Ontologiesand Planners
A Statement of Interest

Robert P. Goldman
SIFT,LLC
2119 Oliver Avenue South Minneapolis, MN 55405
rpgoldman@sift.info

I am currently involved in research on planning and
execution for multiple, heterogeneous automated vehi-
cles. There are a number of challenges for this kind of
planning that ontology research might assist with:

e code reuse, in this case plan library reuse in particu-
lar;

e overcoming problems in plan library development;

e more easily importing background information for
planner domains;

e sharing plan information between planner and execu-
tion components; and

e decoupling planner user interface from planner and
executive software components, by declarative spec-
ifications of information.

In this statement of interest, 1 will briefly discuss
challenges and opportunities in each of these areas. |
will also briefly discuss the de facto standard ontol-
ogy, PDDL (Ghallab et al. 1998; McDermott 2000;
Fox & Long 2002), and how it relates to these topics. |
have tried to capture some of my own puzzlement about
how to make use of the riches of knowledge representa-
tion offered by ontology researchers. Ontology research
seems to hold out the promise to greatly reduce and sim-
plify the amount of domain engineering needed to build
a practical planning system. And yet....

Planning Background

My research aims to use Al planning to provide an intel-
ligent, goal-oriented interface to complex autonomous
systems, such as teams of uninhabited aerial vehicles
(UAVs), spacecraft, and flexible manufacturing plants.
Users should be able to give high-level tasks to such
systems, phrased in terms familiar to them, and the
planner should provide a bridge to lower levels of
functionality. For this reason, we favor Hierarchical
Task Network (HTN), or decomposition planning (Erol,
Hendler, & Nau 1994b; 1994a; Currie & Tate 1991,
Wilkins 1988), over first-principles planning based on
precondition chaining (Weld 1999). Our planner should
build plans by hierarchical decomposition that corre-
spond to task models of human task performers, so that
the plans generated and executed will meet with hu-
man approval (Goldman et al. 2000; Miller & Goldman
1997).

Plan Library Reuse

The state of the art in ontologies for plan library reuse is
the PDDL effort (Ghallab et al. 1998; McDermott 2000;

Fox & Long 2002), which has as its special objective
support for the AIPS (now ICAPS) planning competi-
tion. By and large, the planning competition entrants
are small teams of individual programmers, rather than
large industrial organizations. Their efforts are aimed at
demonstrating the power of planning algorithms them-
selves, rather than at demonstrating the utility of plan-
ners as tools to solve some problem in the real world.
So, for example, we cannot expect great efforts on us-
ability, nor can we expect these teams to be able to in-
vest a great deal of effort into importing complex on-
tologies with extensive semantic baggage.

Even in its more recent extensions, PDDL is ex-
tremely easy to parse, and carries relatively little seman-
tic baggage (e.g., it has a very simple typing scheme).
It would be asking a great deal for one of these teams
to incorporate a complex domain description in OWL,
for example, while maintaining its full semantic con-
tent. Furthermore, little effort has been expended to
make it convenient to author PDDL domain descrip-
tions, especially to the extent that this would compli-
cate parsing a PDDL domain file. This is almost cer-
tainly the correct approach, since the effort of designing
a competition domain in PDDL is amortized over all of
the participants in the competition and those researchers
who use the competition domains as benchmarks. On
the other hand, the parsers will not be amortized over
the individual programmers, who use a diversity of al-
gorithms, internal representations, data structures, and
programming languages. Recently, Frank, Golden, and
Jonsson (2003) have discussed some of the shortcom-
ings of PDDL as a tool for practical applications of
planning technology.

For applied purposes, we are less interested in direct
reuse of planner domain descriptions than we are in ex-
ploiting task-oriented models developed for other pur-
poses. At the moment, there simply aren’t enough plan-
ners in use to make reuse of their domains a worthwhile
project (from an application standpoint). Instead, we
would like to exploit task models that capture standard
operating procedures executed by people, and models
of tasks that automated systems can perform.

We have been interested in leveraging existing task
models, encoded in various forms of ontology, for use
as the basis of a planner’s operator library. One problem
we have found in relating task models to plan libraries
has to do with the need to chunk up different parts of the
task model into methods and primitive tasks. Most plan-
ners, for example, are unable to reason well about con-

trol structures other than simple sequential composition
or, possibly, conditionals. Iteration constructs are be-
yond the reasoning power of most planners at this time,
so iteration blocks are best treated as, to some extent,
atomic (possibly as pairs of start and end activities).

A second problem with importing task models is the
way planners combine search control hints with other
aspects of action modeling. For example, in hierarchi-
cal planners, operator and method parameters are used
for long-distance information passing in the plan. Pre-
conditions are used as much to bind variables as to pro-
vide information about method or operator applicabil-
ity. All of these features suggest that a planner should
provide additional information as a kind of “mixin” to
existing task model ontologies. Ideally, such a mixin
would make heavy use of the information already in the
ontology.

Improving Planner Domain Design

Typical Al planner domain models include the follow-
ing: models of the operators that can be composed into
plans, and some ancillary mechanism for deduction that
compensate for the very limited expressive power of
the state representation. One possible advantage of the
wider adoption of ontologies would be the ability to bet-
ter engineer these domain descriptions, which are cur-
rently very difficult to author and maintain.

One obstacle to the wider use of ontologies in plan-
ning systems is that many of the most popular ontology
frameworks are object-centered, rather than formula-
centered. While these obstacles may have little theoret-
ical import — there’s little, if any, difference in expres-
sive power between frame-based and description logic
systems, and the kind of axiom and backward-chaining
rules that we see in planners — they have a profound
effect on the nature of domain engineering.

Along with the use of formula-based representations
comes the use of unification and backward-chaining
as inference methods. Further, the STRIPS assump-
tion (Lifschitz 1990) carries with it an obligation to
flatten representations to primitive state descriptors,
to avoid the need to handle ramifications. This re-
quirement is only somewhat relaxed by the addition of
backward-chaining systems and hooks into special pur-
pose external problem-solvers.

From a software engineering standpoint, the use of
explicit formulas as data structures is not an advantage
of contemporary planning systems. For one thing, do-
main descriptions for such planning systems are typi-
cally extremely difficult to validate and debug, and have
little type discipline. Confusion about the appropriate
level of detail at which system state is to be described
can cause grave difficulties in modifying or extending
a planner domain. Finally, the formula-centered view
makes planners difficult to integrate with other software
components, which are typically object-centered, and
makes them difficult to integrate with the thought pro-
cesses of developers of conventional software.

There are a number of practical obstacles to simply
abandoning formula-centric approaches and adopting

object-centered representations from ontologies. One
is simple cultural inertia. More substantial issues in-
clude the reification of formulas in planners so that tech-
niques like SAT-solving and Mixed-integer linear pro-
gramming can be used to derive plans.

On the other hand, it’s not a simple task to translate of
object-based ontologies into formulas for use by plan-
ners. A single ontology might be interpreted very differ-
ently by different planner applications, since each plan-
ner application might use different formulas as its prim-
itive fluents. Furthermore, aspects of the ontology that
do not map onto primitive fluents impose consistency
(state) constraints that may be difficult for planners to
enforce. Ideally, the powerful type inference and con-
sistency restrictions incorporated in most modern on-
tologies would provide valuable assistance in establish-
ing the correctness of planner libraries. It would be
particularly valuable if the existing constraints, which
typically capture facts about acceptable inter-object re-
lationships, were expanded to also capture information
about units of measurement, which are still a plague to
software correctness.

One issue in the use of task model ontologies is
the relationship between the method decomposition
relationship in HTN planners and the subsump-
tion (isa) relationship in object-centered ontologies.
Many of the ontology systems have grown out of
frame-based and description logic systems. In such
a framework, it is logical to express something very
like the method decomposition (to-do) relationship in
the planner, as an is-a relationship. For example, we
might say that an aeri al -reconnai ssance
isa reconnai ssance in our ontology, but
we wish our planner to carefully control when
a reconnai ssance task is reduced to an
aeri al - r econnai ssance one; we don’t want this
to be automatically done “behind the planner’s back”
by a subsumption reasoner that has noticed that the
agent of the r econnai ssance task has been bound
toanair-vehicle.

Pragmatically, we hope to see ontology engineering
tools that we can adapt to our own purposes of plan-
ner domain engineering. We are particularly interested
in graphical environments which could enable people
with less planning expertise to engineer planning do-
mains. Unfortunately, to date we have found that such
tools (e.g., Protegé(Musen et al. 2000)) do not pro-
vide good support for the graphical structuring of con-
strained procedures or for the kinds of coreference spec-
ification needed for variable binding.

I mporting domain infor mation

One particular way that ontologies might help with the
development of planner domain models would be pro-
viding information about settings for the planner. For
example, in plans for large organizations, it would be
very helpful if one could import details of the struc-
tures of those organizations and the resources at their
disposal. Here many of the issues discussed in the previ-
ous section arise, but they seem more tractable. For ex-

ample, it seems more straightforward to smash a struc-
tured, object-based representation of a set of objects
into a flat set of formulas the planner can manipulate.
Some form of selection of relevant items and attributes
can be combined with implication closure (over inher-
itance relations) to make the ontology knowledge base
“vivid,” (Levesque 1984) for the benefit of a formula-
based, STRIPS-style planner.

Other components of the planning
architecture

We assume that our planning system will be part of an
overall system that also includes a user interface, and an
execution monitoring component. The excution moni-
tor will dispatch plans to lower-level control software
on devices, and will monitor execution to detect the
need to replan. One possible role for ontologies will
be to provide data interchange between these layers.
For example, a unified ontology, or cross-ontology links
could coordinate the planner and executive views of the
tasks in the plan. Typically the planner will be more in-
terested in a projective, black-box model of tasks char-
acterized by pre- and postconditions. The executive on
the other hand, will need information describing how
disturbances are to be handled, when a state has left the
controllable region, etc. The user interface provides a
different opportunity to exploit ontologies. One could
easily imagine a declarative model of the interface con-
tent providing a way to permit multiple Uls to connect
to the planner, whose precise content might vary de-
pending on user experience levels, user interest, user
workload, and characteristics of the interface devices.

Summary

I have presented some preliminary thoughts about
how planning systems might profit from the research
community’s investment in ontologies. As the avail-
able ontologies become more sophisticated and well-
populated, we may hope they will become of greater
and greater interest to planners, as well as web service
programmers.

Disclaimer

The opinions expressed here do not reflect those of the
author’s employers, funders, etc. Possibly not even
those of the author.

References

Currie, K., and Tate, A. 1991. O-Plan: the open plan-
ning architecture. Artificial Intelligence 52:49-86.
Erol, K.; Hendler, J.; and Nau, D. S. 1994a. HTN plan-
ning: Complexity and expressivity. In Proceedings of
the Twelfth National Conference on Artificial Intelli-
gence, 1123-1128. Menlo Park, CA: AAAI Press/MIT
Press.

Erol, K.; Hendler, J.; and Nau, D. S. 1994b. UMCP:
A sound and complete procedure for hierarchical task

network planning. In Hammond, K. J., ed., Artifi-
cial Intelligence Planning Systems: Proceedings of the
Second International Conference, 249-254. Los Al-
tos, CA: Morgan Kaufmann Publishers, Inc.

Fox, M., and Long, D. 2002. PDDL+: Modeling con-
tinuous time dependent effects. In Proceedings of the
3rd International NASA Workshop on Planning and
Scheduling for Space. ht t p: / / www. dur . ac. uk/
conput er. sci ence/ research/ stanst uf f/
ht M / dpgpubl i cati ons. htm .

Frank, J.; Golden, K.; and Jonsson, A. 2003. The
Loyal Opposition Comments on Plan Domain De-
scription Languages . In Proceedings of ICAPS’03
Workshop on PDDL.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott,
D.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D.
1998. PDDL—the planning domain definition lan-
guage.

Goldman, R. P.; Haigh, K. Z.; Musliner, D. J.; and
Pelican, M. J. S. 2000. MACBeth: A multi-agent
constraint-based planner. Number WS-00-02 in AAAI
Technical Report, 11-17. American Association for
Artificial Intelligence.

Levesque, H. 1984. Making believers out of comput-
ers. Artificial Intelligence 30(1):81-108.

Lifschitz, V. 1990. On the semantics of STRIPS. In
Allen, J.; Hendler, J.; and Tate, A., eds., Readings in
Planning. Los Altos, CA: Morgan Kaufmann Publish-
ers, Inc. 523-530. Reprinted from Reasoning about
Actions and Plans.

McDermott, D. V. 2000. The 1998 Al planning sys-
tems competition. Al Magazine 21(2):35-55.

Miller, C., and Goldman, R. P. 1997. “Tasking” inter-
faces; associates that know who’s the boss. In Pro-
ceedings of the Fourth USAF/RAF/GAF Conference
on Human/Electronic Crewmembers.

Musen, M. A.; Fergerson, R. W.; Grosso, W. E.;
Noy, N. F; Crubezy, M.; and Gennari, J. H. 2000.
Component-based support for building knowledge-
acquisition systems. In Conference on Intelligent In-
formation Processing (IIP 2000) of the International
Federation for Information Processing World Com-
puter Congress (WCC 2000).

Weld, D. S. 1999. Recent advances in Al planning. Al
Magazine 20(2):93-123.

Wilkins, D. 1988. Practical Planning. Morgan Kauf-
mann Publishers, Inc.

