
Implementing a Rule-based System to Represent Decision Criteria for On-Road Autonomous
Navigation

N. Zimmerman, C. Schlenoff and S. Balakirsky
Intelligent Systems Division

National Institute of Standards and Technology (NIST)
Gaithersburg, MD 20899-8230.

Tel: (301) 975-8554 Fax: (301) 990-9688
Email: {noah.zimmerman, craig.schlenoff, stephen.balakirsky}@nist.gov

Abstract
The purpose of this paper is to explore an implementation of
a rule-based system for generating costs for an on-road au-
tonomous vehicle using the C Language Production System
(CLIPS). In this context, costs are numeric values that rep-
resent a penalty the vehicle incurs by taking a certain action
or occupying a state.

Introduction
For the purpose of this paper, we define an autonomous ve-
hicle as an embodied intelligent vehicular system that can
operate for extended periods of time without human super-
vision. As part of an effort to teach the vehicle to behave
in an intelligent manner, the Intelligent Systems Division,
a part of the National Institute of Standards and Technol-
ogy (NIST), is applying the 4D/RCS (Albus & et.al. 2002)
architecture to serve as the underlying reference model ar-
chitecture to control the autonomous vehicle. In (Albus &
et.al. 2002) (p.2), 4D/RCS is described as follows:

“The 4D/RCS architecture provides a reference model
for military unmanned vehicles on how their software
components should be identified and organized. It
defines ways of interacting to ensure that missions,
especially those involving unknown or hostile envi-
ronments, can be analyzed, decomposed, distributed,
planned, and executed intelligently, effectively, effi-
ciently and in coordination. To achieve this, the
4D/RCS reference model provides well defined and
highly coordinated sensory processing, world model-
ing, knowledge management, cost/benefit analysis, be-
havior generation, and messaging functions, as well as
the associated interfaces.”

The 4D/RCS architecture is hierarchical in nature, and is
composed of a common node structure at each level. A typ-
ical node is shown in Figure 1 (Albus & et.al. 2002) (p.28).
The functional elements within an RCS node are behavior
generation, sensory processing, world modeling, and value
judgment. These are supported by a knowledge database,
and a communication system that serves as a bridge be-
tween the functional processes and the knowledge layer.
These functional elements, along with their interconnec-
tions, provide the infrastructure needed to allow a system
to act autonomously.

Within the autonomous vehicle, actions are proposed by
a planner (a part of the behavior generation component)
which evaluates several different plans concurrently and de-
termines the optimal plan to satisfy the higher level goals
of the vehicle. One common approach to planning is based
on a cost model (often referred to as cost-based planning)
(Balakirsky 2003). In this approach, costs are assigned to
actions that a vehicle performs and states that a vehicle oc-
cupies. By summing all of the costs that a vehicle incurs
in each of the plans, a metric is created that can be used to
compare the proposed plans against one another. Costs are
usually assigned a priori to actions and states that are ap-
propriate to the context in which the vehicle is operating. In
the case of on-road driving, costs may be associated with:

• Running a stop sign

• Being too close to another vehicle

• Exceeding the speed limit by a certain threshold

• Changing lanes

• etc;

These costs are ubiquitous, and we intend for them to be
used by many systems within the autonomous vehicle. For
example, in addition to planning our own vehicle’s path,
we also expect these costs to be used by the vehicle’s sub-
system that anticipates the actions of other moving objects
in the environment. Since we anticipate that these costs
will be generally useful throughout the architecture, cap-
turing them independently of any individual system makes
them more generally accessible throughout the architecture.

Figure 1: Typical RCS node structure



Clients within the system can then access the cost genera-
tor using a well-defined interface, thereby reducing depen-
dencies among individual systems. This paper describes
on-going research in exploring the use of the C Language
Integrated Production System (CLIPS) to capture the cost
models in an implementation-independent format within
the 4D/RCS framework.

For the purpose of this paper, we will limit our exam-
ples and scope to cost models pertaining to on-road driving.
However the results of this research are not on-road driving
specific, and should be able to lend themselves to any do-
main in which real-time planning and control is applied.

We begin the paper by describing on-going work at NIST
in cost-based planning and show how the planning system
is expected to utilize and interface with the cost model.
In subsequent sections we describe how the driving rule
base has been expanded and refined since (Zimmerman,
Schlenoff, & Balakirsky 2003). Finally, we discuss the on-
going evaluation of the suitability of CLIPS for this appli-
cation and future work to be done on the project.

Planning With Costs

As previously mentioned, the cost generator will be uti-
lized by many subsystems within the architecture. However
for the purposes of this evaluation a single subsystem - the
planner component of behavior generation - was chosen to
model the interfaces between RCS subsystems and the cost
generator.

The planning system used by the autonomous vehicle is
an implementation of the incrementally created graph plan-
ning approach described in (Balakirsky 2003). This ap-
proach incorporates a graph search algorithm that deter-
mines the lowest cost path through a graph that is com-
posed of nodes (representing system states) connected by
edges (representing system actions). The cost of a path
through the graph is defined as the sum of the action costs
(the edges) plus the costs of having occupied the traversed
states (the nodes).

One such graph search algorithm is Dijkstra’s shortest
path algorithm (Dijkstra 1959). An example of this algo-
rithm is shown in Figure 2 and may be summarized as fol-
lows:

1. Initialize the search. This includes setting the initial cost
of all nodes (in the figure nodes are shown as circles and
node costs are the bold numbers next to them) to infinity,
and creating a set of open nodes that only contains the
goal node (ng) at a cost of zero. An open node is a node
that the search has reached but not evaluated. Nodes that
have been fully evaluated are shown as bold circles in the
figure.

2. Find the least expensive member of the open set (denote
this node by ncheap) and remove it from the open set.

3. Compare ncheap to the start node (ns). This search pro-
ceeds from the goal to the start, so if ncheap is equal to
the start node the search is finished. It can be noted that
this search may also proceed from start to goal without
loss of generality.

Figure 2: Graph search from node ng to ns

4. Expand ncheap. During this step, the cost of reaching
each of ncheap’s predecessors (nodes connected by lines
in the figure) must be determined. The following steps
occur for each predecessor:

(a) Determine the cost of the edge that connects ncheap to
the predecessor and the cost of occupying the prede-
cessor.

(b) If the sum of these two costs plus the cost of ncheap is
less then the current cost of the predecessor, the edge
is maintained as a forward pointing edge (set to bold
in the figure), any previous forward pointing edge is
removed, and the predecessor is added to the open set.

5. Go to step 2.

An example of this algorithm’s application is shown in
Figure 2. The optimal path from any expanded node to ng

lies along the decreasing cost path of bold edges (follow
the arrows). For this example, the search proceeds from the
node labeled ng to the node labeled ns. The search termi-
nates at the optimal answer when the node ns is examined
for expansion. The optimal path found may be seen to be
ns − n5 − n4 − n2 − ng.

As seen from the above algorithm description, each loop
of the algorithm must make multiple calls to a cost gener-
ating function (step 4a). A single plan may entail several
hundred or even thousands of algorithm loops, and the cost
generator is at the heart of the loop, making its performance
critical.

The actual interface to the planning system is quite sim-
ple. As the planner expands nodes, it passes the current
node (and its associated state information) and the prede-
cessor node (along with its associated state information) to



the cost generator. The cost generator then returns the in-
cremental cost of the transition plus the cost of occupying
the predecessor node.

On-Road Driving Rule Base

In previous work (Zimmerman, Schlenoff, & Balakirsky
2003), we examined rule-based and functional tools to de-
termine which are best suited for cost generation in an au-
tonomous vehicular system. This paper represents the sec-
ond phase of this research, which expands, refines and con-
tinues to analyze the effectiveness of the rule base using
the tool selected in (Zimmerman, Schlenoff, & Balakirsky
2003).

Expanding the Rule Base

In the previous version a small subset of the rules governing
on-road driving were selected to implement in three differ-
ent tools in order to gage their suitability for cost-generation
in an autonomous vehicular system. These rules included
such trivial situations as speed-limit violations (over,under),
lane change violations, and stop sign violations. It also in-
cluded slightly more complex rules that dictate the legal
lane traversals at the intersection of two, two-lane roads in
the presence of moving objects.

With the exception of the lane change constraints men-
tioned above, these rules dealt entirely with situational
awareness and not with the preparation and execution of
an activity. In the extended version of the Driving Rule
Base (DRB), we have implemented additional functional-
ity to allow the vehicle to assess the safety of a standard
passing maneuver. This situation presents a variety of in-
teresting intricacies which force the DRB to reason about
information gained from the world model, as well as meta-
reasoning using information about itself.

The constraints for a passing maneuver are grouped un-
der an umbrella rule, conditions-good-to-pass, which can
only be activated after several subordinate rules have been
activated as shown in figure 3. Each of the specific condi-
tions required to perform a passing maneuver inherit from
an abstract parent class. The abstract condition class con-
tains fields which identify the name of the condition, the
certainty with which the condition is met (0 if it is not met,
1 if it is certain), and a weighted risk associated with violat-
ing the condition. When the rules are activated, a message-
handler in CLIPS which acts as a constructor, initializes a
third field, risk-index, which is a function of the weighted
risk, the certainty, and the current context, and is used to
compute the overall cost of the maneuver. For instance, say
the vehicle is approaching an intersection and attempting to
change lanes. The intersection may carry a weighted risk of
30 units with a certainty of .8, yielding a risk-index of 24,
which can than be more finely tuned depending on the con-
text (a change-lanes operation in this example, as opposed
to, say, a toll-booth operation). Using this approach, we are
able to adjust the aggressivity of the vehicle by altering its
risk-index threshold to make it more or less sensitive to the
risk involved in a maneuver. The expected input for this
formula is information from the sensory processing system

Figure 3: A tree-based representation of the conditions-
good-to-pass rule. The sub-rule legal-to-pass is expanded
for clarity.

which includes its prediction of what it is sensing and an
associated certainty with which this observation was made.

The first sub-rule under conditions-good-to-pass checks
whether it is legal to execute a passing maneuver given the
current state of the world. As defined by Barbera (Bar-
bera et al. 2003) the legal to pass condition is based on
a series of sub-conditions (which all inherit from the par-
ent class condition); lane markings, tunnels, intersections,
no passing signage, school buses, construction zones, rail-
roads, bridges, and tollbooths. A rule to determine legal
lane markings to pass was already described in (Zimmer-
man, Schlenoff, & Balakirsky 2003) and is utilized by this
rule. If these conditions are satisfied with a risk-index be-
low the threshold for the vehicle another condition, legal-
to-pass, is asserted to the knowledge base. This contains
a new risk-index calculated as a function of the individual
risk-indices of the prerequisite conditions.

The second sub-rule determines if the environment is
safe to pass in. It checks if there are weather or other
road conditions that would make it unsafe to pass. It also
makes sure that the vehicle is capable of passing. Here we
see an example of the meta-reasoning described earlier -
it involves vehicle introspection in addition to situational
awareness and allows the vehicle to make judgments about
itself. It can take into account “self-knowledge”, such as a
malfunction or current speed, and use it to determine if it is
capable of carrying out the pass. These rules are logically
separate from the DRB as they do not deal specifically with
the rules of the road. In future work these will be abstracted
away from the DRB in order to preserve this distinction be-
tween rules of the road and meta-reasoning. If the environ-



Figure 4: The shaded region indicates the sphere of influ-
ence of the vehicle. In this case the oncoming vehicle falls
within the sphere of influence while the stop sign does not.

ment is determined to be safe to pass, another condition,
environment-safe-to-pass is created which is similar to the
legal-to-pass condition mentioned earlier.

The third and fourth sub-rules check the conditions in
front and behind the vehicle. These conditions include such
observations as pedestrians, obstructed shoulder, a vehicle
in the rear attempting a pass, or a curve blocking visibil-
ity. The final sub-rule determines if the oncoming traffic is
conducive to a pass by checking that the vehicle can safely
avoid oncoming vehicles. Each sub-rule creates a new con-
dition with the combined risk index of its respective condi-
tions. Once these have been initialized for each of the sub-
rules, the system activates the umbrella rule, conditions-
good-to-pass. This calculates the overall risk of the ma-
neuver based on the individual risk indices calculated by
the sub-rules and returns a single cost to the planner.

Refining the Rule Base
In (Zimmerman, Schlenoff, & Balakirsky 2003) the knowl-
edge base was composed of flat facts which relied on their
order to determine a relationship between the individual
fields and their values. This had the disadvantage of requir-
ing the maintenance of a unique set of rules that applied to
different types of ordered facts. In this extended version,
the knowledge base has been refined to utilize the polymor-
phic subtyping capabilities available in CLIPS. By creating
a hierarchical structure of objects in the world model, we
can create rules which apply to entire classes of objects in-
stead of individual types of facts. For instance, a parent
class called object-of-interest is loosely defined as any ob-
ject in the world model which may affect the behavior gen-
eration and planning of the vehicle. This is a broad and
heterogeneous group which includes things like signs, in-
tersections and bridges, to name a few. Using this tech-
nique, we can leverage CLIPS’ ability to perform dynamic
dispatch (a run-time determination of actual class type) to
decide what actions should be taken depending on the spe-
cific type of the object-of-interest. This translates into a

smaller and more robust rule base where more generic rules
can be applied to a variety of different objects.

Objects-of-interest that arrive from the world model are
filtered based on whether or not they exists within some
predetermined sphere of influence of the vehicle. In this
domain, objects of interest are loosely defined as objects in
the world model which may affect the behavior generation
and planning of the vehicle. The area of influence around
the vehicle is variable based on the velocity and type of
the vehicle 4. As the velocity of the vehicle increases, the
sphere expands to encompass a larger area surrounding the
vehicle. For example, the vehicle at rest may have a radius
of influence of 10 m, while the same vehicle traveling at
35 km/h would have a sphere of influence of 623 m. The
formula 1 (where K is a vehicle dependent constant) for de-
termining the size of the sphere is arbitrary at this stage and
was designed merely to exhibit how the velocity of the ve-
hicle affects the relative size of the planning horizon. This
allows objects to freely enter and exit the vehicle’s sphere
of influence as necessary.

radius − of − influence = K[(V 2 + 20)/2] (1)
By isolating the objects that have an immediate influence

on the vehicle, we can significantly decrease the load on
the inference engine as it processes the rules. Modules are
then created that deal specifically with the higher-fidelity
objects within the vehicle’s sphere of influence and ignore
object’s that are not of immediate interest. This allows us to
create context specific rules and facts and mask them from
irrelevant contexts. While significant timing trials have not
yet been completed, we anticipate that partitioning the in-
formation from the world model in this manner should sig-
nificantly increase the overall performance of the system by
substantially reducing the working knowledge base relevant
to the DRB.

Analysis and Conclusions
The cost-generating sub-system within the autonomous ve-
hicle framework will play an essential role in a number of
other systems in the vehicle, including path planning and
moving object prediction. An adequate means for repre-
senting the constraints that generate these costs, as well as
managing and relaying these costs to other systems is nec-
essary. As research becomes more comprehensive, CLIPS
has continued to exhibit its proclivity for this type of ap-
plication. In addition to the initial conditions satisfied in
(Zimmerman, Schlenoff, & Balakirsky 2003), the object
oriented capabilities allow us to use inheritance, polymor-
phism, and dynamic-dispatch to simplify an increasingly
complex rule-base.

Future work will focus on integrating the existing cost-
generator with the world-model to obtain real-time data
about our surroundings. This will then be interfaced with
the planner, and more specifically the node-generator, to as-
sist in the planning algorithm described earlier.

Acknowledgments
The authors would like to thank Tony Barbera for the use of
his task decomposition of the passing maneuver described
in the section Expanding the Rule Base



References
Albus, J., and et.al. 2002. 4D/RCS Version 2.0: A Ref-
erence Model Architecture for Unmanned Vehicle Sys-
tems”. Technical Report NISTIR 6910, National Institute
of Standards and Technology, Gaitherburg, MD 20899,
U.S.A.
Balakirsky, S. B. 2003. A Framework for Planning
with Incrementally Created Graphs in Attributed Problem
Spaces. Akademische Verlagsgesellschaft Aka GmbH.
Barbera, T.; Horst, J.; Schlenoff, C.; Wallace, E.; and Aha,
D. 2003. Developing World Model Data Specifications
as Metrics for Sensory Processing for On-Road Driving
Tasks. Technical Report NIST Special Publication 990,
National Institute of Standards and Technology, Gaither-
burg, MD 20899, U.S.A.
Dijkstra, E. 1959. A Note on Two Problems in Connexion
with Graphs. Merische Mathematik 269–271.
Zimmerman, N.; Schlenoff, C.; and Balakirsky, B. 2003.
Performance Evaluation Of Tools and Techniques for Rep-
resenting Cost-Based Decision Criteria for On-Road Au-
tonomous Navigation. Technical report, National Institute
of Standards and Technology, Gaitherburg, MD 20899,
U.S.A.


