
Semantic Negotiation: Co-identifying objects across data
sources

R. Guha
IBM Research, Almaden
rguha@us.ibm.com

ABSTRACT
Integrating and composing web services from different providers
requires a solution for the problem of different providers using dif-
ferent names for the same object. We argue that while URIs might
be adequate for creating shared namespaces for classes and prop-
erty types, the practical difficulties associated with everyone using
the same URI for individual objects makes exclusive dependence
on this approach untenable. We first consider the use of shared
keys to solve this matching problem and discuss some of the prob-
lems associated with this approach. We introduce the concept of
DD, a generalization of keys and discuss some conditions under
which common DDs guarantee correct matches. We then propose
a probabilistic approach to matching and consider, with empirical
validation, approximations as a solution to the problem of requir-
ing a combinatorially large number of probabilities. Finally, we in-
troduce Semantic Negotiation, a process by which two agents can
negotiate a mutually comprehensible reference for an object.

1. BACKGROUND
The ease with which web sites could link to each other doubtless
contributed to the rapid adoption of theWeb. It is hoped that asWeb
Services become more prevalent, programs will be able to similarly
weave together disparate Web Services. It is becoming clear that
just agreeing on common protocols such as SOAP is not enough
to enable such compositions. Not just the packing of messages,
but also their content needs to be mutually comprehensible, i.e.,
there needs to agreement on the semantics of the terms used in the
messages. As providers independently start providing services, it is
inevitable that they will use different different names/URIs for the
same concepts and individual objects, which will make it difficult
to compose and integrate these services.

Example: Consider two services, one from CDDB for listing a mu-
sic artists albums and their songs (and vice versa), and the other
from an online store such as Amazon. Now imagine composing
these two services so that, given a particular song, we identify the
album(s) on which the song appears (using CDDB) and order the
album from Amazon. The biggest problem in doing this simple
composition is caused by the fact that each each of these services
uses its own set of global identifiers for each musician and album.
Consequently, we cannot just take the CDDB identifier for album
and pass it to Amazon, but instead have to map the identifier across
the two namespaces. In practice, the effort and expense of this

mapping overshadows the benefits of the automated service com-
position.

It is expected that standardized ontologies, which make everyone
use the same name for each object, will solve this problem. We
believe this will be hard to achieve. When there is a clear owner-
ship of each object by one of the providers, as with domain names
or web pages, or there is a relatively small number of names that
everyone has to agree upon, such as the names of the HTML tags,
this approach works well. However, when this condition does not
hold (as in the above example), this approach has met with less suc-
cess. In particular, we don’t expect common names for individual
objects (people, places, products, ...). Consequently, programs will
need to map the different names used by different providers onto
each other. Given the large number of individual objects (com-
pared to schema objects such property types and classes), manual
mapping is not practical. In this paper, we discuss the pros and
cons of the traditional approach to solving this problem using keys
and propose Semantic Negotiation, a mechanism for dynamically
negotiating mutually understandable references. We present and
discuss both deterministic and probabilistic versions of Semantic
Negotiation.

2. RELATEDWORK
The problem of matching objects across different data sources has
been studied, quasi-independently in at least three fields.

To our knowledge, this was first studied as the “Record Linkage”
problem ([4] [8] [5]). Much of that work focuses on statistical
methods for determining when the values of the same field in dif-
ferent records are syntactically different, but should actually be the
same, e.g., to recognize that the phone numbers “634-988-2900’
and “(634) 988 2900” are really the same. In our work, we assume
the use of these techniques or some level of canonicalization so that
this is not a problem.

There has been much work in the field of databases on the problem
of data integration, most of which has focussed on the schema level.
Only recently have researchers [9] [11] started paying attention to
the problem of mapping individual objects1.

Recently, researchers have applied Probabilistic Relational Models
to this problem [14], applying these techniques to problems such as
removing duplicates in citation databases. Our work on Probabilis-
tic Semantic Negotiation has been inspired by this work.

1For the remainder of this paper, we will use the term object to
refer to individual objects

3. SHARED KEYS
A pre-determined shared key can be used to match objects across
different databases. So, in the above example, a set of attributes
of musicians and albums that uniquely identifies every musician
and album (i.e., no two musicians/albums share the same values
for that set of attributes) can be used. The software for composing
the two services would obtain the values for these attributes from
CDDB, then do a search on Amazon on these attributes to obtain
the musician/album’s identity on Amazon and then use this to place
the order.

From a logical standpoint, consider the key κ consisting of the at-
tributes p1, p2, ..., pn. To say that κ is a shared key between the
providers A and B is to say the following:

∀(xεA, yεB)2(∃(a1, a2, ..., an)
. (p1(x, a1) ∧ ...pn(x, an)) ∧ (p1(y, a1) ∧ ...pn(y, an)))
. =⇒ (x = y)

This definition of shared keys says that if there exists a set of val-
ues (a1, a2, ..., an) that an object x at provider A and object y at
provider B have for the attributes (p1, p2, ..., pn), then the two ob-
jects are the same.

3.1 Common Key %= Shared Key
κ being a shared key betweenA andB is stronger than κ just being
a common key, i.e., a key forA and a key forB. κ being a common
key only says that κ picks out a unique object in each of the two
providers. Saying that κ is a shared key asserts that these unique
objects identified at the two providers are the same. To see the dif-
ference, consider the following example. Consider two databases
about cities, one about cities in Texas and the other about cities
in France. The name of the city can uniquely identify the city in
each database, i.e., name is a key. However, it is not a shared key.
The cities with the name ’Paris’ identify different cities in the two
databases, Paris, France and Paris, Texas. So, if κ is to be a shared
key, it has to be a key over the domain (A ∪ B) and not just inde-
pendently over the domains A and B. As illustrated by the above
example, a set of attributes that is a key over the domain A and a
key over the domain B need not be a key over the domain A ∪B.

3.2 Problems with Shared Keys
There are two problems associated with using shared keys.

• Though most objects in the domain require only a small num-
ber of attributes to identify, often, a few objects require a
substantially larger number of attributes to identify. Since
the same set of attributes have to work with all the objects in
the domain, they are determined by these extreme cases and
tend to be very large. For example, since there are multiple
musicians named ’Eva’, some of whom have albums named
’Eva’, we need to include other attributes (such as the album
label or list of songs) to distinguish between these. In an-
other example, since the album ’Dark Side of the Moon’ by
’Pink Floyd’ was first released in 1974 and re-mastered and
re-released after 25 years, the keys will have to include the
release date as well. It is easy to see how even in the case of
musicians and music albums, where there is a strong incen-
tive to pick names that are distinctive, we end up requiring a
large keys, i.e., keys with many attributes.

2For the sake of brevity, we are using the symbols A and B to
denote both the data sources and the domains of the data sources.

Large keys are undesirable. For a key to be useful, both ser-
vices need to have all the attributes in the key. So, larger keys
tend to be less useful since there is a lesser likelihood of both
services having all the attributes in the key. Further, there
are often substantial variations in the spellings, capitaliza-
tion, punctuation, etc. between different providers. Heuris-
tic matchings [3] solve some of these problems, but also in-
troduce false positives. The likelihood of wrong or missed
matches increases with the size of the key.

• Requiring pre-identified keys between every pair of services
that we might need to integrate makes it very hard to com-
pose and integrate new services on the fly. This problem may
be partially overcome by each provider publishing valid local
keys of each type of object. However, as mentioned earlier,
shared keys are stronger than common keys and assuming
that a key that is used by two providers is a shared key could
lead to mistakes.

In the next two sections, we introduce the concept of Discriminant
Descriptions and Semantic Negotiation to overcome the first prob-
lem. In the following section, we introduce the concept of prob-
abilistic matching as a potential strategy to overcome the second
problem.

4. DISCRIMINANT DESCRIPTIONS (DD)
The problem of large keys arises because of the requirement for a
single set of attributes to work for all the objects in the domain.
Even if most objects can be uniquely identified by a small number
of attributes, the extreme cases may force the inclusion of a number
of additional attributes. So, our first step is to introduce the concept
of a Discriminant Description (DD). A DD ϕ for an object O is a
formula which only it satisfies, i.e., discriminates it from all other
objects.

If κ is a key for A, then we have,

∀(xεA, yεA) (κ(x) ∧ κ(y) ⇒ (x = y)) (1)

In contrast, if ϕ is a DD for O, then we have,

∀(xεA)ϕ(x) ⇒ (x = O) (2)

These formulas show us that keys are much stronger constraints
than DDs. Each DD applies at the instance level, for one particular
objectO. Keys on the other hand, apply to all objects in the domain
of the provider.

Continuing with our music examples, most classical composers
can be uniquely identified by their last names. So, Pytor Ilyich
Tchaikovsky has the DD lastName(x, ‘Tchaikovsky′)3 How-
ever, since there are multiple composers with the last name ’Bach’,
lastName is not a key. Interestingly, since the names of most mu-
sicians and music albums is unique, the average length of DDs for
musicians and music albums in FreeDB (a free version of CDDB)
is just a little over 1. Indeed, in many domains, we hope to find the
average size of DDs to be much smaller than that of keys.

An object which has a DD in a database will likely have many DDs.
If ϕ(O) is a DD for O, ϕ(O) ∧ β(O), where β(O) is true is also a
DD forO. We are often interested inMinimal DDs. ϕ is a Minimal
3Since DDs are formulas with exactly one free variable, a more pre-
cise syntax would be (λ(x)lastName(x,′ Tchaikovsky′)). For
the sake a brevity, we will drop the λ.

DD iff no subset of ϕ is also a DD, assuming that DD is purely
conjunctive.

We can use DDs to match object across service providers. If a de-
scription is discriminant for the domain (A ∪B), and picks out an
object each from A and B, then these two objects are the same. As
with the problem of going from common keys to shared keys, we
have to solve the problem of going from knowing that a description
is discriminant in A and in B to the description being discriminant
in (A ∪ B). Though we might have a common DD and a pair of
objects, one on each side, for which the description is discriminant,
we cannot assume that these objects are the same. The example of
Paris, Texas vs Paris, France, where we illustrated the difference
between common keys and shared keys applies here as well. Logi-
cally speaking, the common DD ϕ tells us that,

(∀(xεA)ϕ(x) ⇔ (x = OA)) ∧ (∀(xεB)ϕ(x) ⇔ (x = OB))
(3)

From this, we wish to conclude (OA = OB). We can do this if
one or more of a certain set of additional assumptions are satisfied.
Some examples of such assumptions, without proofs, are given be-
low:

• All of the pi in ϕ are one-to-one relations.

• We are apriori given that

– the object occurs in both A and B

– A and B are both complete in each of the pi occurring
in ϕ, i.e., for each object inA andB, the providers have
all the values for each of the pi.

These are similar to conditions that need to be satisfied for a com-
mon key to be used as a shared key. In many cases, such as when
one or both of the providers is known to have comprehensive in-
formation about the domain, it may be reasonable to make these
assumptions. In other cases, when little can be assumed about the
providers, these assumptions might not be reasonable.

There are a number of applications where we don’t need a hard
guarantee that the match is always correct. For example, in many
applications, the result of the computations are presented to a user
who can easily identify bad matches. For such applications, in
the case where we cannot make the kind of assumptions described
above, it would be useful to have a framework for identifying matches
that while not guaranteed, have a high likelihood of being correct.
We present such a framework in a later section.

5. PROBABILISTIC MATCHING
OA and OB satisfying a DD ϕ at A and B respectively, increases
the likelihood that they are the same object. So, the problem of Se-
mantic Negotiation can be cast in terms of probabilities as follows.
We would like to find a common DD ϕ conditioned on which the
probability that OA and OB are the same is sufficiently close to 1,
i.e.,

P (OA = OB |(ϕ(OA) ∧ ϕ(OB))) = 1− δ (4)

This formulation of the matching problem, though less demand-
ing of prior guarantees such as the assumptions listed in the earlier
section, requires more prior information in the form of conditional
probabilities. In fact, since DDs by their very nature correspond to
unique configurations, obtaining exact values for these conditional

probabilities could be very difficult, if not impossible. To overcome
this problem, we develop approximations that can be empirically
verified. In the next section, we describe work, that is currently
underway, which is aimed at developing and validating approxima-
tions.

Before we get into approximations, we first review the basics.

We are given two sets, A and B, and we know that exactly one
object in each of the two sets satisfies ϕ. We would like to estimate
the probability that these two objects, OA and OB are the same.
OA = OB if and only if OBεA ∩ B. If the two sets are disjoint,
OA %= OB . Conversely, if B is a subset of A (assuming, without
loss of generality, that B is smaller than A), OA = OB . So, the
probability of OA = OB is a function of the overlap between A
and B. Alternately, P (OA = OB) is a function of the probability
of an element of B also being an element of A.

For example, A and B might be travel sites. If ϕ is
name(x, ‘Paris′), we would like to estimate the probability of the
object on each site called ‘Paris’ being the same. For our model to
be realistic, this probability has to account for the fact that Paris,
France occurs in more travel sites than Paris, Texas. In our earlier
example of cities in France and cities in Texas, it should be able
to incorporate knowledge about the two domains being disjoint.
In another example, A and B might correspond to the musicians
whose albums are sold by two different web sites. Again, our model
has to accommodate the fact that music sites are more likely to sell
more popular musicians.

Let the probability of an element of B also being an element of A
be α. Let the probability of a randomly chosen element of A ∪ B
satisfying ϕ be ρ. We compute P (OA = OB) for a given i, where
i = |A ∩ B| and then sum over i, factoring in the probability of
each i and the knowledge that we have only one or two objects
satisfying ϕ in A ∪ B. So P (OA = OB) (the Co-Identification
Probability) is given by:

∑B
i=1

(
B
i

)
αi(1− α)B−iiρ(1− ρ)A+B−i−1

(ρ(1− ρ)A+B−i−1) + (ρ2(1− ρ)A+B−i−2)
(5)

We can expect to know the cardinalities of A and B. If A and B
are random or Bernoulli samples from some underlying set (as is
the case in our empirical evaluations), we can easily estimate α.
Otherwise, if the elements of A and B have been selected accord-
ing to some other criterion, we need to know α. Finally, we need
the probability ρ corresponding to ϕ. Estimating the probability ρ
of an element satisfying an arbitrary formula ϕ is much more dif-
ficult. In the next section, we outline some different approaches to
computing (approximations to) ρ.

5.1 Approximations
Given an formula ϕ, we would like to determine the probability
ρ that a randomly chosen object satisfies it. Since the space of
potential formulae is very large, we would like a compositional
approach, wherein the probability corresponding to a formula ϕ
is computed from sub-formulae of ϕ. For now, we restrict our
attention to flat formulae, i.e., formulae which have the structure
p1(x, a1)∧p2(x, a2)...pn(x, an), where a1, a2...an are constants.

Our goal is to be able to compute approximations to the probability

at a very low cost, while retaining the ability to get progressively
more accurate for subsets of the domain where the approximation
either fails or where we cannot afford to be inaccurate. We do this
as follows.

We first compute approximations to the probabilities associated
with each of the pi(x, ai). We call these Atomic Probabilities.
Then, building upon these, we compute approximations of the joint
probability.

5.2 Atomic Probabilities
For example, if pi is the attribute name, we would like to know the
probability that a randomly chosen city has the name ’Paris’.

There is a very large amount of work in the fields of statistical anal-
ysis [18] and data management ([2], [13]) on how one can compute
P(pi(x, ai)) to varying levels of accuracy. All of those methods are
applicable here. We give a brief overview of the approaches tried
by us in our empirical studies.

The approach is a function of the set of possible values for ai. We
have restricted our attention to the case where ai is one of a discrete
set of values.

If we have access to a comprehensive database of values of this at-
tribute (for the class of objects under consideration), we can com-
pute exact values of these probabilities for each ai. So, for exam-
ple, in the case of places, if we had a gazette which listed all the
cities along with their names, we could compute an exact value of
this probability. This will tell us that there is only one city called
‘Los Altos’, but that there are 8 cities called Springfield.

In many cases, we might not have access to this data or the set
of ai may be unconstrained. For example, if we were looking at
people (instead of cities), we cannot expect to get a comprehensive
database of all people or even a comprehensive list of all first and
last names. In such cases, assuming we have a sufficiently large
(but not comprehensive) database which is adequately representa-
tive of the domain, based on an appropriate set of samples, we can
approximate this probability to be the same for all ai.

Such estimates can be augmented with data about particular at-
tribute values. So, for example, if the domain is US residents, we
can use information from the Census Bureau [1] about the most
common first and last names to provide exact values for these com-
mon attribute values and use the approximation for names that don’t
appear in this list.

This approach of using approximations augmented with exact data
for particular attribute values is especially suited for domains when
the attribute values exhibit Zipf distributions [19].

We expect the emergence of web services that provide these prob-
abilities for a wide range of core vocabulary items (i.e., for com-
mon classes and property types). Such data, available as a service,
would be analogous to the role played by actuarial services in the
insurance industry.

5.3 Joint Probabilities
Given the atomic probability associated with each pi(x, ai), we
next compute the joint probability associated with the conjunct
p1(x, a1) ∧ p2(x, a2)...pn(x, an). Unfortunately, the combinato-
rially large number of possible formulae makes it virtually impos-

sible to compute exact joints. We consider the following 2 approx-
imations.

Independence: We can assume independence between the differ-
ent pi(x, ai). So, the probability associated with pi(x, ai) ∧
pj(x, aj) would be P1 ∗P2, where P1 and P2 are the proba-
bilities associated with each of the conjuncts.

Partial Determination: Instead of computing an exact joint or as-
suming complete independence for each ai and aj for
pi(x, ai) ∧ pj(x, aj), we can approximate this to depen-
dency between pi and pj . So, the probability associated with
pi(x, ai)∧ pj(x, aj) would be (P1 ∗P2 + θ(pi, pj)), where
θ(pi, pj) is a measure of the dependence between pi and pj .
This is a probabilistic variant of the concept of Determina-
tions which was introduced in [17] to formalize analogical
reasoning and later by [12] and [10].

The utility of probabilistic matching is a function of how far we
can get with simple approximations. Though the approximations
described here are very crude and simplistic, it would be good if
they enabled us to match objects with a reasonable level of reliabil-
ity. Of course, the applicability of any given set of approximations
is a function of the domain and the particular attributes used in the
bootstrap. We expect experimentation and validation of approxi-
mations for different domains and attributes. In the next section we
describe an empirical evaluation of these approximations for two
domains, both to show that there are at least some important do-
mains where these simple approximations work, and to propose a
framework for performing such evaluations.

6. EMPIRICAL EVALUATIONS
In this section we describe an empirical evaluation which shows
that simple approximations are adequate at least for the domains of
people and places. Our evaluations are based on the following two
data sets:

• A list of 24,347 cities across the world, obtained by aggregat-
ing data from the US Census Bureau, TAP and the web site
CityMayors.org. For each city, we know its name and the
country. For some of them, we also know the province/state
it occurs in. Duplicates in this set were manually removed.

• A list of 172,797 employees of IBM in the US. For each em-
ployee, we have the first and last names, position, work lo-
cation and division. Since the goal is to do object matching,
we have not used unique identifiers such as employee serial
numbers. These fields were used for checking the correctness
of the predictions.

To test the validity of the approximations, we compared the perfor-
mance of probabilistic matching with the probability predicted by
our approximation. We computed the probability of each pi(x, ai)
using the method described earlier. In all cases, except for the
names of people and cities, we estimated the probability from the
data sets. For the case of names of people, the probabilities were
generated using the sampling method with a special case for com-
monly occurring names, which was obtained from the census bu-
reau. The joint probabilities were computed assuming indepen-
dence.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fr
ac

tio
n

of
 c

or
re

ct
ly

m
at

ch
ed

 o
bj

ec
ts

Estimated Probability

People
Places

Figure 1: Fraction of Correct Matches vs Identifying Prob.

From each data set we created two subsets of elements chosen as
follows. Each set was generated by walking through the data set,
generating a random number for each item and including the item in
the set if the generated number was greater than 0.66 (so, the two
sets are Bernoulli samples). For each item in the smaller set, for
each DD, we tried to find a unique object in the other set satisfying
that DD. For each case where we found a shared DD, we calculated
the probability associated with that DD.

Overall, 99.7 percent of matches in the case of people and 99 per-
cent of matches in the case of places were correct. This includes
matches over all available DDs, not just the minimal ones. Using
just minimal DDs, these numbers were 97.7 percent for people and
97.9 percent for places. Figure 1 shows the graph of the predicted
probability vs. the actual fraction of correct matches with a pre-
dicted probability in that 5% range. More details are available in
[6]. From this, we conclude that at least for these two kinds of ob-
jects and these sets of attributes, these approximations yield good
results.

7. SEMANTIC NEGOTIATION
One advantage with keys is that they apply to entire databases. On
the other hand each DD applies only to a single object. Further
each object may have multiple DDs. Hence, it is not reasonable
to expect a site to advertise the DDs for each of its objects. Se-
mantic Negotiation is the process of dynamically discovering and
negotiating common DDs.

There are many potential negotiation strategies that can be fol-
lowed, depending on whether the goal is to maximize the likelihood
of finding the match, to maximize the certainty that the match is
correct, to minimize the amount of information revealed or to min-
imize the number of exchanges. If the goal is to minimize the data
revealed by one agent to another, then the use of minimal DDs is
preferred. If the goal is to maximize the likelihood of a match being
correct, then the use of the DD with the highest Co-Identification
Probability is preferred. In practice, some tradeoff between the two
extremes will have to be made.

A good example of a protocol for Semantic Negotiation is the one
used by the TAP [15] system in the context of GetData, a web ser-
vice interface provided by TAP for accessing one or more attributes
of an object.

Using GetData, a client program, which has no prior agreement
(regarding names for individual objects) with the service provider,
can obtain the values of various attributes of an object from that
provider. One of the difficulties that needs to be solved is for the
client and provider to create a mutually comprehensible reference
to the object. In this context, the negotiation proceeds as follows. It
is assumed that the client and provider share a common vocabulary
of attributes (p1, p2, ... pn) and attribute values (a1, a2, ... an).

1. the client sends the server a GetData query, using the descrip-
tion to refer to the object whose property is being accessed.
The description is assumed to be discriminant on the client.

2. if the server does not understand the description, i.e., it uses
terms that server does not know about, the server responds
with an error code indicating that the description was not un-
derstood. In this case, it also lists the particular terms not
understood and if the description included the class of the
object, and the class was understood, it might include some
of the properties of that class it does know about. Based on
this feedback, the client can try to provide a description that
the server is more likely to understand.

3. if the server understands the description but there are no ob-
jects matching that description, it returns an error code say-
ing so. It can optionally also tell the client which fragment
of the description was not satisfied by any of its objects.

4. if the server understands the description but there are multi-
ple objects matching the description, it returns an error code
saying so. In this case, depending on how many different ob-
jects match, the server may return a list of these, along with
descriptions that are discriminant on the server. The client
may choose one amongst these and retry the query.

5. if the server understands the description and there is a sin-
gle object matching the description, it returns the values that
were requested. In the case where the answer is a list of
objects, the answer may include additional data about each
object, which the client may cache, in anticipation of future
queries about these objects. This is just a form of proactive
caching. Optionally, this additional data may also include the
server’s names for these objects so as to reduce the need for
negotiation for the names of these resources.

The process described above allows a client to dynamically nego-
tiate references with servers based on their sharing a core vocabu-
lary. Experience with TAP and GetData ([16], [7]) shows that this
approach works very well.

8. CONCLUSIONS
Integrating and composing web services from different providers
requires a solution for the problem of different providers using dif-
ferent names for the same object. In this paper, we considered the
use of shared keys and the problems associated with that approach.
We introduced the concept of Discriminant Descriptions that solves
the problem of long keys and a probabilistic framework for match-
ing, with approximations which relaxes the assumptions that are
required to go from common to shared keys. We finally described
Semantic Negotiation, a process by which a client and a service can
negotiate mutually shared references.

9. REFERENCES
[1] www.census.gov.

[2] R. Agrawal and A. Swami. A one-pass space-efficient
algorithm for finding quantiles. In S. Chaudhuri,
A. Deshpande, and R. Krishnamurthy, editors, Proc. 7th Int.
Conf. Management of Data, COMAD, 28–30 1995.

[3] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 18(5):16–23.

[4] M. Cochinwala, S. Dalal, A. Elmagarmid, and V. Verykios.
Record matching: Past, present and future.
citeseer.nj.nec.com/588173.html.

[5] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Association, 1969.

[6] R. Guha. Object co-identification on the semantic web.
tap.stanford.edu/CoIdent.pdf.

[7] R. Guha, R. McCool, and E. Miller. Semantic search. In
Proc. WWW 13, Budapest, Hungary, 2003.

[8] S. J. A. H. B. Newcombe, J. M. Kennedy and A. P. James.
Automatic linkage of vital records. Science, 130:954 – 959,
1959.

[9] M. A. Hernandez, R. J. Miller, and L. M. Haas. Clio: A
semi-automatic tool for schema mapping. In ACM SIGMOD,
2001.

[10] S. Kramer and B. Pfahringer. Efficient search for strong
partial determinations. In Knowledge Discovery and Data
Mining, pages 371–374, 1996.

[11] N. K. L. Gravano, P. Ipeirotis and D. Srivastava. Text joins
for data cleansing and integration in an rdbms. In ICDE,
2003.

[12] P. Langley. Induction of condensed determinations. In
Knowledge Discovery and Data Mining, pages 327–330,
1996.

[13] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass and
with limited memory. pages 426–435, 1998.

[14] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching.
www.cs.berkeley.edu/ milch/papers/nipsnewer.ps.

[15] R.Guha and R. McCool. Tap: Towards a web of data.
http://tap.stanford.edu/.

[16] R.Guha and R. McCool. Tap: A semantic web platform.
Computer Networks, 42:557 – 577, 2003.

[17] S. Russell. The Use of Knowledge in Analogy and Induction.
Pitman, 1989.

[18] C. Sarndal, B. Swensson, and J. Wretman. Model assisted
survey sampling. Springer-Verlag, 1992.

[19] G. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley, 1949.

