
Empirical Comparison of Predictive
Models for Mobile Agents

A.E. Henninger, Ph.D.
Soar Technology, Inc.
Orlando, FL. 32817
amy@soartech.com

R. Madhavan, Ph.D.

Intelligent Systems Division
National Institute of Standards and Technology

Gaithersburg, MD. 20899-8230
raj.madhavan@nist.gov

Abstract

The need to predict an agent’s intents or future actions has
been well documented in multi-agent system’s literature and
has been motivated by both systematically-practical and
psychologically-principled concerns. However, little effort
has focused on the comparison of predictive modeling
techniques. This paper compares the performance of three
predictive models all developed for the same, well-defined
modeling task. Specifically, this paper compares the
performance of an extended Kalman filter based model, a
neural network based model and a Newtonian based dead-
reckoning model, all used to predict an agent’s trajectory and
position. After introducing the background and motivation
for the research, this paper reviews the form of the
algorithms, the integration of the models into a large-scale
simulation environment, and the means by which the
performance measures are generated. Performance measures
are presented over increasing levels of error tolerance.

Introduction

Intelligent agents typically operate in an environment
populated by other intelligent agents. Agents may help
each other, hinder each other, or ignore each other, often
without directly communicating their intent. In order for
an agent to achieve its goals, it is thus sometimes
necessary for the agent to determine where the other
agents are, what they are doing, and what their plans are.
For example, an agent may want to infer what plan an
opponent is executing so that the agent can select
countermoves. Han and Veloso (1995), Rao (1994), Rao
and Georgeff (1995), Tambe and Rosenbloom (1995), and
Tambe (1996) have studied various forms of recognizing
an agent’s intents.

Sometimes it is necessary to infer facts that are
normally observable, such as agent location, because of
sensor or other limitations. For example, a pilot agent may

need to predict where a threat aircraft is flying after it
enters a cloud. There are many approaches to predicting
agent trajectories, including Newtonian mechanics (Lin and
Ng, 1993), neural networks (Hill et al, 2002), Hidden
Markov Models (Washington, 1998), extended Kalman
filters (Madhavan and Schlenoff, 2003) and others. This
paper addresses a particular application of trajectory
prediction in a simulation environment and compares the
effectiveness of three approaches: extended Kalman filters
(EKF), neural networks, and Newtonian equations. Unique
about this particular comparison is the fact that the three
techniques being evaluated have been implemented over
the same data set. Thus, this cross-comparison enables us
to examine the efficacy of results and conclusions drawn
by a number of researchers evaluating models
independently.

The remainder of this section defines the trajectory
estimation problem in the simulation application and
describes the previous use of Newtonian equations, neural
networks, and EKFs for estimating agent trajectories.
Specifically, the following sections present the precise
applications of the techniques and then presents the
underlying theory of each of the techniques. The paper
then describes the test problem used in this study and
finally presents the results from the comparisons.

Newtonian Methods–Trajectory Estimation and
Theory
In a Distributed Interactive Simulation (DIS) (DIS Steering
Committee, 1994), simulation software for each agent runs
independently of other agents and broadcasts the ground
truth about the state of the agent through network packets
known as protocol data units (PDUs). Each simulation in
DIS uses trajectory estimation so that the state of the agents
does not have to be broadcast frequently. Lin and Ng
(1993) explain how dead-reckoning can be used to

Neural Networks - Trajectory Estimation maintain coherence among entities' states in a DIS

environment. Hill, Kim, and Gratch (2002) report on a system to generate
short-term predictions of an agent’s trajectory such that it
can be used to predict the agent’s position at any future
instance, given some window of time. They use this model
as part of a helicopter agent’s perceptual system to enhance
the agent’s ability to visually track ground vehicles, and
their motivation for this model is both psychologically and
practically rooted. Psychologically, this model can be used
to simulate a helicopter pilot’s gaze shifting as he attempts
to visually track and reaquire multiple targets. Thus,
instead of operating in a state of omniscience, the agent is
required to juggle the act of determining spatial
information across multiple agents, as would be the human
helicopter pilot. The functional ramification of this
approach is that the total number of perceptual inputs to the
agent is reduced at any given instance. In other words,
instead of getting continuous perceptual information on all
of the ground entities within the helicopter agent’s field of
view, by using this predictive model, the agent only
requires updated information on entities when its attention
is focused on those entities.

Each simulator uses Newtonian equations of motion
such as equation 1 to predict the trajectory of other agents.

)(
2

)(
)(

00

2
0

00

tavv

ta
tvpp

∆+=

∆∗
+∆∗+=

(1)

where p = current position
 p0 = initial position
 v = current velocity
 v0 = initial velocity
 a0 = initial acceleration
 ∆t = elapsed time

Each simulator also uses the same equation to model
the trajectory of its own agent; the output of this equation
can be compared to the output of the true dynamics model
for the agent to determine when the models diverge.
When, and only when, the error between models reaches a
certain threshold, the simulator broadcasts new state
information for its agent. Figure 1 shows this process in a
DIS simulation called Modular Semi-automated Forces
(ModSAF) (Calder et al, 1993) that was used for our
experiments.

The high level architecture of this system is presented
in Figure 3. The agent architecture is embedded in the
ModSAF simulator, a system used by the military for
training and research. ModSAF is elaborated in the next
major section, “Methodology”. The agent’s intelligence is
modeled in Soar (Newell, 1990).

ModSAF ModSAF Entity

Entity Data

State Data

Dead-Reckoning ModelLast
ESPDU

DR Model Update

Entity State Updates

DIS Network

+
-

ModSAF ModSAF Entity

Entity Data

State Data

Dead-Reckoning ModelLast
ESPDU

DR Model Update

Entity State Updates

DIS Network

+
-
+
-

Entity State Updates

DIS Network

Helicopter Agent

ModSAF

Soar

Working Memory

Long-term Memory
•Decision Making

Soar-ModSAF Interface

EnvironmentMotor Command

Output Commands Perceptual Analysis

Output link WMEs Input link WMEs

Neural Networks

Entity State Updates

DIS Network

Helicopter Agent

ModSAF

Soar

Working Memory

Long-term Memory
•Decision Making

Soar-ModSAF Interface

EnvironmentMotor Command

Output Commands Perceptual Analysis

Output link WMEs Input link WMEs

Neural Networks

Figure 1. Dead-Reckoning Implementation in ModSAF

Figure 2 shows how at a series of time steps, the true
position of an agent computed by the agent dynamics
model (shown by the curve) deviates from a linear dead
reckoning model. When the error exceeds the threshold,
the models are brought into correspondence by the issuance
of an entity state PDU (ESPDU). Thus in the figure, only 3
ESPDUs are broadcast instead of one at every time step.

Figure 3. Visual attention for helicopter agent

Citing terrain and cultural features (e.g., roads and
bridges) as complicating the trajectory, Hill et al. reject the
use of simple linear projections, such as first-order
Newtonian equations, and recursive state estimation Figure 2. DIS Dead-Reckoning Process

techniques, such as Kalman filters. They instead consider
the use of neural network based models. The inputs to the
neural networks developed for this application consist of
entity data (e.g., call-sign, sim-time, position, velocity, etc.)
and abstracted terrain information germane to both “on-
roads” and “cross-country” travel and correlated to the
entity’s visual field (hill, road, lake, etc).

All together, the input vector consists of 196 fields and
the output vector consists of 15 output fields corresponding
to discretized changes in heading ranging from –35° to 35°.
The selected heading change, coupled with an assumed
constant speed and “delta” time since last prediction, can
be used to predict the entity’s expected location at some
time, t. This prediction, as derived from “on-roads”
scenario, enables the virtual helicopter pilot to look away
from the ground entity for up to 7 seconds with a reported
error tolerance of 15 m.

Neural Networks – Computational Form
A variety of researchers have worked in modeling human
driving skills such as acceleration, steering, and vehicle
following with neural networks e.g., (Pomerlau et al 1994;
Pentland and Liu, 1995; and Nechyba and Xu 1997). A
neural network is a collection of simple processors or
nodes interconnected with each other that learn from
examples and store the acquired knowledge in their
interconnections, referred to as weights. Neural networks
can solve a variety of problems related to non-linear
regression and discriminant analysis, data reduction, and
non-linear dynamic systems. One of the practical
characteristics of neural networks is that they lend
themselves to parallel distributed processing using simple
processing units rather than a complex CPU. This makes
their execution very fast.

The multi-layer feed-forward network is one of the
more typical network designs used in neural network
applications. The network used in this investigation was a
4-layer feed-forward network, with seven nodes in the first
layer representing each dimension of the input vector, one
node in the last layer representing the output, and a two
hidden layers consisting of twenty nodes in the first hidden
layer and 5 nodes in the second hidden layer. This network
attempts to develop a matching function between the input
and output vectors by using some training algorithm. The
training algorithm used in this research is a method known
as back-propagation. This method is based on finding the
outputs at the last layer of the network, calculating the
errors between the actual and the predicted outputs, and
then adjusting the network weights to minimize the error.
Weight changes are implemented in a backward fashion
starting from the weights converging to the output layer
and proceeding backwards to the weights that converge to
the hidden layer closest to the output layer. These
computations are repeated such that the error is propagated

back until the weights converging to the hidden layer
closest to the input layer are reached.

In short, back-propagation involves a two step process.
The first step, the forward pass, propagates the effects of
the inputs forward through the network to reach the output
layer. This step is governed by three forms of equations.
For the 7-20-5-1 architecture used in this study, the first
equation (2) shows the total weighted input to the jth node
for pattern p is given by:

∑
=

=

==
7

0

)1()0()1(20to1jfor)()(
K

k
jkkj wpxpnet (2)

Next, the output of the jth node, , is given by:)()1(py j

)(
)1()1(

1
1))(()(pnetjj je

pnetgpy −+
== (3)

where is the commonly used sigmoid function
illustrated in Figure 4.

)(g

Figure 4. Example of Sigmoid Function

The net input to the ith node for pattern p is similar to
equation (2) and is given by:

∑
=

=
==

20

0

)2()1()2(5to1ifor)(
J

j
ijji wpynet (4)

and the output of the ith node of hidden layer 2 due to
pattern p, yI

(2)(p), is given by:

)(

)2()2(
)2(

1
1))(()(

pnetii
ie

pnetgpy
−+

==

(5)

where is again the sigmoid function.)(g

Finally, the net input to the lth node for pattern p is also
similar to equation (2) and is given by:

1)(
5

0

)3()2()3(== ∑
=

=

lforwpynet
I

i
liil

(6)

and the output of the lth output node due to pattern p, yI(p),
is given by:

)()()3()3(pnetpy
ll

= (7)
which in this instance is not transformed, and thus is the
same as the input.

Next, the error function associated with the pth
input/desired output {x(p),dI(p)} pair, is given by:

∑
=

=
−=

1

1

2)3()3()]()([
2
1)(

L

l ll

p pypdwE (8)

Once the error is computed, the weights are adjusted such
that Ep is minimized. This occurs in the second pass, the
backward pass, by computing the negative gradient of the
error function and taking the partial derivatives of this
function with respect to the weights (equations 9, 10, and
11).

)(
)3(

)3(

li

li w
Ew

∂
∂

−=∆ η
 (9)

)(
)2(

)2(

ij
ij w

Ew
∂
∂

−=∆ η
(10)

)()1(
)1(

jk
jk w

Ew
∂
∂

−=∆ η
(11)

where η is a user defined parameter.

These equations allow errors at the output layer to be
propagated backward toward the input layer in proportion
to the change in activity at the previous layer. By applying
the chain rule of derivation as in (Rummelhart et al 1986)
equations 9, 10, and 11 reduce to:

)]()())[(()(
 where

511
)()(

)3()3()3()3(

)2()3()3(

pypdpnetgp

toil
pypw

llll

illi

−′=

==
=∆

δ

ηδ

(12)

∑
=

=
′=

==

=∆

1

1

)3()3()2()2(

)1()2()2(

)())(()(

where
20151

)()(

L

l
lliii

jiij

pwpnetgp

tojtoi
pypw

δδ

ηδ

(13)

∑
=

=
′=

==

=∆

5

1

)2()2()1()1(

)1()1(

)())(()(

where
71201

)()(

I

i
iijjj

kjjk

pwpnetgp

toktoj
pxpw

δδ

ηδ

(14)

Each of these weight adjustments directs the network
towards a solution to the input/output mapping. That is,
these weights are training the network to produce a certain
output given a set of inputs. This is one of the fundamental
benefits of the neural network approach. With the proper
training and representation, the network will self-organize
to arrive at a mapping of how the responses are formed and

there is no need to acquire and represent an expert’s
knowledge in terms of rule sets.

Extended Kalman Filters - Trajectory Estimation

Madhavan and Schlenoff (2003) report on a system
developed for use within the 4D-Real-Time Control
System (RCS) (Albus et al, 2002) reference model
architecture. This system was developed to generate
short-term predictions of moving objects trajectory such
that it will support the planning required for unmanned
ground vehicles (UGVs) to move efficiently and
dynamically avoid collisions in the presence of dynamic
objects with unknown trajectories.

The data being recorded for the moving object
includes:

• Current Location: x, y, and z locations as well as
terrain type

• Dimensions
• Velocity
• Color: most predominant color, where appropriate
• Motion Pattern: based on multiple concurrent sets

of position data

To test the prediction algorithms developed in this
effort, Madhavan et al. implemented the algorithms in the
OneSAF testbed (OTBSAF). In doing so, they use data
from OTBSAF under the assumption that UGV has
“perfect sensor data”. In other words, the data listed above
are supplied with no associated uncertainty. To
compensate for this, they implemented a noise model in
OTBSAF to use for sensor data.

While they don’t specify results and associated errors,
the authors acknowledge that, as expected, the associated
uncertainty with predicted position increases as the
prediction time horizon increases. Because the confidence
in their estimates decreases as the planning horizon
increases, they suggest the use of a threshold to determine
the point at which the algorithm no longer provides
adequate estimates to support safe path planning. Deriving
this threshold is the subject of future research.

Extended Kalman Filters – Computational Form

Kalman’s prediction theory allows the computation of the
best estimate of a future system state by using the most
recent estimates of system state along with the system
dynamic model. With appropriate interpretation,
covariance analysis inherent in the Kalman filtering
techniques serves as confidence measure indicative of the
uncertainty in the predicted system states. The EKF thus
provides a convenient measure of prediction accuracy
through the covariance matrix.

The extension of the linear Kalman filter to a non-
linear system is termed “extended” Kalman filtering and it
is obtained through the linearization of the non-linear state

and observation equations. In the context of this paper, the
state vector x is comprised of the predicted position and
orientation of the vehicle. In view of the availability of
data at discrete instants of time, a discrete-time formulation
of the continuous-time vehicle kinematics models is
necessary.
 To formulate a Kalman filter algorithm, process and
observation (measurement) models are needed. In discrete-
time, only discrete sampling instants are
considered. Integrating the continuous-time process model
between two consecutive time steps usually derives the
discrete-time process model. A general discrete-time
process model can be expressed as:

,..., 10 tt

() kkk k += − ,,1k

 (15)

where f(.,.,k) is a discrete function that maps the previous
state and control inputs to the current state, xk is the state at
time instant k, uk is a known control vector, and wk is the
discrete process noise. The process noise is assumed to be a
Gaussian-distributed random variable of zero mean and
constant covariance.

Observations of the state xk are made according to the
observation model:

khk k +=),((16)

where h(.,k) is the discrete function that maps the current
state to observations. vk is the measurement noise source
and plays a similar role in the observation model to the role
played by the process noise in the process model. It
accounts for effects that are not modeled explicitly and is
assumed to be a Gaussian-distributed random variable of
zero mean and constant covariance.
 In an autonomous vehicle navigation context, the
prediction stage uses a model of the motion of the vehicle
(a process model having the form described in Equation

(15) to predict the vehicle position, , at instant k
given the information available until and including instant
k-1. The state prediction function f(.) is defined by
Equation (15) assuming zero process and control noise.
The prediction of state is therefore obtained by simply
substituting the previous state and current control inputs
into the state transition equation with no noise. The
predicted covariance of the vehicle, , is thus

computed using the Jacobian of the state propagation
equation linearized about the current vehicle state estimate.

)1|(−

∧

kk

|(kk)1−

 Once the state and covariance predictions are
available, the next step is to compute a predicted
observation and a corresponding innovation for updating
the predicted state. The difference between the actual

observation and the predicted observation at time step k is
termed the innovation and is written as:

)1|(−

∧

−= kkkkv
(17)

The innovation covariance is found by squaring the
estimated observation error and taking expectations
conditioned on the first (k-1) measurements

k
T

kkxk kk
S +∇∇= −)1|((18)

The observations that arrive are accepted only if the
observation falls inside the normalized innovation
validation gate given by:

γε≤−
kk

T
k vv 1 (19)

where is the innovation defined as the difference
between the actual and predicted positions. The value of

k

γε can be chosen from the fact that the normalized

innovation sequence is a random variable with m
degrees of freedom (m being the dimension of the
observation). Once a validated observation is available, the
update of the estimate equal to the weighted sum of the
observation and the prediction can be computed as:

2χ

kkkkkk v+= −

∧∧

)1|()|(
(20)

where is the Kalman gain matrix determined by the
relative confidence in vehicle prediction and observation
and determines the influence of the innovation on the
updated estimate.

k

The covariance update is given by:

T
kkkkkkk −= −)1|()|((21)

where the Kalman gain matrix is:

1
)1|(

−
− ∇= k

T
kkk h

 (22)

Methodology

This paper compares the performance of three models
based on neural-networks, extended Kalman filters, and
Newtonian dead-reckoning. Like the systems described in

sections on dead-reckoning and neural networks for
trajectory estimation, this experiment is conducted with a
data set generated in ModSAF, a training and research
system developed by the Army’s Program Executive Office
for Simulation, Training, and Instrumentation Command
(PEO STRI). ModSAF provides a set of software modules
for constructing computer-generated force behaviors at the
company level and below. Typically, ModSAF models are
employed to represent individual soldiers or vehicles and
their coordination into orderly-moving squads and
platoons; but, their tactical actions as units are planned and
executed by a human controller. The human behaviors
represented in ModSAF include move, shoot, sense,
communicate, tactics, and situation awareness. The
authoritative sources of these behaviors are subject matter
experts and doctrine provided by the Army Training and
Doctrine Command (TRADOC). ModSAF uses state
transition constructs inspired by finite state machines
(FSMs) to represent the behavior and functionality of a
process for a pre-defined number of states.

Table 1. Neural Network Architecture

Model Arch Predictors Resp

Speed 8-20-5-1
1111

1111
−−−−

−−−−

tttt
tttt

,Hz,HRbc,HRabRs
,,Rp,Rc,RbRa

 tS∆

specific predictors are expressed in 25 – 32, and the
parameters making up those inputs are explained in 33 – 40

),Hz,HRbc,HRabRs
,,Rp,Rc,Rbf(RaS

SSS

tttt
ttttt

ttt

1111
1111

1
where

−−−−

−−−−

−
=∆
∆+=

(24)

)(MDaSRa ttt += (25)
)(MDbSRb ttt += (26)
)(MDcSRc ttt += (27)

MPSRp ttt = (28)
MSRs tt /= (29)

trt HxyHabHRab ×= (30)
trt HxyHbcHRbc ×= (31)
tatspeedentitySt = (32)

waypointprevioustodistanceDat = (33)
waypointcurrenttodistanceDbt = (34)
waypointnexttodistanceDct = (35)

speedordermarchM = (36)
roadtodistancelarperpindicuPt = (37)

absegmentroadofdirectionHabt = (38)
bcsegmentroadofdirectionHbct = (39)

norientatioentityHxyt = (40)

The scenario used for the comparison was a road-
march for a tank entity 45-segment route shown in Figure
5. It is approximately 7 kilometers long and takes a tank
entity about 15 minutes of simulation time to travel at a
March Order speed of 8 m/s. From this 15 minute period, a
total of 13760 movement updates were performed,
generated at a rate of 15 HZ.

Of the 13760 simulated movement updates, 860 examples
were used for training the speed network and 859 examples
were used for validating the training. The training rate was
selected as 0.01 and the initial momentum parameter was
.9. The momentum parameter was periodically adjusted to
speed the rate of descent along the error surface. The
training and validation results for each of the networks may
be seen in Table 2.

Figure 5. Route Used for Experiment

Neural Network Implementation
For this application, a feed-forward architecture developed
with back-propagation training was used to develop the
neural network that predicts the change in an entity’s
speed. The network used a sigmoid function at the hidden
nodes and a linear transformation at the output nodes. The
configuration of the network in each of the models may be
seen in Table 1 where the inputs were normalized
according to equations 24 – 40 below. Fundamentally, the
inputs for the network were a function of the entity’s state
at the last simulation clock and how this state related to the
road characteristics (width, heading, length of segment, etc)
and March Order parameters (speed, end-point, etc). The

Table 2. Training and Validation Errors

 S∆ Error(m/s)
Training 0.259977±2.04558
Validation 0.206374±0.82532

Extended Kalman Filter Implementation
The kinematic vehicle model shown in Equation (16) is
used to predict the positions (x,y) of the vehicle and the
ground truth estimate is used for the orientation prediction

Summary and Conclusions directly. The position of the vehicle is predicted until the

errors exceed a defined threshold.
Once the errors are above a given threshold, an update

is deemed to be performed by utilizing the observations
from ModSAF. We check the validity of the observation
by testing if it falls within the normalized innovation gate.
A validated observation is then used to update the states of
the EKF and the estimation cycle continues as before.

While a first step in the comparison between tracking
models, this analysis is not complete. Still needed are
processing times for models and a sense of how well they
generalize to other types of terrain and roads. This analysis
does confirm, generally, that the more complicated a model
becomes in terms of numbers of factors and non-linear
terms, the more it tends to do a better job at predicting the
source model. Along those lines, one might expect
processing time requirements to be inversely related. That
is, as the more complicated the model gets, the more
processing time it will require. Assuming this is true, the
results reported above suggest heuristics for when to apply
which modeling technique. For example, in an application
where processing time is not the primary constraint e.g.,
multi-agent systems communicating over a wireless
network, then the increased processing costs incurred from
using a neural network may be defendable given the high
cost of communications. Alternatively, in an application
where processing time is a limiting factor, then dead-
reckoning models may be the more prudent approach. It is
interesting to note, also, that the difference in predictive
utility of the modeling approaches becomes less prominent
as the error threshold is increased. This speaks to the
power of dead-reckoning models to generalize and scale.

Results

The neural network models and extended Kalman filter
models were implemented in such a way that their
performance for predicting entity location could be
compared with the dead-reckoning model.

An error is generated in our system according when
the entity’s actual location is greater than .5m away from
the model’s predicted location for the entity. Using these
error thresholds, the neural network models required 170
updates, the extended Kalman filter model required 240
updates, and the Newtonian model required 267 updates.
This information is presented in far left column of Figure 6.

0

50

100

150

200

250

300

0.5 1 2 4 8 16

Error Tolerance (in meters)

N
um

be
r U

pd
at

es
 R

eq
ui

re
d

DR EKF NN

It is important to recognize, of course, that the
modeling task in this research is limited in scope. Also, a
different NN or EKF configuration could have yielded
different results. We cannot claim that these are the best
configurations for this specific modeling task. Other
configurations may be better. Also, combinations of
approaches may be better. For example, one approach
advocated in the control literature (Murray-Smith and
Johansen, 1997; Narendra et al, 1995) is to employ
modular models such as mixing different modeling
techniques as they best apply to the problem locally. In the
problem discussed in this paper, one interesting test would
be to use a less computationally expensive model in the
straight parts of the road database and then use another
model to guide the turns, as previous work (Henninger et
al, 1999) has suggested that this appears to be where the
majority of updates are required.

Figure 6. Number of Updates Required by NN, EKF,
and DR Models

To further examine the relationship between the predictive
power of the dead-reckoning models and this set of neural
network models, we conducted experiments over a range of
error tolerances. So, whereas the initial results were
measured according to an error tolerance of .5m, follow-on
tests incremented these error thresholds to examine model
utility over increasing error tolerance. As evidenced by the
progression of columns of Figure 6, as the error tolerance
increases, the predictive advantage that more sophisticated
modeling techniques (i.e., NNs and EKFs) have over dead-
reckoning models becomes less significant for this
modeling task.

References

Albus, J. et al., 4D-RCS Version 2.0: A Reference Model

Architecture for Unmanned Vehicle Systems. Tech
Report NISTIR 6910, National Institute of Standards and
Technology, Gaithersburg, MD 20899.

Calder, R.B., Smith, J. E., Courtemanche, A.J., Mar, J.M.,
and Ceranowicz, A. (1993). ModSAF Behavior
Simulation and Control. In Proceedings of the 3rd

Conference on Computer Generated Forces and
Behavioral Representation (Orlando FL), 347-356.

DIS Steering Committee 1994. “The DIS Vision: A Map to
the Future of Distributed Simulation”, Technical Report,
IST-ST-94-01. Institute for Simulation and Training,
University of Central Florida.

Han, K. and Veloso, M. 1995. Automated robot behavior
recognition applied to robot soccer. Sixteenth
International Joint Conference on Artificial Intelligence.
Workshop on Team Behaviour and Plan Recognition,
53-64.

Henninger, A., Gonzalez, A., and Georgiopoulos, M. 1999.
Modeling Semi-automated forces with neural networks:
Performance improvement through a modular approach.
Proceedings 9th Conference on Computer Generated
Forces and Behavioral Representation, (Orlando FL),
261-268.

Hill, R. W., Kim, Y., Gratch, J. (2002). Anticipating where
to look: predicting the movements of mobile agents in
complex terrain. In Proceedings of the 2002
Autonomous Agents in Multi-agent Systems (AAMAS)
Conference. Bologna, IT. pp. 821 – 827.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., and Koss, F. V. 1999. Automated intelligent
pilots for combat flight simulation. AI Magazine, 20(1):
27-41.

Lin, K., and Ng, H. 1993. Coordinate transformations in
distributed interactive simulation (DIS). Simulation, vol.
61(5):326-331.

Madhavan, R. and Schlenoff, C. (2003). Moving Object
Prediction for Off-road Autonomous navigation. In
Proceedings of 2003 SPIE Conference. Orlando,FL.

Murray-Smith, R., and Johansen, T.A. 1997. Multiple
Model Approaches to Modelling and Control. Taylor
and Francis, UK.

Narendra, K. S., Balakrishnan, J., and Ciliz, K. 1995.
Adaptation and learning using multiple models,

switching and tuning. IEEE Control Systems Magazine
June, 37-51.

Nechyba, M. and Xu. (1997). Cascade Neural Networks
with Node-Decoupled Extended Kalman Filtering, In the
Proceedings of IEEE Int. Symp. On Computational
Intelligence in Robotics and Automation, vol. 1, pp. 214-
219.

Newell, A. 1990. Unified Theories of Cognition. Harvard
University Press, Cambridge, MA.

Pentland, A. and Liu, A. (1995). Toward Augmented
Control Systems. Proceedings of Intelligent Vehicles,
vol. 1, page 350-55.

Pomerlau, D., Thorpe, C., Longer, D., Rosenblatt, J.K., and
Sukthankar, R., (1994). AVCS Research at Carneghie
Mellon University. Proceedings of Intelligent Vehicle
Highway Systems America 1994 Annual Meeting, p.
257-262.

Rao, A. 1994. Means-end plan recognition. In Proceedings
of KR-94, the Fourth Internatioanl Conference on
Principles of Knowledge Representation and Reasoning .

Rao, A. and Georgeff, M. 1995. BDI agents: From theory
to practice, In Proceedings of the First International
Conference on Multi-Agent Systems, (San Francisco
CA).

Rummelhart, D., and McClelland, J. (1986). Parallel
Distributed Processing. MIT Press, Cambridge, MA.

Tambe, M. and Rosenbloom, P. 1995. RESC: An approach
for real-time, dynamic agent tracking. In Proceedings of
IJCAI.95.

Tambe, M. 1996. Tracking dynamic team activity.
Proceedings of AAAI-96.

Washington, R. 1998. Markov tracking for agent
coordination. In Proceedings of the Second International
Conference on Autonomous Agents (Minneapolis/St.
Paul MN.

	Abstract
	Introduction
	Newtonian Methods–Trajectory Estimation and Theor
	Neural Networks - Trajectory Estimation
	Neural Networks – Computational Form
	Extended Kalman Filters - Trajectory Estimation
	Extended Kalman Filters – Computational Form

	Methodology
	Neural Network Implementation
	Extended Kalman Filter Implementation

	Results
	Summary and Conclusions
	References

