An Ontology-Based Representation

for Policy-Governed Adjustable Autonomy

Hyuckchul Jung, Jeffrey M. Bradshaw, Shri Kulkarni, Maggie Breedy, Larry Bunch, Paul Feltovich,

Renia Jeffers, Matt Johnson, James Lott, Niranjan Suri, William Taysom, Gianluca Tonti, & Andrzej Uszok

Institute for Human and Machine Cognition (IHMC), 40 S. Alcaniz, Pensacola, FL 32502
{jbradshaw, hjung, skulkarni, mbreedy, Ibunch, pfeltovich, rjeffers, mjohnson, jlott, nsuri, wtaysom, gtonti, auszok } @ihmc.us

Abstract

Policies are a means to dynamically regulate the behavior of
system components without changing code nor requiring the
cooperation of the components being governed. By
changing policies, a system can be continuously adjusted to
accommodate variations in externally imposed constraints
and environmental conditions. KAoS policy and domain
services rely on an OWL ontology of the computational
environment, application context, and the policies
themselves that enables runtime extensibility and
adaptability of the system, as well as the ability to analyze
policies relating to entities described at different levels of
abstraction. Besides the currently implemented conflict
detection and resolution methods, we are developing an
approach to determine how and when to make policy
changes based on adjustable autonomy considerations. This
approach relies heavily on the information contained in the
KAoS Policy Ontologies.

Introduction

As computational systems with increasing autonomy
interact with humans in more complex ways-and with the
welfare of the humans sometimes dependent on the
conduct of the agents-there is a natural concern that the
agents act in predictable ways so that they will be
acceptable to people [1]. In addition to traditional concerns
for safety and robustness in such systems, there are
important social aspects relating to predictability, feedback,
order, and naturalness of the interaction that must be
attended to [3]. This paper summarizes our efforts to
address some of the technical and social aspects of agent
design for increased human acceptability through an
ontology-based representation of policy in autonomous
systems. From a technical perspective, we want to ensure
the protection of agent state, the viability of agent
communities, and the reliability of the resources on which
they depend. To accomplish this, we must guarantee
insofar as possible that the autonomy of agents can always
be bounded by explicit enforceable policy that can be

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

continually adjusted to maximize their effectiveness and
safety in both human and computational environments.
From a social perspective, we want agents to be designed
so as to fit well with how people actually work together.
Explicit policies governing human-agent interaction based
on careful observation of work practice and an
understanding of current social science research can help
assure that effective and natural coordination, appropriate
levels and modalities of feedback, and adequate
predictability and responsiveness to human control are
maintained. These factors are key to providing the
reassurance and trust that are prerequisite to the widespread
acceptance of autonomous agent technology for non-trivial
applications.

Policy and Autonomy

Policies are a means to dynamically regulate the autonomy
of system components without changing code nor requiring
the cooperation of the components being governed. By
changing policies, a system can be continuously adjusted to
accommodate variations in externally imposed constraints
and environmental conditions. Policies are becoming an
increasingly popular approach to dynamic adjustability of
applications in academia and industry (http://www.policy-
workshop.org/). Elsewhere we have pointed out the many
benefits of policy-based approaches, including reusability,
efficiency, extensibility, context-sensitivity, verifiability,
support for both simple and sophisticated components,
protection from poorly-designed, buggy, or malicious
components, and reasoning about component behavior [1].
Policies have important analogues in animal societies and
human cultures [8].

Dimensions of autonomy. Some important dimensions
relating to adjustable autonomy and mixed initiative
interaction can be straightforwardly characterized by
reference to figure 1.' Note that there are two basic
dimensions:

' See [2] for a more complete discussion of these dimensions. We can
make a rough comparison between some of these dimensions and the
aspects of autonomy described by Falcone and Castelfranchi [7].
Environmental autonomy can be expressed in terms of the possible
actions available to the agent—the more the behavior is wholly

Fieenspal B ko Dprmp eted Ry

Iointly Copobde
of hgant & ord I

b Uy Ao ewoldle
by Agest A and B

Joamtly Eeoun red
of Agert A and B

' i

Prsaible Acgioms Uil Loble Aotions | Dbl ngated Actians : :
1 i

i H 1]

fapasle of , Irdenendently | Bequlred of i

Agent & 1 Achiavabla : kgant &, il

1 by Bgent & | Independeraly : :

: : 1L

: ! 1

T 1 1!

i ! 1!

§ i]!

i : 1L

1 Irdegenaent Ly Beguleed of 1L

Cupuiia of 1 chisvable | hgent B, 1k

Agert B | by Bgent B | Independeraly : :
y i

1L

; | 1L

T [

: i it

1 i Ak

i ! 1L

i ! 1]

T L

- [

L LTy

15, mers. i i folicw Dimens

Key: (I cosovility w08

Figure 1. Basic dimensions of adjustable autonomy and
mixed-initiative interaction.

* adescriptive dimension corresponding to the sense of
autonomy as self-sufficiency that stretches horizontally
to describe the actions an actor in a given context is
capable of performing; and

* a prescriptive dimension corresponding to the sense of
autonomy as self-directedness running vertically to
describe the actions an actor in a given context is
allowed to perform or which it must perform by virtue
of policy constraints in force.

The outermost rectangle, labeled potential actions,
represents the set of all actions defined in some ontology
under current consideration.' In other words, it contains the
union of all actions for all actors currently known to the
computational entities that are performing reasoning about
adjustable autonomy and mixed-initiative interaction. Note
that there is no requirement that all actions that an agent
may take be represented in the ontology; only those which
are of consequence for policy representation and reasoning
need be included.

The rectangle labeled possible actions represents the set of

potential actions whose achievement by some agent is

deemed sufficiently imaginable in the current context. Of

deterministic in the presence of a fixed set of environmental inputs, the
smaller the range of possible actions available to the agent. The aspect of
self-sufficiency in social autonomy relates to the ranges of what can be
achieved independently vs. in concert with others; deontic autonomy
corresponds to the range of permissions and obligations that govern the
agent’s choice among actions.

' The term ontology is borrowed from the philosophical literature, where
it describes a theory of what exists. Such an account would typically
include terms and definitions only for the very basic and necessary
categories of existence. However, the common usage of ontology in the
knowledge representation community is as a vocabulary of
representational terms and their definitions at any level of generality. A
computational system’s “ontology” defines what exists for the
program—in other words, what can be represented by it.

these possible actions, any given actor’ (e.g., Agent A) will
likely only be deemed to be capable of performing some
subset. Capability is a function of the abilities and
resources available to an actor attempting to undertake
some action. An actor’s ability is the sum of its own
knowledge and skills, whereas its resources consist of all
other assets it can currently draw on in the performance of
the action. Two actors, Agent A and Agent B, may have
both overlapping and unique capabilities.” If a set of actors
is jointly capable of performing some action, it means that
it is deemed to be possible for it to be performed by relying
on the capabilities of both actors. Some actors may be
capable of performing a given action either individually or
jointly; other actors may not be so capable.

Along the prescriptive dimension, policies specify the
various permissions and obligations of actors [6].
Authorities may impose or remove involuntary policy
constraints on the actions of actors. Alternatively, actors
may voluntarily enter into agreements that mutually bind
them to some set of policies so long as the agreement is in
effect. The effectivity of an individual policy is the set of
conditions that determine when it is in or out of force.

The set of permitted actions is defined by authorization
policies that specify which actions an actor is allowed
(positive authorizations or A+ policies) or not allowed
(negative authorizations or A- policies) to perform in a
given context. The intersection of what is possible and
what is permitted to a given set of actors defines a set of
available actions.

Of those actions that are available to a given actor, some
subset may be judged to be independently achievable by it
in the current context. Some actions, on the other hand,
would only be jointly achievable.

Finally, the set of obligated actions is defined by
obligation policies that specify actions that an actor is
required to perform (positive obligations or O+ policies) or
for which such a requirement is waived (negative
obligations or O- policies). Positive obligations commit the
resources of actors, reducing their current overall capability
accordingly. Jointly obligated actions are those that two or
more agents are explicitly required to perform.

A major challenge is to ensure that the degree of autonomy
is continuously and transparently adjusted to be consistent
with explicitly declared policies which themselves can,
ideally, be imposed and removed at any time as appropriate
[11]. For example, one goal of the agent or external entity
performing such adjustments should be to make sure that
the range of permissible actions do not exceed the range of
those that are likely to be achievable by the agent." While

2For discussion purposes, we use the term actor to refer to either a
biological entity (e.g., human, animal) or an artificial agent (e.g., software
agent, robotic agent).

3 Note that although we show A and B sharing the same set of possible
actions in figure 1, this is not necessarily the case.

* If the range of achievable actions for an agent is found to be too
restricted, it can, in principle, be increased in any combination of four
ways: 1. removal of some portion of the environmental constraints, thus
increasing the range of possible actions; 2. increasing its permissions; 3.
making additional external help available to the agent, thus increasing its

the agent is constrained to operate within whatever deontic
bounds on autonomy are currently enforced as
authorization and obligation policies, it is otherwise free to
act.

Adjustable autonomy. A major challenge in the design of
intelligent systems is to ensure that the degree of autonomy
is continuously and transparently adjusted through
mechanisms such as policy so as to meet whatever
performance expectations have been imposed by the
system designer and the humans and agents with which the
system interacts. We note that is not the case that “more”
autonomy is always better:' as with a child left
unsupervised in city streets during rush hour, an
unsophisticated actor insufficiently monitored and
recklessly endowed with unbounded freedom may pose a
danger both to others and itself. On the other hand, a
capable actor shackled with too many constraints will
never realize its full potential.

Thus, a primary purpose of adjustable autonomy is to
maintain the system being governed at a sweet spot
between convenience (i.e., being able to delegate every bit
of an actor’s work to the system) and comfort (i.e., the
desire to not delegate to the system what it can’t be trusted
to perform adequately).” Assurance that agents will operate
safely within well-defined bounds and that they will
respond in a timely manner to external control is required
for them to be acceptable to people in the performance of
non-trivial tasks. People need to feel that agents will handle
unexpected circumstances requiring adjustment of their
current state of autonomy flexibly and reliably. To the
degree adjustable autonomy can be successfully
implemented, agents are kept, to the degree possible, from
exceeding the limits on autonomy currently in effect, while
being otherwise free to act in complete autonomy within
those limits. Thus, the coupling of autonomy with adequate
autonomy adjustment mechanisms gives the agent
maximum opportunity for local adaptation to unforeseen
problems and opportunities while assuring humans that
agent behavior will be kept within desired bounds.

All this, of course, only complicates the agent designer’s
task, a fact that has lent urgency and impetus to efforts to
develop broad theories and general-purpose frameworks
for adjustable autonomy that can be reused across as many
agents, domains, and applications as possible. To the
degree that adjustable autonomy services can be
competently implemented and packaged for convenient use
within popular development platforms, agent designers can
focus their attention more completely on the unique

joint capabilities; or 4. reducing an agent’s current set of obligations, thus
freeing resources for other tasks. Of course, there is a cost in
computational complexity to increasing the range of actions that must be
considered by an agent—hence the judicious use of policy where certain
actions can either be precluded from consideration or obligated with
confidence in advance by a third party.

"In fact, the multidimensional nature of autonomy argues against even the
effort of mapping the concept of “more” and “less” to a single continuum.
2 We note that reluctance to delegate can also be due to other reasons. For
example, some kinds of work may be enjoyable to people—such as
skilled drivers who may prefer a manual to an automatic transmission.

capabilities of the individual agents they are developing
while relying on the extant services to assist with
addressing cross-cutting human-agent interaction concerns.

KAoS Policy and Domain Management Services

KAoS a collection of componentized policy and domain
management services compatible with several popular
agent frameworks, including Nomads [13], the DARPA
CoABS Grid [10], the DARPA ALP/Ultra*Log Cougaar
framework (http://www.cougaar.net), CORBA
(http://www.omg.org), Voyager
(http://www.recursionsw.com/osi.asp), and Brahms
(www.agentisolutions.com). While initially oriented to the
dynamic and complex requirements of software agent
applications, KAoS services are also being adapted to
general-purpose grid computing
(http://www.gridforum.org) and Web Services
(http://www.w3.0rg/2002/ws/) environments as well [9;
17]. KAoS has been deployed in a wide variety of
applications, from coalition warfare [4; 14] and agile
sensor feeds [15], to process monitoring and notification
[5], to robustness and survivability for distributed systems
[http://www.ultralog.net], to semantic web services
composition [17], to human-agent teamwork in space
applications [3], to cognitive prostheses for augmented
cognition [1]. See [1] for a more complete description of
policy issues and a summary of these and other
applications.

KAoS domain services provide the capability for groups of
software components, people, resources, and other entities
to be organized into domains and subdomains to facilitate
agent-agent collaboration and external policy
administration.

KAoS policy services allow for the specification,
management, conflict resolution, and enforcement of
policies within domains.

KAoS Policy Ontologies. The current version of the core
KAoS Ontologies (http://ontology.ihmc.us/) defines basic
concepts for actions, actors, groups, places, various entities
related to actions (e.g., computing resources), and policies.
It includes more than 100 classes and 60 properties.

The core actor ontology contains classes of people and
software components that can be the subject of policy.
Groups of actors or other entities may be distinguished
according to whether the set of members is defined
extensionally (i.e., through explicit enumeration in some
kind of registry) or intentionally (i.e., by virtue of some
common property such as types of credentials actors
possess, or a given place where various entities may be
currently located).

The core action ontology defines various types of basic
actions such as accessing, communication, monitoring,
moving, and so forth. An ontological definition of an
action associates with it a list of properties describing
context of this action or a current state of the system
relevant to this action. Example properties of action classes
are, for instance: destination of the communication, type of

encryption used, resources accessed, time, previous history,
and so forth. Each property is associated with the definition
of a range of values it could have for each of the action
classes. A particular instance of the action class can take
values on the given property only from within this range.
Actions are also divided into ordinary actions and policy
actions, the latter comprising those actions that have to do
with the operations of the KAoS services themselves'.

For a given application, the core KAoS ontologies are
usually further extended with additional classes,
individuals, and rules, which use the concepts defined in
the core ontologies as superconcepts. This allows the
framework to discover specialized concepts by querying an
ontology repository for subclasses or subproperties of the
given concept or property from the core ontologies. For
example additional application-related context could be
added to actions such as specific credentials used in a given
environment.

During the initialization process, the core policy ontologies
are loaded into the KAoS Directory Service using the
namespace management capabilities of the KAoS Policy
Administration Tool (KPAT) graphical user interface.
Additional application-specific or platform-specific
ontologies can then be loaded dynamically using KPAT or
programmatically using the appropriate Java method. A
distributed version of the KAoS Directory Service is
currently being implemented. We are also studying
possibilities for interaction among multiple instances of
Policy Services [17].

The Directory Service is also informed about the structure
of policies, domains, actors, and other application entities.
This information is added to the ontology repository as
instances of concepts defined in pre-loaded ontologies or
values of these instance properties. As the end-user
application executes, instances relating to application
entities are added and deleted as appropriate.

KAoS employs the Jena Semantic Web Toolkit by HP
Labs in Bristol (http://www.hpl.hp.com/semweb) to
incrementally build OWL definitions and to assert them
into the ontology repository managed by the Directory
Service. In order to provide description logic reasoning on
the OWL defined ontologies, the Java Theorem Prover
(http://www.ksl.stanford.edu/software/JTP) inference
engine has been integrated with KAoS. Performance is
always an issue in logic reasoning; however, the steady
improvement of JTP has led to a dramatic increase in its
performance—an order of magnitude or more in some
cases—in the last two years. The most time consuming
operation in JTP is asserting new information, which
happens mostly during system bootstrap. Currently,
loading of the KAoS core ontologies takes less than 16
seconds on Pentium III 1.20 GHz with 640 MB RAM.

! This distinction allows reasoning about actions on policies and the
policy framework without resorting to the use of special “metapolicy”
mechanisms.

Adding a policy takes usually less than 340ms. Querying
JTP about ontology concepts and policies is much faster
and takes only a few milliseconds.

Policy representation. In KAoS, policies can express
authorization (i.e., constraints that permit or forbid some
action) or obligation (i.e., constraints that require some
action to be performed, or else serve to waive such a
requirement) for some type of action performed by one or
more actors in some situation [1]. Whether or not a policy
is currently applicable may be conditional upon some
aspect of the situation. Auxiliary information may be
associated with a policy, such as a rationale for its
existence or a specification of some penalty for policy
violation. In contrast to many existing policy systems
[http://'www.policy-workshop.org], KAoS aims at
supporting both an extensible vocabulary describing
concepts of the controlled environment and also an
evolution of its policy syntax. Such features are one
beneficial consequence of defining policies within
ontologies and using an extensible framework architecture
[16].

In KAoS, a policy is represented as an ontology instance’
of one of the four types of policy classes: positive or
negative authorization, and positive or negative obligation.
The instance possesses values for various management-
related properties (e.g., priority, time stamp, site of
enforcement) that determine how the given policy is
handled within the system. The most important property
value is the name of a controlled action class, which is used
to determine the actual meaning of the policy.
Authorization policies use it to specify the action being
authorized or forbidden. Obligation policies use it to
specify the action being obliged or waived. Additionally
the controlled action class contains a trigger value that
creates the obligation, which is also a name of the
appropriate class of actions. Policy penalty properties
contain a value that corresponds to a class of actions to be
taken following a policy violation.

As seen from this description, the concept of action is
central to the definition of KAoS Policy. Typically any
action classes required to support a new policy are
generated automatically by KAoS when a user defines new
policy (usually using KPAT). Through various property
restrictions, a given subject of the action can be variously
scoped, for example, either to individual agents, to agents
of a given class or to agents belonging to a particular
group, and so forth. The specific contexts in which the
policy constraint applies can be precisely described by
restricting values of the action’s properties, for instance
requiring that a given action be signed using an algorithm
from the specified group.

2 See http://ontology.ihmc.us/SemanticServices/S-F/Example/ for an

example of KAoS policy syntax.

& KPAT][- KAoS Policy Administration Tool v2.0

CEX)

(EniEEE) | (TEmaEe| ¢| Template Infarmation
= ¥ & G
L Acior Classes TRl] | E | 5 Mame: Generic DAML Editor
O Vuitriiles Jieess | /| Description: Generic editor for DAML policies
(WL Palicy Editar
D e _-.
D T Paolicy id: #policy. 6ffa 1 530-0006-0000 . 8000-0000 deadh eaf |?A
Z
g Policy name: |i.q1n; atigaboutove | %
O Har Description: [rhis policy obliges arm robol 1o notife some hurman when il indents movis 10 a certain |ocalion, | =
. 7
Priority: [; Z
0 Rabot = |is [onlipates = 7
0 7
D o perfori | NotEicationAction | wilh properties: ;{‘Pf
Rola Restriction | Complement| walue(s) I =
hasDestination containg at least one || [Husman] }
hasNMotificationMode | is subset of * |0 [Pager, Email] &
hasLatency iz subset of = |01 [Immediate] %
[aga | carriesMessage v 2
nasContext v 7
hasDestination r %
wmn| Robot | PEITOTMS |.mhl1hrm:1 hasFocusOfAtention } Berlies }/‘
o Z
Role T Restriction [hasMatificationMode 4| i
hasRecipienPresenceRestriction » &
hasRecipientRestriction 3 i
hasSeverity | Classes ¥ AdvisorySeverity
performedon } instances | € y
Add triggerEvent] LopSeverity
SeverityMode
| OH | WarningSeverity
E |
;| Policy Changes
. : : ommit Refrash |
i Actor Class w Instances _

Figure 32 KAoS Policy Administration Tool (KPAT) policy builder interface.

Policy Management

A strength of KAoS is in its extensive support for policy
life-cycle management. KAoS hides many elements of
complexity of this process from the user. KAoS also
provides a sophisticated policy disclosure interface
enabling querying about policy impact on planned or
executed actions.

Graphical interface to ontology concepts. The KPAT
graphical interface to policy management hides the
complexity of the OWL representation from users. The
reasoning and representation capabilities of OWL are used
to full advantage to make the process as simple as possible.
Whenever a user has to provide an input is always
presented with a complete set of values he can choose
from, which are valid in the given context.

As in the case of the generic policy editor shown on figure
2, a user, after selecting an actor for a new policy, is first
presented with the list of actions the given type of actors is
capable to perform based on the definition in the ontology
relating actions to actors by the performedBy property.
When the user selects a particular action type information
about all the properties, which can be associated with the
given actions, are presented. For each of the properties, the
range of possible values is obtained; instances and classes
falling into this range are gathered if the user wants to

build a restriction on the given property, thus narrowing the
action class used in the build policy to its context.

Policy administration. Each time a new policy is added or
an existing one is deleted or modified, the potential impact
goes beyond the single policy change. Policy
administrators need to be able to understand such
interactions and make sure that any unwanted side effects
are eliminated. KAoS assists administrators by identifying
instances of given types of policy interactions, visualizing
them, and, if desired, facilitating any necessary
modifications.

One important type of interaction is a policy conflict [4;
18]. For example, one policy might authorize actor A to
communicate with any actor in group B while a new policy
might forbid actor A from communicating with actor B1, a
member of B. In general, if a new policy overlaps in key
properties of a subset of controlled actions with an existing
policy of a potentially conflicting modality (i.e., positive
vs. negative authorization (as in our example); positive vs.
negative obligation; positive obligation vs. negative
authorization), some means must be used to identify the
conflict and to determine, in the area of overlap, which
policy takes precedence'. If precedence cannot be
determined otherwise, KAoS will ask the administrator to
determine the appropriate action (figure 3).

U'If desired, precedence relations can be predefined in the ontology,
permitting partially or totally automated conflict resolution.

£ Precedence Undetermined E]

- Committed Policy i Policy
Name:! test2 Nare: test1

ID: 00f4-0000-8000- ID:

00f4-0000-8000-

Description: |Policy test2 |~/ |Description: Folicy test!

has a priority af 1 has priority of 1

| has a limestamp of imestamp not set \ has a timestamp of imestamp not set
andis infarce and is inforce.

The policy states that it is - The policy states that itis ~

5D

Priority: Priority:

‘ Change Committed Policy H Change Policy H Remave Committed Policy H Remave itted Policy

Figure 3. Notification about policy conflict and options
available to the administrator.

The following policy actions can be performed on a pair of
overlapping policies:

* Remove Policy: one of the overlapping policies
can be completely removed;

* Change Priority: priorities of the policies can be
modify so they either do not conflict or they alter
the precedence relation';

* Harmonize Policy: the controlled action of the
selected overlapping policy can be modified using
an automatic harmonization algorithm to eliminate
their overlap; see [4; 18] for details. This required
modification of the restrictions in of the policy
controlled actions by building either intersection
(by using owl:intersectionOf) or differences (by
using owl:complementOf) of the previous ranges
in the two conflicting policies.

* Split Policy. the controlled action of the selected
overlapping policy can be automatically split into
two parts: one part that overlaps with the other
policy and the other which does not. Then the
priorities of these parts can be modified
independently. The splitting algorithm is similar
to the harmonization and is currently in
development.

In the future, a more sophisticated user interface will allow
for modification of entire sets of policies at once.

Whereas the goal of policy conflict resolution is to ensure
consistency among the policies in force, other forms of
analysis are needed to ensure policy enforceability. In
some cases, the implementation of policy may be
impossible due to prior obligations of the actor or
oversubscription of resources. In the future, KAoS will be
able to suggest ways of relaxing such non satisfy
constraints in certain situations.

In some cases, two complementary policies of the same
modality can create unanticipated problems. For example,
one policy may prevent communication among actors

' We currently rely exclusively on the combination of numeric policy
priorities and update times to determine precedence—the larger the
integer and the more recent the update the greater the priority. In the
future we intend to allow people additional flexibility in designing the
nature and scope of precedence conditions. For example, it would be
possible to define default precedence over some policy scope based on the
relative authorities of the individual who defined or imposed the policies
in conflict, which policy was defined first, and so forth.

within domain A while another policy might prevent
communication to actors outside of the domain. Though
the two policies would not conflict, their combination
would result in the inability of actors in domain A to
communicate at all. It should be possible in the future to
flag these and other situations of potential interest to
administrators.

Policy exploration and disclosure. A human user or
software component uses KAoS to investigate how policies
affect actions in the environment. In general, the answers
to these queries are decided by inferring whether some
concrete action falls into a category of action controlled by
one or more policies, and then determining what
conclusions about the described action can be drawn. As
part of KAoS policy exploration and disclosure interfaces
we provide the following kinds of functionality:

* Test Permission: determine whether the described
action is permitted.

* Get Obligations: determine which actions, if any
that would be obligated as a follow on to some
potential action or event. For instance, there might
be an obligation policy which specified that if an
actor were to receive information about a
particular topic then the system would be
obligated to log or forward this information to
some other party.

* Learn Options: determine which policy-relevant
actions are available or not available in a given
context. For example, the actor may specify a
partial action description and KAoS would return
any missing (required) elements of the action with
ranges of possible values—for instance,
information about missing credentials.

* Make Compliant: transform the action an actor
tries to perform from a policy non-compliant to a
policy-compliant one by informing it about the
required changes that would need to be made to
the action based on existing policies. For instance,
if the system attempted to send a message about
particular subject to a few actors, the list of actors
might need to be trimmed to some subset of those
actors or else extended to include some required
recipients. Or else maybe the content of a message
would need to be transformed by stripping off
sensitive information, and so forth.

* Get Consequences: determines the consequences
of some action by observing and investigating
possible actions in the situation created by a
completion of the considered action(s) to the
specified depth (consequences of consequences).
This option has many variants currently under
investigation.

Adapting policy to legacy systems. When policy leaves
the Directory Service, for performance reasons it typically
has to map OWL into a format that is compatible with the
legacy system with which it is being integrated. KAoS
communicates information from OWL to the outside world
by mapping ontology properties to the name of the class

defining its range as well to a list with cached instances of
that class that were in existence when the policy left the
Directory Service. A particular system can use the cached
instance for its computation; also in any moment it can
refresh the list by contacting the Directory Service and
providing the name of the range. Alternatively, the
Directory Service can push changes to the system as they
occur.

Conclusions and Future Work

Whereas most ontologies involved with agent autonomy
are concerned with generating plans for what an agent
should do, KAoS and its ontologies are one of the few that
aim to specify how agent behavior should be constrained.
As to the usefulness of this perspective, Sheridan observes:

“In democracies specification of ‘shoulds’ is frowned
upon as an abridgement of freedom, and bills of basic
rights such as that of the United States clearly state
that ‘there shall be no law against...’, in other words
declarations of unconstrained behavior. In such
safety-sensitive industries as aviation and nuclear
power, regulators are careful to make very specific
constraint specifications but then assert that those
being regulated are free to comply in any manner they
choose.

Vicente and Pejtersen assert that constraint-based
analysis accommodates much better to variability in
human behavior and environmental circumstance.
They make the point that navigating with a map is
much more robust to disturbance and confusion over
detail than navigating with a sequence of directions”
[12, pp. 212-213].
Over the next several months we hope to complete the
development of a formal model to describe how a
combination of ontology-based inference and decision-
theoretic methods can lead to effective autonomy
adjustments. We expect many interesting results from the
continuation of these studies of the “other side” of
autonomy.

References

[1] Bradshaw, J. M., Beautement, P., Raj, A., Johnson, M.,
Kulkarni, S., & Suri, N. (2003). Making agents
acceptable to people. In N. Zhong & J. Liu (Ed.),
Intelligent Technologies for Information Analysis:
Advances in Agents, Data Mining, and Statistical
Learning. (pp. in press). Berlin: Springer Verlag.

[2] Bradshaw, J. M., Jung, H., Kulkarni, S., & Taysom, W.
(2004). Dimensions of adjustable autonomy and
mixed-initiative interaction. In M. Klusch, G. Weiss,
& M. Rovatsos (Ed.), Computational Autonomy. (pp.
in press). Berlin, Germany: Springer-Verlag.

[3] Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich,
P., Hoffman, R., Jeffers, R., Prescott, D., Suri, N.,

Uszok, A., & Van Hoof, R. (2003). Adjustable
autonomy and human-agent teamwork in practice: An
interim report on space applications. In H. Hexmoor,
R. Falcone, & C. Castelfranchi (Ed.), Agent
Autonomy. (pp. 243-280). Kluwer.

[4] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N.,
Hayes, P., Burstein, M. H., Acquisti, A., Benyo, B.,
Breedy, M. R., Carvalho, M., Diller, D., Johnson, M.,
Kulkarni, S., Lott, J., Sierhuis, M., & Van Hoof, R.
(2003). Representation and reasoning for DAML-
based policy and domain services in KAoS and
Nomads. Proceedings of the Autonomous Agents and
Multi-Agent Systems Conference (AAMAS 2003).
Melbourne, Australia, New York, NY: ACM Press,

[5] Bunch, L., Breedy, M. R., & Bradshaw, J. M. (2004).
Software agents for process monitoring and
notification. Proceedings of AIMS 04.

[6] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S.
(2000). Ponder: A Language for Specifying Security
and Management Policies for Distributed Systems,
Version 2.3. Imperial College of Science, Technology
and Medicine, Department of Computing, 20 October
2000.

[7] Falcone, R., & Castelfranchi, C. (2002). From
automaticity to autonomy: The frontier of artificial
agents. In H. Hexmoor, C. Castelfranchi, & R. Falcone
(Ed.), Agent Autonomy. (pp. 79-103). Dordrecht, The
Netherlands: Kluwer.

[8] Feltovich, P., Bradshaw, J. M., Jeffers, R., & Uszok, A.
(2003). Social order and adaptability in animal,
human, and agent communities. Proceedings of the
Fourth International Workshop on Engineering
Societies in the Agents World, (pp. 73-85). Imperial
College, London,

[9] Johnson, M., Chang, P., Jeffers, R., Bradshaw, J. M.,
Soo, V.-W_, Breedy, M. R., Bunch, L., Kulkarni, S.,
Lott, J., Suri, N., & Uszok, A. (2003). KAoS semantic
policy and domain services: An application of DAML
to Web services-based grid architectures. Proceedings
of the AAMAS 03 Workshop on Web Services and
Agent-Based Engineering. Melbourne, Australia,

[10] Kahn, M., & Cicalese, C. (2001). CoABS Grid
Scalability Experiments. O. F. Rana (Ed.), Second
International Workshop on Infrastructure for Scalable
Multi-Agent Systems at the Fifth International
Conference on Autonomous Agents. Montreal, CA,
New York: ACM Press,

[11] Myers, K., & Morley, D. (2003). Directing agents. In
H. Hexmoor, C. Castelfranchi, & R. Falcone (Ed.),
Agent Autonomy. (pp. 143-162). Dordrecht, The
Netherlands: Kluwer.

[12] Sheridan, T. B. (2000). Function allocation: algorithm,
alchemy or apostasy? International Journal of Human-
Computer Studies, 52(2), 203-216.

[13] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T,
Hill, G. A., Jeffers, R., Mitrovich, T. R., Pouliot, B. R.,
& Smith, D. S. (2000). NOMADS: Toward an
environment for strong and safe agent mobility.

Proceedings of Autonomous Agents 2000. Barcelona,
Spain, New York: ACM Press,

[14] Suri, N., Bradshaw, J. M., Burstein, M. H., Uszok, A.,
Benyo, B., Breedy, M. R., Carvalho, M., Diller, D.,
Groth, P. T., Jeffers, R., Johnson, M., Kulkarni, S., &
Lott, J. (2003). DAML-based policy enforcement for
semantic data transformation and filtering in multi-
agent systems. Proceedings of the Autonomous Agents
and Multi-Agent Systems Conference (AAMAS
2003). Melbourne, Australia, New York, NY: ACM
Press,

[15] Suri, N., Bradshaw, J. M., Carvalho, M., Breedy, M.
R., Cowin, T. B., Saavendra, R., & Kulkarni, S.
(2003). Applying agile computing to support efficient
and policy-controlled sensor information feeds in the
Army Future Combat Systems environment.
Proceedings of the Annual U.S. Army Collaborative
Technology Alliance (CTA) Symposium.

[16] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R.,
Suri, N., & Uszok, A. (2003). Semantic Web
languages for policy representation and reasoning: A
comparison of KAoS, Rei, and Ponder. In D. Fensel,
K. Sycara, & J. Mylopoulos (Ed.), The Semantic
Web—ISWC 2003. Proceedings of the Second
International Semantic Web Conference, Sanibel
Island, Florida, USA, October 2003, LNCS 2870. (pp.
419-437). Berlin: Springer.

[17] Uszok, A., Bradshaw, J. M., Jeffers, R., Johnson, M.,
Tate, A., Dalton, J., & Aitken, S. (2004). Policy and
contract management for semantic web services.
AAAI 2004 Spring Symposium Workshop on
Knowledge Representation and Ontology for
Autonomous Systems. Stanford University, CA, AAAI
Press,

[18] Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N.,
Hayes, P., Breedy, M. R., Bunch, L., Johnson, M.,
Kulkarni, S., & Lott, J. (2003). KAoS policy and
domain services: Toward a description-logic approach
to policy representation, deconfliction, and
enforcement. Proceedings of Policy 2003. Como, Italy,

