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Abstract 

 
The need to predict an agent’s intents or future actions has 
been well documented in multi-agent system’s literature and 
has been motivated by both systematically-practical and 
psychologically-principled concerns.  However, little effort 
has focused on the comparison of predictive modeling 
techniques.  This paper compares the performance of three 
predictive models all developed for the same, well-defined 
modeling task.  Specifically, this paper compares the 
performance of an extended Kalman filter based model, a 
neural network based model and a Newtonian based dead-
reckoning model, all used to predict an agent’s trajectory and 
position.  After introducing the background and motivation 
for the research, this paper reviews the form of the 
algorithms, the integration of the models into a large-scale 
simulation environment, and the means by which the 
performance measures are generated.  Performance measures 
are presented over increasing levels of error tolerance. 

 
 

Introduction 
 
Intelligent agents typically operate in an environment 
populated by other intelligent agents.  Agents may help 
each other, hinder each other, or ignore each other, often 
without directly communicating their intent.  In order for 
an agent to achieve its goals, it is thus sometimes 
necessary for the agent to determine where the other 
agents are, what they are doing, and what their plans are.   
For example, an agent may want to infer what plan an 
opponent is executing so that the agent can select 
countermoves.   Han and Veloso (1995), Rao (1994), Rao 
and Georgeff (1995), Tambe and Rosenbloom (1995), and 
Tambe (1996) have studied various forms of recognizing 
an agent’s intents. 

Sometimes it is necessary to infer facts that are 
normally   observable, such as agent location, because of 
sensor or other limitations.  For example, a pilot agent may 

need to predict where a threat aircraft is flying after it 
enters a cloud.  There are many approaches to predicting 
agent trajectories, including Newtonian mechanics (Lin and 
Ng, 1993), neural networks (Hill et al, 2002), Hidden 
Markov Models (Washington, 1998), extended Kalman 
filters (Madhavan and Schlenoff, 2003) and others.  This 
paper addresses a particular application of trajectory 
prediction in a simulation environment and compares the 
effectiveness of three approaches:  extended Kalman filters 
(EKF), neural networks, and Newtonian equations.  Unique 
about this particular comparison is the fact that the three 
techniques being evaluated have been implemented over 
the same data set.  Thus, this cross-comparison enables us 
to examine the efficacy of results and conclusions drawn 
by a number of researchers evaluating models 
independently. 

The remainder of this section defines the trajectory 
estimation problem in the simulation application and 
describes the previous use of Newtonian equations, neural 
networks, and EKFs for estimating agent trajectories.  
Specifically, the following sections present the precise 
applications of the techniques and then presents the 
underlying theory of each of the techniques.  The paper 
then describes the test problem used in this study and 
finally presents the results from the comparisons.  

Newtonian Methods–Trajectory Estimation and 
Theory 
In a Distributed Interactive Simulation (DIS) (DIS Steering 
Committee, 1994), simulation software for each agent runs 
independently of other agents and broadcasts the ground 
truth about the state of the agent through network packets 
known as protocol data units (PDUs).  Each simulation in 
DIS uses trajectory estimation so that the state of the agents 
does not have to be broadcast frequently.  Lin and Ng 
(1993) explain how dead-reckoning can be used to 



 
Neural Networks - Trajectory Estimation maintain coherence among entities' states in a DIS 

environment.   Hill, Kim, and Gratch (2002) report on a system to generate 
short-term predictions of an agent’s trajectory such that it 
can be used to predict the agent’s position at any future 
instance, given some window of time.  They use this model 
as part of a helicopter agent’s perceptual system to enhance 
the agent’s ability to visually track ground vehicles, and 
their motivation for this model is both psychologically and 
practically rooted.  Psychologically, this model can be used 
to simulate a helicopter pilot’s gaze shifting as he attempts 
to visually track and reaquire multiple targets.  Thus, 
instead of operating in a state of omniscience, the agent is 
required to juggle the act of determining spatial 
information across multiple agents, as would be the human 
helicopter pilot.   The functional ramification of this 
approach is that the total number of perceptual inputs to the 
agent is reduced at any given instance.  In other words, 
instead of getting continuous perceptual information on all 
of the ground entities within the helicopter agent’s field of 
view, by using this predictive model, the agent only 
requires updated information on entities when its attention 
is focused on those entities. 

Each simulator uses Newtonian equations of motion 
such as equation 1 to predict the trajectory of other agents.   
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where  p   =  current position          
 p0  =  initial position 
 v   =  current velocity           
 v0  =  initial velocity       
 a0  =  initial acceleration 
 ∆t  =  elapsed time   

 

Each simulator also uses the same equation to model 
the trajectory of its own agent; the output of this equation 
can be compared to the output of the true dynamics model 
for the agent to determine when the models diverge.  
When, and only when, the error between models reaches a 
certain threshold, the simulator broadcasts new state 
information for its agent.  Figure 1 shows this process in a 
DIS simulation called Modular Semi-automated Forces 
(ModSAF) (Calder et al, 1993) that was used for our 
experiments. 

The high level architecture of this system is presented 
in Figure 3.  The agent architecture is embedded in the 
ModSAF simulator, a system used by the military for 
training and research.  ModSAF is elaborated in the next 
major section, “Methodology”.  The agent’s intelligence is 
modeled in Soar (Newell, 1990).   
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Figure 1.  Dead-Reckoning Implementation in ModSAF 

Figure 2 shows how at a series of time steps, the true 
position of an agent computed by the agent dynamics 
model (shown by the curve) deviates from a linear dead 
reckoning model.  When the error exceeds the threshold, 
the models are brought into correspondence by the issuance 
of an entity state PDU (ESPDU).  Thus in the figure, only 3 
ESPDUs are broadcast instead of one at every time step.   
 

 

Figure 3.  Visual attention for helicopter agent 

Citing terrain and cultural features (e.g., roads and 
bridges) as complicating the trajectory, Hill et al. reject the 
use of simple linear projections, such as first-order 
Newtonian equations, and recursive state estimation Figure 2.  DIS Dead-Reckoning Process 



 
techniques, such as Kalman filters.  They instead consider 
the use of neural network based models.  The inputs to the 
neural networks developed for this application consist of 
entity data (e.g., call-sign, sim-time, position, velocity, etc.) 
and abstracted terrain information germane to both “on-
roads” and “cross-country” travel and correlated to the 
entity’s visual field (hill, road, lake, etc). 

All together, the input vector consists of 196 fields and 
the output vector consists of 15 output fields corresponding 
to discretized changes in heading ranging from –35° to 35°.  
The selected heading change, coupled with an assumed 
constant speed and “delta” time since last prediction, can 
be used to predict the entity’s expected location at some 
time, t.  This prediction, as derived from “on-roads” 
scenario, enables the virtual helicopter pilot to look away 
from the ground entity for up to 7 seconds with a reported 
error tolerance of 15 m. 
 
Neural Networks – Computational Form 
A variety of researchers have worked in modeling human 
driving skills such as acceleration, steering, and vehicle 
following with neural networks e.g., (Pomerlau et al 1994; 
Pentland and Liu, 1995; and Nechyba and Xu 1997).   A 
neural network is a collection of simple processors or 
nodes interconnected with each other that learn from 
examples and store the acquired knowledge in their 
interconnections, referred to as weights.  Neural networks 
can solve a variety of problems related to non-linear 
regression and discriminant analysis, data reduction, and 
non-linear dynamic systems. One of the practical 
characteristics of neural networks is that they lend 
themselves to parallel distributed processing using simple 
processing units rather than a complex CPU.   This makes 
their execution very fast.  

The multi-layer feed-forward network is one of the 
more typical network designs used in neural network 
applications.  The network used in this investigation was a 
4-layer feed-forward network, with seven nodes in the first 
layer representing each dimension of the input vector, one 
node in the last layer representing the output, and a two 
hidden layers consisting of twenty nodes in the first hidden 
layer and 5 nodes in the second hidden layer.  This network 
attempts to develop a matching function between the input 
and output vectors by using some training algorithm.  The 
training algorithm used in this research is a method known 
as back-propagation.  This method is based on finding the 
outputs at the last layer of the network, calculating the 
errors between the actual and the predicted outputs, and 
then adjusting the network weights to minimize the error.  
Weight changes are implemented in a backward fashion 
starting from the weights converging to the output layer 
and proceeding backwards to the weights that converge to 
the hidden layer closest to the output layer. These 
computations are repeated such that the error is propagated 

back until the weights converging to the hidden layer 
closest to the input layer are reached. 

In short, back-propagation involves a two step process.  
The first step, the forward pass, propagates the effects of 
the inputs forward through the network to reach the output 
layer.  This step is governed by three forms of equations.  
For the 7-20-5-1 architecture used in this study, the first 
equation (2) shows the total weighted input to the jth node 
for pattern p is given by: 
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where is the commonly used sigmoid function 
illustrated in Figure 4. 
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Figure 4.  Example of Sigmoid Function 

 
The net input to the ith node for pattern p is similar to 
equation (2) and is given by: 
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and the output of the ith node of hidden layer 2 due to 
pattern p, yI

(2)(p), is given by: 
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where is again the sigmoid function. )(g
 
Finally, the net input to the lth node for pattern p is also 
similar to equation (2) and is given by: 
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and the output of the lth   output node due to pattern p, yI(p), 
is given by: 
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which in this instance is not transformed, and thus is the 
same as the input. 



 
Next, the error function associated with the pth 
input/desired output {x(p),dI(p)} pair, is given by: 
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Once the error is computed, the weights are adjusted such 
that Ep is minimized.  This occurs in the second pass, the 
backward pass, by computing the negative gradient of the 
error function and taking the partial derivatives of this 
function with respect to the weights (equations 9, 10, and 
11).  
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where η  is a user defined parameter. 
 
These equations allow errors at the output layer to be 
propagated backward toward the input layer in proportion 
to the change in activity at the previous layer.  By applying 
the chain rule of derivation as in (Rummelhart et al 1986) 
equations 9, 10, and 11 reduce to: 
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Each of these weight adjustments directs the network 
towards a solution to the input/output mapping.  That is, 
these weights are training the network to produce a certain 
output given a set of inputs.  This is one of the fundamental 
benefits of the neural network approach.  With the proper 
training and representation, the network will self-organize 
to arrive at a mapping of how the responses are formed and 

there is no need to acquire and represent an expert’s 
knowledge in terms of rule sets. 
 
Extended Kalman Filters - Trajectory Estimation 

Madhavan and Schlenoff (2003) report on a system 
developed for use within the 4D-Real-Time Control 
System (RCS) (Albus et al, 2002) reference model 
architecture.    This system was developed to generate 
short-term predictions of moving objects trajectory such 
that it will support the planning required for unmanned 
ground vehicles (UGVs) to move efficiently and 
dynamically avoid collisions in the presence of dynamic 
objects with unknown trajectories. 

The data being recorded for the moving object 
includes: 

• Current Location:  x, y, and z locations as well as 
terrain type 

• Dimensions 
• Velocity 
• Color: most predominant color, where appropriate 
• Motion Pattern:  based on multiple concurrent sets 

of position data 
 

To test the prediction algorithms developed in this 
effort, Madhavan et al. implemented the algorithms in the 
OneSAF testbed (OTBSAF).  In doing so, they use data 
from OTBSAF under the assumption that UGV has 
“perfect sensor data”.  In other words, the data listed above 
are supplied with no associated uncertainty.  To 
compensate for this, they implemented a noise model in 
OTBSAF to use for sensor data.   

While they don’t specify results and associated errors, 
the authors acknowledge that, as expected, the associated 
uncertainty with predicted position increases as the 
prediction time horizon increases.  Because the confidence 
in their estimates decreases as the planning horizon 
increases, they suggest the use of a threshold to determine 
the point at which the algorithm no longer provides 
adequate estimates to support safe path planning.  Deriving 
this threshold is the subject of future research. 

 
Extended Kalman Filters – Computational Form 

Kalman’s prediction theory allows the computation of the 
best estimate of a future system state by using the most 
recent estimates of system state along with the system 
dynamic model.  With appropriate interpretation, 
covariance analysis inherent in the Kalman filtering 
techniques serves as confidence measure indicative of the 
uncertainty in the predicted system states.  The EKF thus 
provides a convenient measure of prediction accuracy 
through the covariance matrix.  

The extension of the linear Kalman filter to a non-
linear system is termed “extended” Kalman filtering and it 
is obtained through the linearization of the non-linear state 



 
and observation equations.  In the context of this paper, the 
state vector x is comprised of the predicted position and 
orientation of the vehicle.  In view of the availability of 
data at discrete instants of time, a discrete-time formulation 
of the continuous-time vehicle kinematics models is 
necessary.   
 To formulate a Kalman filter algorithm, process and 
observation (measurement) models are needed. In discrete-
time, only discrete sampling instants are 
considered. Integrating the continuous-time process model 
between two consecutive time steps usually derives the 
discrete-time process model. A general discrete-time 
process model can be expressed as: 

,..., 10 tt
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where f(.,.,k) is a discrete function that maps the previous 
state and control inputs to the current state, xk is the state at 
time instant k, uk is a known control vector, and wk is the 
discrete process noise. The process noise is assumed to be a 
Gaussian-distributed random variable of zero mean and 
constant covariance. 
 
Observations of the state xk are made according to the 
observation model: 
 

khk k += ),(  (16) 

 
where h(.,k) is the discrete function that maps the current 
state to observations. vk is the measurement noise source 
and plays a similar role in the observation model to the role 
played by the process noise in the process model. It 
accounts for effects that are not modeled explicitly and is 
assumed to be a Gaussian-distributed random variable of 
zero mean and constant covariance. 
 In an autonomous vehicle navigation context, the 
prediction stage uses a model of the motion of the vehicle 
(a process model having the form described in Equation 

(15) to predict the vehicle position, , at instant k 
given the information available until and including instant 
k-1. The state prediction function f(.) is defined by 
Equation (15) assuming zero process and control noise. 
The prediction of state is therefore obtained by simply 
substituting the previous state and current control inputs 
into the state transition equation with no noise. The 
predicted covariance of the vehicle, , is thus 

computed using the Jacobian of the state propagation 
equation linearized about the current vehicle state estimate. 
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 Once the state and covariance predictions are 
available, the next step is to compute a predicted 
observation and a corresponding innovation for updating 
the predicted state. The difference between the actual 

observation and the predicted observation at time step k is 
termed the innovation and is written as:  
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The innovation covariance is found by squaring the 
estimated observation error and taking expectations 
conditioned on the first (k-1) measurements 
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The observations that arrive are accepted only if the 
observation falls inside the normalized innovation 
validation gate given by: 
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T
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where  is the innovation defined as the difference 
between the actual and predicted positions. The value of 

k

γε can be chosen from the fact that the normalized 

innovation sequence is a  random variable with m 
degrees of freedom (m being the dimension of the 
observation).  Once a validated observation is available, the 
update of the estimate equal to the weighted sum of the 
observation and the prediction can be computed as: 
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where  is the Kalman gain matrix determined by the 
relative confidence in vehicle prediction and observation 
and determines the influence of the innovation on the 
updated estimate. 

k

 
The covariance update is given by: 
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where the Kalman gain matrix is: 
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Methodology 
 
This paper compares the performance of three models 
based on neural-networks, extended Kalman filters, and 
Newtonian dead-reckoning.  Like the systems described in 



 
sections on dead-reckoning and neural networks for 
trajectory estimation, this experiment is conducted with a 
data set generated in ModSAF, a training and research 
system developed by the Army’s Program Executive Office 
for Simulation, Training, and Instrumentation Command 
(PEO STRI).  ModSAF provides a set of software modules 
for constructing computer-generated force behaviors at the 
company level and below.  Typically, ModSAF models are 
employed to represent individual soldiers or vehicles and 
their coordination into orderly-moving squads and 
platoons; but, their tactical actions as units are planned and 
executed by a human controller.  The human behaviors 
represented in ModSAF include move, shoot, sense, 
communicate, tactics, and situation awareness.  The 
authoritative sources of these behaviors are subject matter 
experts and doctrine provided by the Army Training and 
Doctrine Command (TRADOC).  ModSAF uses state 
transition constructs inspired by finite state machines 
(FSMs) to represent the behavior and functionality of a 
process for a pre-defined number of states. 

 
 

Table 1.  Neural Network Architecture 
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specific predictors are expressed in 25 – 32, and the 
parameters making up those inputs are explained in 33 – 40 
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(24) 

)( MDaSRa ttt +=  (25) 
)( MDbSRb ttt +=  (26) 
)( MDcSRc ttt +=  (27) 

MPSRp ttt =  (28) 
MSRs tt /=  (29) 

trt HxyHabHRab ×=  (30) 
trt HxyHbcHRbc ×=  (31) 
tatspeedentitySt =  (32) 

waypointprevioustodistanceDat =  (33) 
waypointcurrenttodistanceDbt =  (34) 
waypointnexttodistanceDct =  (35) 

speedordermarchM =  (36) 
roadtodistancelarperpindicuPt =  (37) 

absegmentroadofdirectionHabt =  (38) 
bcsegmentroadofdirectionHbct =  (39) 

norientatioentityHxyt =  (40) 

The scenario used for the comparison was a road-
march for a tank entity 45-segment route shown in Figure 
5.  It is approximately 7 kilometers long and takes a tank 
entity about 15 minutes of simulation time to travel at a 
March Order speed of 8 m/s.  From this 15 minute period, a 
total of 13760 movement updates were performed, 
generated at a rate of 15 HZ. 

 

 

 
Of the 13760 simulated movement updates, 860 examples 
were used for training the speed network and 859 examples 
were used for validating the training.  The training rate was 
selected as 0.01 and the initial momentum parameter was 
.9.  The momentum parameter was periodically adjusted to 
speed the rate of descent along the error surface.  The 
training and validation results for each of the networks may 
be seen in Table 2. 

 
Figure 5.  Route Used for Experiment 

Neural Network Implementation  
For this application, a feed-forward architecture developed 
with back-propagation training was used to develop the 
neural network that predicts the change in an entity’s 
speed.  The network used a sigmoid function at the hidden 
nodes and a linear transformation at the output nodes.  The 
configuration of the network in each of the models may be 
seen in Table 1 where the inputs were normalized 
according to equations 24 – 40 below.  Fundamentally, the 
inputs for the network were a function of the entity’s state 
at the last simulation clock and how this state related to the 
road characteristics (width, heading, length of segment, etc) 
and March Order parameters (speed, end-point, etc).  The  

Table 2.  Training and Validation Errors 

 S∆  Error(m/s) 
Training 0.259977±2.04558 
Validation 0.206374±0.82532 

 
Extended Kalman Filter Implementation  
The kinematic vehicle model shown in Equation (16) is 
used to predict the positions (x,y) of the vehicle and  the 
ground truth estimate is used for the orientation prediction 



 
Summary and Conclusions directly. The position of the vehicle is predicted until the 

errors exceed a defined threshold.  
Once the errors are above a given threshold, an update 

is deemed to be performed by utilizing the observations 
from ModSAF.  We check the validity of the observation 
by testing if it falls within the normalized innovation gate. 
A validated observation is then used to update the states of 
the EKF and the estimation cycle continues as before. 

While a first step in the comparison between tracking 
models, this analysis is not complete.  Still needed are 
processing times for models and a sense of how well they 
generalize to other types of terrain and roads.  This analysis 
does confirm, generally, that the more complicated a model 
becomes in terms of numbers of factors and non-linear 
terms, the more it tends to do a better job at predicting the 
source model.  Along those lines, one might expect 
processing time requirements to be inversely related.  That 
is, as the more complicated the model gets, the more 
processing time it will require.  Assuming this is true, the 
results reported above suggest heuristics for when to apply 
which modeling technique.  For example, in an application 
where processing time is not the primary constraint e.g., 
multi-agent systems communicating over a wireless 
network, then the increased processing costs incurred from 
using a neural network may be defendable given the high 
cost of communications.  Alternatively, in an application 
where processing time is a limiting factor, then dead-
reckoning models may be the more prudent approach.  It is 
interesting to note, also, that the difference in predictive 
utility of the modeling approaches becomes less prominent 
as the error threshold is increased.  This speaks to the 
power of dead-reckoning models to generalize and scale. 

 
Results 

 
The neural network models and extended Kalman filter 
models were implemented in such a way that their 
performance for predicting entity location could be 
compared with the dead-reckoning model.  

An error is generated in our system according when 
the entity’s actual location is greater than .5m away from 
the model’s predicted location for the entity.  Using these 
error thresholds, the neural network models required 170 
updates, the extended Kalman filter model required 240 
updates, and the Newtonian model required 267 updates.  
This information is presented in far left column of Figure 6. 
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It is important to recognize, of course, that the 
modeling task in this research is limited in scope.  Also, a 
different NN or EKF configuration could have yielded 
different results.  We cannot claim that these are the best 
configurations for this specific modeling task.  Other 
configurations may be better.  Also, combinations of 
approaches may be better.  For example, one approach 
advocated in the control literature (Murray-Smith and 
Johansen, 1997; Narendra et al, 1995) is to employ 
modular models such as mixing different modeling 
techniques as they best apply to the problem locally.  In the 
problem discussed in this paper, one interesting test would 
be to use a less computationally expensive model in the 
straight parts of the road database and then use another 
model to guide the turns, as previous work (Henninger et 
al, 1999) has suggested that this appears to be where the 
majority of updates are required. 

Figure 6.  Number of Updates Required by NN, EKF, 
and DR Models 
 
To further examine the relationship between the predictive 
power of the dead-reckoning models and this set of neural 
network models, we conducted experiments over a range of 
error tolerances.  So, whereas the initial results were 
measured according to an error tolerance of .5m, follow-on 
tests incremented these error thresholds to examine model 
utility over increasing error tolerance.  As evidenced by the 
progression of columns of Figure 6, as the error tolerance 
increases, the predictive advantage that more sophisticated 
modeling techniques (i.e., NNs and EKFs) have over dead-
reckoning models becomes less significant for this 
modeling task. 
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