its correspond to potential ways of picking up and putting
down the passenger, but they may have a more abstract in-
terpretation in other problems.

The actions at the next level up in the hierarchy consist of
reaching these exit states and performing the corresponding
exit action. The policies for these tasks represent temporally
extended or abstract actions. From the viewpoint of an agent
that can only sense the passenger location and destination,
performing these abstract actions is all that is necessary to
solve the overall problem.

Figure 4: State transitions for the passenger location at level
2 in the hierarchy, showing the 4 exits. State Y is expanded
to show the lower level detail.

The algorithm will now use the next most frequently
changing variable, the passenger location, to de£ne level 2
in the hierarchy, level2.svs = {Passenger Location}. Re-
gions are formed in a similar fashion to before, but using the
level 1 tasks as abstract actions. Figure 4 shows the region
formed by the abstract transitions invariant with respect to
the one remaining state variable, the destination. Each state
at this second level of the hierarchy is an abstraction of the
entire level 1 navigation region. The four exits represent ab-

stract actions that pick up the passenger (wherever they are)
and put them down at one of the four possible destinations.

Figure 5: The top level sub-MDP for the taxi domain show-
ing the abstract actions leading to the goal.

The £nal level states are de£ned by the destination,
level3.svs = {Destination}, and the policies to leave the
four exits at the second level form the abstract actions, which
can be used to solve the entire problem (Figure 5).

The constructed task hierarchy is detailed in Figure 6.
To illustrate its execution assume that the taxi is initially
located randomly at location 5, the passenger is at G
and wishes to go to Y. At the top level the agent per-
ceives the destination as Y and takes the abstract action
〈Passenger in Taxi, 〈Go(20),Putdown〉〉. This sets the
subgoal state at level 2 to passenger location ‘in’ Taxi. At
level 2, the taxi agent perceives the passenger location as G,
and therefore executes abstract action 〈Go(4),Pickup〉. This
abstract action sets the subgoal state at level 1 to taxi loca-
tion 4. The level 1 policy is now executed using primitive
actions to move the taxi from location 5 to location 4 and
the Pickup action is executed to exit. Level 1 returns con-
trol to level 2 where the state has transitioned to ‘in’ Taxi.
Level 2 now completes its instruction and takes abstract ac-
tion 〈Go(20),Putdown〉. This again invokes a level 1 policy
to move the taxi from location 4 to 20 and then executes Put-
down to exit. Control is returned back up the hierarchy and

Figure 6: The HEXQ graph showing the hierarchical struc-
ture automatically generated by the HEXQ algorithm.

the trial ends with the passenger delivered correctly.
Although the HEXQ algorithm is able to automatically

generate a task hierarchy from its own experience, it is un-
able to update the hierarchy if it later receives contradictory
evidence. It therefore requires a domain-speci£c amount of
initial exploration to determine a valid hierarchy with high
probability. The user must specify in advance the amount
of exploration to perform at each level of the hierarchy. If
the algorithm does not gather enough experience to deter-
mine all possible exits, then performance may suffer to the
extent that the agent cannot reach the required goal. It is also
unable to track a non-stationary environment.

The remainder of this paper describes and evaluates a
mechanism that allows an agent to concurrently construct
all levels of a task hierarchy. This concurrency is possible
when the agent has the ability to repair its task hierarchy
in the light of later contradictory evidence, therefore signi£-
cantly reducing initial construction time, and improving ro-
bustness. The new algorithm is referred to as ‘concurrent
HEXQ’.

Self-repairing Task Hierarchy
In order to maintain its model an agent must compare the
response of the world around it with its own predictions. If
actual experiences contradict the model, then adjustments
must be made so that the model more accurately re¤ects the
real world. The same is true of a task hierarchy; indeed a
task hierarchy can be viewed as a hierarchical model of the
environment that is speci£cally tailored for control.

Therefore whenever the agent takes an action and ob-
serves its effect upon the world, this transition must be anal-
ysed. In the lowest level of the hierarchy this will be a prim-
itive action, however at higher levels the action will be ab-
stract and may comprise many primitive actions and state
transitions. This ability to analyse its own transitions is what
gives the agent the ability to repair its task hierarchy.

The problem of building an initial hierarchy will be dis-
cussed later, for now we assume that an incomplete task hi-
erarchy has already been constructed by the agent. As an
example we will use the same taxi problem described ear-
lier for which the lowest level of the hierarchy is shown in
Figure 3.

Figure 7 shows an agent’s partial knowledge of this level,
where it has only discovered half of the exits. These exits
directly correspond to the concept of an abstract action at the
next level up in the task hierarchy (see Figure 4). The agent
also incorrectly believes there are two separate regions. In
general the missing information comprises:

1. Entire states that the agent has not yet visited (e.g. states
2 to 4).

2. Transitions that have not been traversed (e.g. between
states 18 and 19).

3. An incorrect number of regions (in this case the agent
thinks there are two separate regions because it has never
experienced the transition between states 12 and 13).

4. Exit transitions for which not enough experience has been
gathered to determine with high probability that they are

Figure 7: Partial knowledge of level 1.

an exit (e.g. the put down action in state 20).

As a result the agent may discover new transitions, states,
regions and exits as it obtains more experience, and each of
these may happen at any level of the hierarchy.

States
As the agent moves around the state spaces at each level
of the hierarchy, new states can be discovered. If the agent
transitions from state sk to a new state s′

k
, then state s′

k
is

simply added to the same region that sk belongs to. New
states do not change the action hierarchy in any way; it is
only new exits or a different number of regions that have an
impact.

A state sk at level k is uniquely identi£ed by the state
variables of that level and, if k > 1, the region in the level
below, regionk−1.

Transitions
At level k in the hierarchy, when the agent takes an action ak

in state sk and transitions to state s′
k

with reward r (the last
primitive reward received - previous rewards received during
a temporally extended abstract action are analysed by lower
levels of the hierarchy), the experience can be expressed as
the tuple 〈sk, ak, s

′

k
, r〉. If this transition has previously been

declared an exit then no further action is taken (it would be
possible to store recent exit statistics and close up exits that
disappear over time in a non-stationary environment, but this
has not been implemented). The two states each have an
associated context ck and c′

k
consisting of the state variables

svi at all higher levels in the hierarchy. If ck 6= c′
k

then a
higher level state variable has changed and the transiton is
an exit.

If the transition has not been declared an exit, then the
experience takes place in the context ck. If this experi-
ence can be abstracted and form part of a region then the
transition probabilities do not depend on the context, and
P (s′

k
|sk, ak, ck) = P (s′

k
|sk, ak) and P (r|sk, ak, s

′

k
, ck) =

P (r|sk, ak, s
′

k
). If either of these equalities can be shown

by statistical tests to be highly unlikely then the transition
should not be abstracted and it is declared an exit. The χ2

test is used for the discrete transition distribution (Chrisman

Table 1: The BuildHierarchy algorithm.

function BuildHierarchy(no. state variables n)
1 level k ← 1

2 state variables levelk.svs← {1, . . . , n}
3 frequency of change svfi ← 0, i = 1, . . . , n
4 repeat forever
5 sk ← 〈{svi|i ∈ levelk.svs}, regionk−1〉
6 choose action ak using current policy
7 ak ← PerformAction(ak, k)
8 increment svfi for all changed variables svi

9 s′k ← 〈{svi|i ∈ levelk.svs}, regionk−1〉
10 add 〈sk, ak, s′k, r〉 to transitions
11 j ← argmaxi∈levelk.svssvfi

12 if svfj = d
13 levelk+1.svs← levelk.svs−svj

14 levelk.svs← svj

15 levelk.regions← FormRegions(svj ,
transitions)

16 k ← k+1

17 end if
18 end repeat

end BuildHierarchy

1992), and the Kolmogorov-Smirnov test for the continuous
reward distribution (McCallum 1995).

All of the above analysis is performed by the ‘Analyse-
Transition’ function (called from line 14 of the ‘PerformAc-
tion’ function in Table 2).

Regions

Regions consist of sets of states that are strongly connected
(there is a policy by which every state can be reached from
every other state without leaving the region). Therefore it is
possible to guarantee leaving a region by any speci£ed exit.

If a transition is found between two regions in a level (e.g.
between states 12 and 13 in Figure 7) then it may be possible
to merge the regions. Also whenever a new exit is declared,
it may affect the strongly connected property of the region
and therefore the regions must be re-formed. These region
checks are also performed by the ‘AnalyseTransition’ func-
tion.

When the number of regions change at a level k, the num-
ber of states at level k+1 must change accordingly (each state
sk+1 can only map to a single region at level k). This renders
the existing task hierarchy at levels greater than k useless,
so it is removed and re-grown. For clarity this mechanism
is not detailed in the algorithms. In the domains considered
this drastic measure only happened early on in the hierarchy
construction, and proved not to be an issue. The connect-
edness of the lower levels and the number of regions was
quickly established. The effort of merging regions pays off
as it leads to a reduction in the number of higher level states,
faster learning, and less memory usage due to the more com-
pact representation.

Table 2: The PerformAction function.

function PerformAction(action ak′ , level k′)
1 if k′ = 1

2 take primitve action ak′

3 return ak′

4 end if
5 do
6 k ← k′−1

7 sk ← 〈{svi|i ∈ levelk.svs}, regionk−1〉
8 ck ← {svi|i ∈

⋃
m>k

levelm.svs}
9 while sk 6= ak′ .exit state

10 choose action ak using current policy
11 ak = PerformAction(ak, k)
12 s′k ← 〈{svi|i ∈ levelk.svs}, regionk−1〉
13 c′k ← {svi|i ∈

⋃
m>k

levelm.svs}
14 AnalyseTransition(〈sk, ak, s′k, r〉, ck, c′k)
15 if 〈sk, ak〉 is an exit
16 return a′k′ for this exit
17 end if
18 sk ← s′k
19 end while
20 ak ← PerformAction(ak′ .exit action, k)
21 while ak 6= ak′ .exit action
22 return ak′

end PerformAction

Exits
Finding a new exit in region regionk corresponds to the
discovery of an abstract action ak+1 at the level above, or
equivalently the task of leaving the region by that particular
exit. As previously mentioned this can change the number of
regions and render all higher levels in the hierarchy invalid.
Usually, however, the new exit does not alter the number
of regions and can be easily incorporated into the hierarchy.
The exit requires the addition of the abstract action ak+1 to
all abstract states sk+1 in level k+1 that are abstractions of
the region regionk.

Initial Task Hierarchy Construction
When a £xed hierarchy is built without the ability to self-
repair, the agent must perform enough exploration at each
level of the hierarchy to enable it to correctly identify all
region exits before building the next level of the hierarchy.
This exploration is not required when the hierarchy can self-
repair. However in order to construct an initial hierarchy,
the agent must determine an order over the state variables.
HEXQ used a heuristic that placed higher changing variables
at lower levels of the hierarchy, and the variable with lowest
frequency of change at the top. For discrete environments
this proved to be effective, and the same technique is used in
this paper.

At each level of the hierarchy actions are taken (using
primitive actions at the lowest level, or abstract actions at
higher levels) until the most frequently changing state vari-
able reaches a value d (Table 1 line 12). For our experiments
d = 30, but the results are not sensitive to this value. For ex-
ample in the taxi task this means that the taxi moves 30 times

before building level 1. Then the algorithm waits for the pas-
senger location to change 30 times before creating level 2.
In this way an entire task hierarchy is quickly established
that can be altered as required.

Table 1 shows the algorithm for building an initial hierar-
chy. Concurrent HEXQ does not require the domain-speci£c
exploration constants that need to be tuned for each level in
HEXQ.

Control
The discovered task hierarchy can be used in several ways to
determine the best behaviour for the agent to take. The agent
can learn a model corresponding to each region, and use this
model to plan the best route to the speci£ed exit. Because
the problem has been broken down hierarchically, the size
of the model could be exponentially smaller than the size of
the model for the ¤at problem.

It is also possible to use model-free learning, and in partic-
ular learn an action-value function that decomposes across
the different hierarchical levels, as in the original HEXQ al-
gorithm. A decomposed value function has been shown to
signi£cantly improve learning times (Dietterich 2000).

Exploration Actions
Care must be taken when the agent is simultaneously learn-
ing a policy, whilst concurrently discovering the task hierar-
chy. It is possible for the agent to become trapped because
what it thinks is the best action for a particular state (indeed
it may be the only action), leads nowhere. For example if
the agent is in region 2 of Figure 7 then there is only one
exit to take. If the passenger is at undiscovered state 4, then
performing the pick up action at state 23 will not change the
state, and although the algorithm exits to the next level up, it
will immediately re-enter the bottom level and take the same
exit again, as this is the only exit it is aware of. Even com-
monly used exploration policies will not be effective here,
as the agent must take a large number of off-policy steps in
order to discover an alternative exit (in the example it needs
to £nd its way to state 4).

To prevent this behaviour, special exploration actions
have been incorporated in each region. When an exploration
action is executed the agent will take random actions within
the region until it leaves by a known exit, or discovers a new
one. These exploration actions are treated identically to all
other actions and selected according to the exploration pol-
icy.

Experimental Results
The concurrent HEXQ algorithm is illustrated in two do-
mains. The £rst domain is the taxi task, and the second is a
large maze with only a single goal. The aim of the agent is
to maximise the sum of its rewards for each trial. The agent
uses model-free learning in all experiments with a learning
rate of α = 0.25, and all actions are chosen using a greedy
policy (i.e. the action with the highest estimated value). The
stochasticity in the movement of the agent and optimistic
initialisation of the value function result in all algorithms

Table 3: Algorithm differences.

Uses Discovers
a task a task

hierarchy hierarchy

Q-learning No No
MAXQ Yes No
HEXQ Yes Level by level

Concurrent HEXQ Yes Concurrently

converging to the optimal policy. All results show the aver-
age of 20 runs, with error bars indicating one standard devi-
ation.

The Taxi Task
In this domain concurrent HEXQ is compared with the orig-
inal HEXQ algorithm, Dietterich’s MAXQ algorithm and
Q-learning (Watkins 1989). Table 3 highlights the differ-
ences between these algorithms, and Figure 8 compares their
performance. Figure 9 shows the same data with different
scales to highlight the convergence characteristics.

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 500

 0 10000 20000 30000 40000 50000 60000 70000

R
ew

ar
d

pe
r T

ria
l

Steps

Q-learning
MAXQ
HEXQ

Concurrent HEXQ

Figure 8: Performance for the taxi task.

MAXQ has good initial performance due to its prior
knowledge of the task hierarchy, which it uses to rapidly
learn the optimal policy. HEXQ has no such initial knowl-
edge, but is able to discover the hierarchy level by level. The
effort of discovering the task hierarchy pays off when it over-
takes the performance of Q-learning. Concurrent HEXQ is
able to form an initial task hierarchy much more quickly, and
later repairs any errors. This results in rapid initial learning,
and its convergence is not signi£cantly slower than MAXQ,
illustrating the high ef£ciency with which it constructs its
hierarchy.

Discovering Sparse Goals
This experiment was designed to illustrate a task that HEXQ
should be able to solve ef£ciently, but at which it has prob-
lems, due to the nature of the goal. The task is a large maze

 0

 1

 2

 3

 4

 5

 6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
ew

ar
d

pe
r T

ria
l

Steps

Q-learning
MAXQ
HEXQ

Concurrent HEXQ

Figure 9: Convergence for the taxi task.

of 49 rooms in a 7 × 7 grid. The agent may occupy one
of 7 × 7 locations within each room. In the middle of each
internal wall is a door allowing the agent to pass to another
room. The agent can move north, south, east and west with
a 10% probability of moving to the left, and 10% probability
of moving to the right of its intended direction. The goal is
to reach one corner of the world and perform a special £fth
action.

HEXQ should be able to quickly form the concept of a
room, so that it can leverage this information and move ef-
£ciently around the maze. However in order to correctly
specify this bottom level of the hierarchy, it must perform
enough exploration to £nd the goal exit.

 10

 100

 1000

 10000

 100000

 10000 100000 1e+06 1e+07

S
te

ps
 p

er
 T

ria
l

Steps

Q-learning
HEXQ

Concurrent HEXQ

Figure 10: Performance in the large grid world.

Figure 10 shows the performance of Q-learning, HEXQ
and concurrent HEXQ at this task. All algorithms have a
similar initial performance while they do little more than a
random walk. HEXQ must adequately explore each level of
the hierarchy before constructing the next, and this results
in distinctive steps in its performance that hinder its learn-
ing rate. Concurrent HEXQ, however, is able to quickly

form the concept of a room and use this to obtain faster
convergence. The log-log graph also shows that all 3 algo-
rithms eventually converge to a similar number of steps per
trial, with concurrent HEXQ reaching this optimal perfor-
mance twice as quickly as HEXQ and an order of magnitude
quicker than Q-learning.

Computational Performance
The ‘BuildHierarchy’ algorithm itself is very fast. The ma-
jor calculations are the statistical tests in the ‘AnalyseTran-
sition’, however these can only be performed when enough
data has been collected. In addition when the existence or
non-existence of an exit has been established to the required
degree of con£dence, it is no longer necessary to perform
these tests or store transition statistics. Therefore in very
large state spaces the memory usage can be minimised.

In the above experiments performance is limited by the
learning of the action-value function, and not by the building
of the hierarchy.

Discussion and Related Work
Discovering and constructing a task hierarchy and learning
a hierarchical policy seem to be separate but related activi-
ties. Often designers provide the task hierarchy beforehand
as background knowledge and then learn the policy.

Stone (2000) proposes a layered learning paradigm to
complex multi-agent systems in which learning a mapping
from an agent’s sensors to effectors is intractable. The prin-
ciples advocated include problem decomposition into multi-
layers of abstraction and learning tasks from the lowest level
to the highest in a hierarchy where the output of learning
from one layer feeds into the next. This paper highlights
the distinction between the discovery of a task hierarchy and
learning an optimal policy over the hierarchy. It appears that
when the value function is decomposed over multiple levels,
learning too early at higher levels may slow down conver-
gence because the agent must unlearn initially sub-optimal
policies incorporated in higher level strategies (Dietterich
2000; Hengst 2000). When the sub-goals are not costed into
the higher level strategies and simply have to be achieved,
learning at multiple levels may be advantageous (Whiteson
& Stone 2003).

Utgoff & Stracuzzi (2002) point to the compression in-
herent in the progression of learning from simple to more
complex tasks. They suggest a building block approach,
designed to eliminate replication of knowledge structures.
Agents are seen to advance their knowledge by moving their
“frontier of receptivity” as they acquire new concepts by
building on earlier ones from the bottom up. Their con-
clusion is that the “learning of complex structures can be
guided successfully by assuming that local learning meth-
ods are limited to simple tasks, and that the resulting build-
ing blocks are available for subsequent learning.”

Digney (1998) uses high reward gradient and bottleneck
states to distinguish features worth abstracting in reinforce-
ment learning. However this method relies heavily on the
form of the reward function, and bottleneck states can only
be distinguished after the agent has gained some competence
at the task in hand.

In a practical implementation, Drummond (2002) de-
tects and reuses metric sub-spaces in reinforcement learn-
ing problems. He £nds that an agent can learn in a similar
situation much faster after piecing together value function
fragments from previous experience.

The idea of re£ning a learnt model based on unexpected
behaviour is also developed by Reid & Ryan (2000). Here a
hierarchical model, RL-TOPs, is speci£ed using a hybrid of
planning and MDP models. Planning is used at the abstract
level and invokes reactive planning operators, extended in
time, based on teleo-reactive programs (Nilsson 1994).

De Jong & Oates (2002) use co-evolution and genetic al-
gorithms to discover common building blocks that can be
employed to represent larger assemblies. The modularity,
repetitive modularity and hierarchical modularity bias of
their learner is closely related to the state space repetition
and abstraction used by HEXQ and concurrent HEXQ. This
work suggests that some concurrency in hierarchical task
construction is useful. In this case, the building blocks at
a lower level are evaluated on the extent to which they are
useful when building higher level assemblies. This evalu-
ation is not possible until there has been some attempt at
discovering higher level structures.

Conclusions and Future Work
In this paper we have presented an automatic approach to
task hierarchy creation that is applicable when there is only
minimal domain knowledge available. The reinforcement
learning setting requires only a scalar reward signal to be
fed back to the agent which is typically positive when a goal
is reached, and negative or zero otherwise.

The concurrent construction of multiple layers in a task
hierarchy can give better results than building the hierar-
chy level by level. The initial guidance given to the agent
by the higher levels can signi£cantly improve initial per-
formance, even before the lower levels have been fully de-
£ned. Discovery of a task hierarchy is distinct from learning
a behavioural policy constrained by this hierarchy, however
learning techniques that decompose the value function over
the hierarchy can be applied effectively to learn a control
policy, even while the task hierarchy is still being built.

Complex actions may be represented in a factored form.
For example, speaking, walking and head movements may
be represented by three independent action variables. The
action space is de£ned by the Cartesian product of each of
the variables. Decomposing a problem by factoring over
states and actions simultaneously results in parallel hierar-
chical decompositions, where the MDP is broken down into
a set of sub-MDPs that are “run in parallel” (Boutilier, Dean,
& Hanks 1999). Factoring over actions alone has been con-
sidered by Pineau, Roy, & Thrun (2001).

We conclude that while the discovery of a task hierarchy
will proceed from the bottom up, there can also be a signi£-
cant advantage in concurrently building higher layers in the
hierarchy before the lower layers are complete. The abil-
ity to improve or repair the lower layers also provides for a
more robust solution.

References
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Arti£cial Intelligence Research
11:1–94.
Chrisman, L. 1992. Reinforcement learning with percep-
tual aliasing: The perceptual distinctions approach. In Pro-
ceedings of the Tenth National Conference on Arti£cial In-
telligence, 183–188.
de Jong, E., and Oates, T. 2002. A coevolutionary approach
to representation development. Proceedings of the ICML-
2002 Workshop on Development of Representations.
Dietterich, T. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Arti£cial Intelligence Research 13:227–303.
Digney, B. 1998. Learning hierarchical control structures
for multiple tasks and changing environments. In From An-
imals to Animats 5: The Fifth Conference on the Simulation
of Adaptive Behavior.
Drummond, C. 2002. Accelerating reinforcement learn-
ing by composing solutions of automatically identi£ed sub-
tasks. Journal of Arti£cial Intelligence Research 16:59–
104.
Hengst, B. 2000. Generating hierarchical structure in rein-
forcement learning from state variables. In PRICAI-2000
Topics in Arti£cial Intelligence, 533–543.
Hengst, B. 2002. Discovering hierarchy in reinforcement
learning with HEXQ. In Proceedings of the Nineteenth
International Conference on Machine Learning, 243–250.
McCallum, A. 1995. Reinforcement learning with selective
perception and hidden state. Ph.D. Dissertation, University
of Rochester.
Nilsson, N. 1994. Teleo-reactive programs for agent con-
trol. Journal of Arti£cial Intelligence Research 1:139–158.
Pineau, J.; Roy, N.; and Thrun, S. 2001. A hierarchical ap-
proach to POMDP planning and execution. In Proceedings
of the ICML-2001 Workshop on Hierarchy and Memory in
Reinforcement Learning.
Reid, M., and Ryan, M. 2000. Using ILP to improve plan-
ning in hierarchical reinforcement learning. In Proceedings
of the Tenth International Conference on Inductive Logic
Programming, 174–190.
Stone, P. 2000. Layered learning in multi-agent systems.
Ph.D. Dissertation, Carnegie Mellon University.
Utgoff, P., and Stracuzzi, D. 2002. Many-layered learning.
Neural Computation 14:2497–2529.
Watkins, C. 1989. Learning from delayed rewards. Ph.D.
Dissertation, King’s College, Cambridge University.
Whiteson, S., and Stone, P. 2003. Concurrent layered
learning. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems.

