
Interleaving Discovery and Composition for Simple Workflows∗

Ora Lassila
Nokia Research Center, Burlington, MA

Sapna Dixit†
Cornell University, Ithaca, NY

Abstract

This paper describes a simple approach for service discovery
and composition, where services are described using a subset
of the DAML-S ontology. The central idea is to base com-
position on themismatchbetween service discovery queries
and their results, and iteratively letting this guide subsequent
queries. This approach is a result of work aimed at under-
standing how much the DAML-S model can be simplified
and still be viable for semantic annotation of Web services,
specifically when the “use case” is that of automatic substi-
tution of services that have become unavailable. A proof-of-
concept prototype to demonstrate the viability of the scheme
is described.

Introduction
The ability to automatically discover, compose and invoke
Web services is an important component (andbenefit) of
the so-calledSemantic Web(Berners-Lee, Hendler, & Las-
sila 2001), and a key enabler to the anticipated “serendip-
ity” of agent behavior on the Semantic Web (Lassila 2002a).
Upper ontologies for semantic annotation of Web services
have started to appear, making it possible to apply Web ser-
vices in the Semantic Web context. One of these is DAML-S
(Ankolekaret al. 2002) which in itself is quite complex, and
motivates the question whether a simpler ontology could be
sufficient for some uses ofsemantic Web services.

Our attempts to simplify the DAML-S model have pre-
dominantly been based on a single assumption, namely that
the concept ofcomplex processcould be eliminated. In
practice, this means that all described services are in effect
“black boxes”, i.e., they have input and output parameters,
but nothing more is known of their internal workings, and
their potential components cannot be invoked separately.
For the purposes of this paper, the services are further re-
stricted to only have a single input parameter and a single
output parameter (extending to multiple inputs will make the
search algorithm a bit more complicated, but will generally
not change the principle presented in this paper).

∗Work described in this paper was supported in part by Nokia
Mobile Phones and the Nokia Research Center.

†This paper describes work conducted during the author’s in-
ternship at the Nokia Research Center.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper we will propose an approach to Web service
composition for simple workflows consisting of the afore-
mentioned services with a single input and a single result
– typically these services would be what (McIlraith, Son,
& Zeng 2001) refers to as “information-providing services”
(conversions, queries, etc.) but we are not excluding the pos-
sibility of some type of (real world) side effects. The prin-
cipal aim is to provide forservice substitutionin the face of
changing availability of services used.

It is assumed that the following exist and are available:

• A service discovery mechanism that acceptspartial
DAML-S service descriptions as queries, and returns
completedescriptions of services discovered. No as-
sumptions are made about how this mechanism actually
finds services nor where the descriptions of these services
would be located; details of this mechanism are beyond
the scope of this paper.

• One or more ontologies forclassifyingservices; that is,
classification taxonomies describingwhat services actu-
ally do.

• Ontologies defining concepts and datatypes in the do-
mains relevant to the services used (for example, if we
are interested in services that deal with geographical phe-
nomena – such as various map services – we would as-
sume the existence of an ontology that defines concepts
such asaddress, GPS coordinates, region, containment of
regions, etc.).

It is further assumed that the ontologies and knowledge rep-
resentation used could rely on (some form of) logic for sim-
ple expression of concept subsumption, specifically because
we assume that the “quality” of the discovery results (i.e.,
the degree of the match) can be classified according to the
discrete scale presented in (Paolucciet al. 2002):exact, plu-
gin, subsumes, andfail.1 We anticipate that more complex
logical relations are not be needed. In this paper, only RDF
(Lassila & Swick February 1999) is used for describing ser-
vices, albeit it has its obvious shortcomings.

1The additional match category ofintersectsas described in (Li
& Horrocks 2003) is not considered.

“DAML-S Lite”: a Subset of DAML-S
For service description we are using a highly simplified sub-
set of DAML-S written in RDF. The rough idea is that the
concept of a complex process is eliminated. Each service
described is assumed to be a black box, with inputs and
outputs which are described in terms of their datatypes (ex-
pressed using RDF classes). Effectively this simplification
eliminates process models from the ontology. Each service
is also classified using some hypothetical service taxonomy;
in practice this means that each service profile is an instance
of an appropriate service class (here we differ from DAML-
S, since service classification now happens by subclassing
theServiceProfile class, as opposed to using a sepa-
rate value for theserviceCategory property of service
profiles). Furthermore, for the purposes of the prototype de-
scribed in this paper, we assume that each service only has
one input and one output. Compositions of services like this
form linear sequences of operations.

A minimal version of the upper “DAML-S Lite” ontol-
ogy, one that effectively only addresses service profiles, is
included as Appendix B.

Service Substitution
The particular “use case” of interest – at least to the authors
of this paper – is that ofservice substitution, that is, a situ-
ation where a service needs to be replaced with an “equiv-
alent” service (givensomenotion of equivalence). For ex-
ample, imagine that we have a system that makes use of a
servicex which then becomes unavailable for one reason or
another; we would now like the system toautomaticallybe
able to discover a set of substituting services{yi} which,
when assembled into a linear workflow would provide an
equivalent service comparable tox (by “linear workflow”
we mean a situation where the output of serviceyi is “fed”
to the input of serviceyi+1, for 1 ≤ i ≤ n − 1). A typical
situation is one where many of the services in the workflow
perform conversions or other mediation of input and output
parameters.

It is the authors’ belief that with the emerging mainstream
deployment of architectures forservice-oriented computing
(Papazoglou & Georgakopoulos 2003), theavailability of
services will be of critical importance. In scenarios where
near-100% availability cannot be guaranteed, the idea of au-
tomatic substitution of services (that have become unavail-
able) becomes very compelling.

There can naturally be several reasons for a service to be-
come unavailable. In addition to a service going “off-line”
for one reason or another (server crash, partial network out-
age, etc.), the preconditions for invoking a particular service
may become invalid. For example, a service may be tied to
a specific geographical location, and when the invoking ter-
minal moves – it could be a mobile phone – a new service
has to be discovered. More generally, in a software frame-
work that supportscontext awareness, services could be tied
to a particularusage context, and substitutions have to be
made whenever there are relevant changes in context. Fur-
thermore, service substitution could be used to opportunis-
tically take advantage of the best available services (given

some criteria to determine what “best” means – criteria such
as cost, quality, speed, etc. could be used).

Composing Workflows

Given our basic use case of service substitution, a single
service may be replaced by a slightly different service that
potentially needs input and output parameter conversions.
These conversions may be performed using either internal
functions or by external services; in either case they consti-
tute additional “workflow” to be performed before and after
the invocation of the “main” service. From the viewpoint of
DAML-S, whether the functionality is internal or external
is only a matter of expressing the propergroundingof the
particular service.

We compose workflows using a breadth-first search, start-
ing with the description of the service we want to replace.
Based on the degree of match2 in the results of service dis-
covery, the search proceeds as follows:

• Forexactandplugin, the result of the query is accepted.

• For subsumes, the service found is accepted, but the mis-
match between the original query and its result will be
used to construct further queries to convert input and out-
put parameters, in order to compose a service that exactly
matches the original. For example, given a discovered ser-
vice whose output parameter has a type “temperature” and
whose unit is “Celsius” when we were looking for results
to be returned in “Fahrenheit”, this implies that we will
have to find a conversion from “Celsius” to “Fahrenheit”.

• For fail, re-perform the query with relaxed input and out-
put parameter descriptions, implying that a resulting suc-
cessful match will have to be further augmented with in-
put and/or output parameter conversions (a relaxed pa-
rameter description is one that is more general in the clas-
sification sense).

This analysis is performed for the results of each query –
also when these queries are conducted as a result of previ-
ous analyses – resulting in a recursive descent tree traversal.
The intermediate results of the algorithm consist of work-
flows expressed in terms of services and queries (the reader
is here reminded that queries and concrete services – that
is, results of queries – are expressed the same way). As long
as an intermediate result contains “unexpanded” queries, the
algorithm will keep “rewriting” the result. Any number of
parallel intermediate results (= “hypotheses”) may be pur-
sued; a null result from a query causes a hypothesis to be
eliminated from the search.

In case of large fan-out of the search – that is, when a large
number of services match a query – some type of heuris-
tic pruning could be applied on the intermediate hypotheses.
The heuristic applied could be based on similar criteria as
when the algorithm is used for opportunistically finding the
best available services.

The algorithm is described formally in Appendix A.

2As in (Paolucciet al. 2002).

Practical Implementation Using RDF
We have constructed a proof-of-concept prototype of the
composition algorithm that uses RDF as its description lan-
guage. Because of the use of RDF, the actualmatchingof
service descriptions is partially based on procedurally ex-
pressed semantics: we look at service classification, input
and output separately3 – two service descriptions match if
all three components, correspondingly, are “compatible”,
where compatibility is defined in terms of the degree of
match. As matching ultimately comes down to the compari-
son of RDF datatypes, we use the following logic:

match(a, b) =


exact if a = b
subsumes if b ⊂ a
plugin if a ⊂ b
fail otherwise

Relaxation, as described in the appendix, is in our imple-
mentation performed by “walking” up the RDF class tree; it
can also be done in a single step by replacing any type with
the root of the class treerdfs:Resource .

Given that sequences of conversions can result in loops,
the prototype also performs simple pattern matching of hy-
potheses and eliminates those where loops are seen forming.

The prototype implementation is based on the Wilbur
toolkit for Semantic Web programming (Lassila 2001;
2002b) and written in Common Lisp.

Conclusions
The ability to automatically replace services in the event
of service failure (due to server or connectivity outage, or
change in service invocation preconditions) is an important
aspect of building robust and autonomous agents for the Se-
mantic Web. The approach we have described achieves this
for limited services and linear workflows. It is our belief
that useful compositions can be created without sophisti-
cated planning technologies given the limitations described
earlier (including the use of a subset of the DAML-S ontol-
ogy).

Future work will address some of the shortcomings of our
current implementation, including the use of RDF as the rep-
resentation language, and the lack of heuristic pruning dur-
ing search. We will also explore whether this algorithm can
be extended for more complex situations, and will conduct
some more realistic testing of the idea. Naturally, the key to
the utility of this mechanism is in the availability of seman-
tically annotated Web services.4

References
Ankolekar, A.; Burstein, M.; Hobbs, J. R.; Lassila, O.; Mc-
Dermott, D.; Martin, D.; McIllraith, S. A.; Narayanan, S.;
Paolucci, M.; Payne, T.; and Sycara, K. 2002. DAML-S:

3The use of a more expressive language (say, OWL DL) would
allow us to express service descriptions (including parameters) as
single class expressions, in turn allowing us to rely more on the
reasoning engine for matching.

4The real-world availability of such services is beyond the
scope of this article.

Web service description for the Semantic Web. In Hor-
rocks, I., and Hendler, J., eds.,The Semantic Web - ISWC
2002, Lecture Notes in Computer Science 2342. Springer
Verlag. 348–363.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web.Scientific American284(5):34–43.
Erol, K.; Hendler, J.; and Nau, D. 1994a. Semantics for
hierarchical task network planning. Technical report, De-
partment of Computer Science, University of Maryland -
College Park.
Erol, K.; Hendler, J.; and Nau, D. S. 1994b. HTN planning:
Complexity and expressivity. InProceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94),
volume 2, 1123–1128. Seattle, Washington, USA: AAAI
Press/MIT Press.
Lassila, O., and Swick, R. R. February 1999. Resource
Description Framework (RDF) Model and Syntax Specifi-
cation. W3C Recommendation, World Wide Web Consor-
tium.
Lassila, O. 2001. Enabling Semantic Web Programming
by Integrating RDF and Common Lisp. InProceedings
of the First Semantic Web Working Symposium. Stanford
University.
Lassila, O. 2002a. Serendipitous interoperability. In Eero
Hyvönen., ed.,The Semantic Web Kick-off in Finland – Vi-
sion, Technologies, Research, and Applications, HIIT Pub-
lications 2002-001. University of Helsinki.
Lassila, O. 2002b. Taking the RDF Model Theory Out for
a Spin. In Horrocks, I., and Hendler, J., eds.,The Seman-
tic Web - ISWC 2002, Lecture Notes in Computer Science
2342. Springer Verlag. 307–317.
Li, L., and Horrocks, I. 2003. A software framework for
matchmaking based on semantic web technology. InPro-
ceedings of the 12th International Conference on the World
Wide Web.
McIlraith, S.; Son, T.; and Zeng, H. 2001. Mobi-
lizing the web with DAML-enabled web services. In
The Second International Workshop on the Semantic Web
(SemWeb’2001) at WWW-10.
Paolucci, M.; Kawamura, T.; Payne, T.; and Sycara, K.
2002. Semantic matching of web services capabilities.
In Horrocks, I., and Hendler, J., eds.,The Semantic Web
- ISWC 2002, Lecture Notes in Computer Science 2342.
Springer Verlag.
Papazoglou, M., and Georgakopoulos, D. 2003. Service-
oriented computing. Communications of the ACM
46(10):25–28.

Acknowledgements
The authors wish to thank Franklin Davis and Heikki
Saikkonen for support during this project. The work was
funded in part by Nokia Mobile Phones and the Nokia Re-
search Center.

Appendix A: Composition Algorithm
The following is a formal description of the composition algorithm. Effectively, search happens in a breadth-first manner, and
resembles some approaches to HTN-planning (Erol, Hendler, & Nau 1994b; 1994a).

RewriteAll({[q11 , . . . , qm1], . . . , [q1k
, . . . , qmk

]}) (1)

=
{

{[q11 , . . . , qm1], . . . , [q1k
, . . . , qmk

]} if ∀i = 1 . . .m,∀j = 1 . . . k, complete(qij
)

RewriteAll(Rewrite({[q11 , . . . , qm1], . . . , [q1k
, . . . , qmk

]})) otherwise

Rewrite({[q11 , . . . , qm1], . . . , [q1k
, . . . , qmk

]}) (2)

= Concatenate(RewriteOne([q11 , . . . , qm1]), Rewrite({[q12 , . . . , qm2], . . . , [q1k
, . . . , qmk

]}))

Rewrite({}) = {} (3)

RewriteOne([q1, . . . , qm]) (4)

=
{

SubstituteAlternatives(qj , expand(qj), [q1, . . . , qm]) where∃j,¬complete(qj)
{[q1, . . . , qm]} otherwise

Concatenate([x1, . . . , xi], [xj , . . . , xk]) = [x1, . . . , xi, xj , . . . , xk] (5)

SubstituteAlternatives(qj , {[s11 , . . . , sm1], . . . , [s1k
, . . . , smk

]}, [q1, . . . , qn]) (6)

= {Substitute(qj , [s11 , . . . , sm1], [q1, . . . , qn]), . . . , Substitute(qj , . . . , [s1k
, . . . , smk

], [q1, . . . , qn])}

SubstituteAlternatives(qj , {}, [q1, . . . , qn]) = {} (7)

Substitute(qj , [si, . . . , sm], [q1, . . . , qn]) = [q1, . . . , qj−1, s1, . . . , sm, qj+1, . . . , qn] (8)

Note that in the above description there are two functions that have not been described in formal terms:
The functioncomplete(q) is a boolean test indicating whether a service descriptionq is “complete”, that is, whether it is an

actual concrete service as opposed to a query expression (think of a complete description as a leaf that cannot be elaborated
further in an HTN plan tree).

The functionexpand(q) will perform the actual querying, and will return a set of results (the resulting set may be empty).
It will perform the relaxation of queries based on a failure to discover new services, and will construct compositions based on
the mismatch between the original query and the results of the relaxed query. For example, given a queryq that can only be
satisfied after relaxation, we have

expand(q) = {[qinput1 , sq1 , qoutput1], . . . , [qinputn
, sqn

, qoutputn
]} (9)

wheresqi
is the concrete results of querying for a relaxed form ofq, and whereqinputi

is a query for a service that will convert
the input ofq to the input ofsqi

(correspondinglyqoutputi
will convert the output ofsqi

to the output ofq). These conversions
are called “mismatches”: based on the degree of match the conversion may not be needed.

Appendix B: Minimal “DAML-S Lite” Upper Ontology
The following is a minimal version of the DAML-S “subset”. Note how the new classes and properties are subclasses or
subproperties of the corresponding OWL-S concepts.

<?xml version="1.0"?>

<!DOCTYPE uridef [
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY dsl "http://www.nokia.com/research/semanticweb/schemata/daml-s-lite#">
<!ENTITY owl-s-profile "http://www.daml.org/services/owl-s/0.9/Profile.owl#">
<!ENTITY owl-s-service "http://www.daml.org/services/owl-s/0.9/Service.owl#">

]>

<rdf:RDF xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:dsl="&dsl;"
xmlns:owl-s-profile="&owl-s-profile;"
xmlns:owl-s-service="&owl-s-service;">

<rdfs:Class rdf:about="&dsl;ServiceProfile">
<rdfs:subClassOf rdf:resource="&owl-s-service;ServiceProfile"/>

</rdfs:Class>

<rdf:Property rdf:about="&dsl;input">
<rdfs:subPropertyOf rdf:resource="&owl-s-profile;input"/>
<rdfs:domain rdf:resource="&dsl;ServiceProfile"/>
<rdfs:range rdf:resource="&dsl;ParameterDescription"/>

</rdf:Property>

<rdf:Property rdf:about="&dsl;output">
<rdfs:subPropertyOf rdf:resource="&owl-s-profile;output"/>
<rdfs:domain rdf:resource="&dsl;ServiceProfile"/>
<rdfs:range rdf:resource="&dsl;ParameterDescription"/>

</rdf:Property>

<rdfs:Class rdf:about="&dsl;ParameterDescription">
<rdfs:subClassOf rdf:resource="&owl-s-profile;ParameterDescription"/>

</rdfs:Class>

<rdf:Property rdf:about="&dsl;parameterName">
<rdfs:subPropertyOf rdf:resource="&owl-s-profile;restrictedTo"/>
<rdfs:domain rdf:resource="&dsl;ParameterDescription"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

<rdf:Property rdf:about="&dsl;restrictedTo">
<rdfs:subPropertyOf rdf:resource="&owl-s-profile;restrictedTo"/>
<rdfs:domain rdf:resource="&dsl;ParameterDescription"/>
<rdfs:range rdf:resource="&rdfs;Class"/>

</rdf:Property>

</rdf:RDF>

