
On Shared Situation Awareness for Supporting Human Decision-Making Teams

Xiaocong Fan and Shuang Sun and John Yen
School of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802
{zfan,ssun,jyen}@ist.psu.edu

Abstract

One of the challenging issues in homeland security area
is the early detection and successful processing of po-
tential terrorist threats, which demands effective team
collaboration. In this research, we investigate the way
of incorporating naturalistic decision making models
for supporting distributed team decision making. By
extending Klein’s Recognition-Primed Decision model,
we propose a Collaborative RPD model (C2RPD),
which encourages proactive information seeking, link-
ing, and sharing in distributed teamwork settings. This
model establishes a basis for developing agent archi-
tectures that support both agent-agent and agent-human
collaborations in developing shared situation awareness
and in making decisions based on progressively refined
recognitions.

Motivation
The demand for team collaboration arises in various sec-
tors of homeland security (HS). For instance, to enable
early detection and successful processing of potential ter-
rorist threats, anti-terrorist analysts often need to work in
teams to quickly gather and make sense of information from
multiple sources. However, teamwork in this area is often
threatened by the fact that team members need to process
voluminous amount of dynamically changing information
under time pressure. Moreover, the information and knowl-
edge resident within the broad scope of homeland security
area are typically distributed across people, organizations,
tools, and environments due to security concerns often as-
sociated with their roles and responsibilities. These unique
and complex challenges in homeland security area can sig-
nificantly hamper the quality and the timeliness of decision
making, which can have extraordinary and possibly catas-
trophic consequences. Therefore, the objective of this re-
search is to investigate ways to enhance the effectiveness of
human decision-making teams in achieving shared situation
awareness, and in making better decisions adaptive to the
changing situations.

Both ‘optimizing’ (Nash 1950) and ‘satisficing’ (Simon
1955) strategies have been extensively studied and applied in
solving practical decision making problems, and it is widely
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recognized that which strategy works better depends on the
nature of the problems. More recently, there has been sig-
nificant interest in applying decision-theoretic principles to
build intelligent systems. For instance, work on Markov
Decision Process (e.g., DEC-MDP, POMDP) has gained in-
creasing attention in recent AI conferences (Shen, Lesser, &
Carver 2003; Nairet al. 2004). There is no doubt that agents
with sufficient computational resources can use the MDP
approaches to help people make decisions on well-defined
problems. On the other hand, researchers in the camp of nat-
uralistic decision making take the opinion that when making
decisions, people usually do not know the probabilities of
all the choices; they even do not know all the possible op-
tions. It is argued that communities dealing with time stress
tasks demand simulation systems with realistic (human-like)
decision representation (Sokolowski 2002).

Aiming to support humans to make team decisions in dy-
namic complex domains, we focus on a specific naturalis-
tic decision-making model—the Recognition-primed deci-
sion model (RPD)(Klein 1989; 1997)—for two major rea-
sons. First, the RPD model has a clean decision making pro-
cess that is particularly applicable for ill-structured problems
with shifting or ill-defined goals in time stress domains. The
RPD process can be extended to support multi-agent col-
laborations; this enables us to further investigate dynamic
information sharing problems and distributed team cogni-
tion problems. Second, the RPD model focuses on recogniz-
ing the similarity between the current decision situation and
previous experiences, which is claimed as the way how hu-
man experts make decisions in complex, dynamic environ-
ment. Implementing intelligent agents with a computational
RPD can encourage closeagent-human collaborationin the
decision-making process (supporting adjustable autonomy).
This advocates the view of human-centered teamwork (Sier-
huis et al. 2003), where from humans’ perspective, agents
are no longer black-boxes providing decision making sup-
ports, but rather active peers whom humans can directly in-
teract with. In short, the RPD model is chosen because it
allows us to investigate agent architectures that support both
agent-agent collaborations and agent-human collaborations
while making decisions.

The remainder of this paper is organized as follows. In
Section 2, after a brief review of the RPD decision-making
model, we explore the potential opportunities in the RPD



process where team collaboration can be naturally intro-
duced. In Section 3, we describe a collaborative RPD
model–C2RPD, focusing on how distributed agents work to-
gether to develop shared situation awareness, to collabora-
tively build stories through hypothesis exploration and expe-
rience synthesization, and to support adaptive decision mak-
ing through expectancy monitoring. Section 4 explains how
a human partner may collaborate with an RPD-agent in the
RPD process, and Section 5 summarizes the paper.

RPD And Collaboration Opportunities
In this section, after a brief review of Klein’s RPD model, we
argue for an RPD-based collaborative approach, and exam-
ine where agent-agent collaborations and human-agent col-
laborations can be incorporated into the RPD process.

The RPD Model
The RPD model (Klein 1989) (see Figure 1) captures how
domain experts make decisions based on the recognition
of similarity between the current situation and past experi-
ences. RPD has two phases: recognition and evaluation. In
recognition phase, a decision maker needs to develop situa-
tion awareness and recognize what course of actions worked
before in similar situations. In evaluation phase, a decision
maker needs to carry out ‘singular evaluation’ by imaging
how a course of actions will evolve. In case that a course of
actions does not work for the current situation, the decision
maker can either adjust the course of actions, or find and
examine another one until a workable solution is obtained.

The RPD model states that ‘feature-matching’ and ‘story-
building’ are two typical strategies used by experts to de-
velop situation awareness. In feature-matching, a decision
maker tries to find whether he/she has ever experienced sit-
uations similar to the current one by matching the set of
observed cues (synthesized from information describing the
current situation) with the pattern of cues considered in past
experiences. In case that feature-matching cannot produce
an adequate account for the current situation due to lack of
experience, story-building will be used to construct an ex-
planation, with the collection of observed information be-
ing coherently linked. A story gives an explanation of how
the current situation might have been emerging. In story-
building, a decision maker can explore potential hypotheses
in his/her mind and evaluate how well each of them may fit
the observed events.

The recognition phase has four products: relevant cues
(what to pay attention to), plausible goals (which goals make
sense), expectancy (what will happen next), and course of
actions (what actions worked in this type of situation). An
expectancy serves as a gate-condition for continuing work-
ing on the current recognition. Due to the dynamic and
uncertain nature of the environment, it is very important to
monitor the status of expectancy because a decision maker
may have misinterpreted the current situation but he/she can-
not recognize it until some expectancy is invalidated as the
situation further evolves. In such cases, the decision maker
needs to further diagnose the current situation (e.g., to gather
more information).
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Figure 1: The RPD Model

Collaboration Opportunities
The RPD model captures the cognitive activity undergoing
in the mind of a decision maker when he/she faces a de-
cision task. In essence, RPD is an individual process be-
cause it is within a decision maker’s mental state. However,
it becomes more interesting when a team of human experts,
each making decisions using RPD, needs to work together
in distributed dynamic environments. Intuitively, team per-
formance can be considerably enhanced if the team can es-
tablish a shared mental model about the dynamic progress
of the RPD process being pursued by the decision maker.
Emphasizing the individual nature of the RPD process may
weaken or ignore the active roles played by the other team-
mates in the process, expecially from the information seek-
ing and sharing perspective.

On the other hand, as domain complexity increases, de-
cision making often involves various kinds of expertise and
experiences, which are typically distributed among a group
of decision makers (Hollenbecket al. 1997). In such cases,
the timeliness and quality of decision making highly depend
on the effectiveness of team wide collaboration (e.g., antici-
pating others’ information needs, proactive sharing informa-
tion and expertise).

Thus, in our study, we consider the situations where a
group of people who are experts in different areas, each as-
sisted by one RPD-enabled agent (i.e., agents capable of
making decisions using RPD model), face the pressure to
make better and faster decisions in an environment with high
domain complexities. In such a setting, collaboration may



exhibit among RPD-agents, between an RPD-agent and its
human partner, and among the human experts. Here, we fo-
cus on agent-agent and human-agent collaborations.

A careful scrutiny of the RPD model under teamwork set-
tings reveals that potential agent-agent collaboration oppor-
tunities include:

• Situation Awareness: Each agent may only know (or be
sensitive to) certain kinds of information. To develop a
complete view of the global state, team members need to
share their information;

• Feature Matching: In feature matching, an agent can mon-
itor the information needs of the decision making agent,
and proactively deliver relevant information;

• Story Building: When building a story, the agents can
collaboratively explore potential hypotheses and progres-
sively anticipate other’ information needs;

• Expectancy Monitoring: All the agents keep an eye on the
active expectancies and report anomalies to others when-
ever applicable.

Potential agent-human collaborations include:

• Situation Awareness: An agent shows its human partner
the cue patterns being considered. The human partner can
suggest the agent to consider new cues for the current de-
cision situation;

• Feature Matching: An agent can show its human partner
the result of feature-matching, e.g., the degree of similar-
ity between each of the matched experience and the cur-
rent situation. The human partner can adjust the match-
ing strategies (e.g., thresholds), provide information that
is still missing, suggest expectancies to be considered, ad-
just the pressure (the stress level of the current decision
situation);

• Story Building: A human partner can suggest the agent
to explore a specific hypothesis, help the agent to link the
available information together. The agent can show its
human partner the supporting or negative evidences re-
garding the explored hypotheses, show the stories being
built, etc;

• Expectancy Monitoring: A human partner can input in-
sights on how to handle the exceptions resulted from ex-
pectancy anomalies. The agent can show its human part-
ner the potential side-effects caused by an expectancy
anomaly.

Collaborative RPD Model
In this section, we describe C2RPD—a computational col-
laborative RPD model (as illustrated in Figure 2), which cap-
tures both agent-agent collaborations and agent-human col-
laborations. We mainly focus on how agents take the afore-
mentioned opportunities to support iterative recognition and
adaptive decision makings.

Types of Decision-Making Tasks
Making decisions on what to do next is a task at an abstract
level above domain tasks. Each decision-making task has

certain knowledge (expertise) requirements on the decision
maker. Two decision-making tasks belong to the sametype
if they place the same knowledge requirements. For exam-
ple, Hollenbeck et al. (1997) described a scenario involving
a four-person naval command and control team. The team
needs to monitor the airspace in the vicinity of an aircraft
carrier battle group, and to decide how to respond to the in-
coming air targets. This type of decision making requires
two forms of expertise: (a) the ability to measure and trans-
late raw attributes (e.g., speed, altitude, angle, IFF, etc) of an
aircraft into internal opinions (cues) regarding how threaten-
ing the aircraft is, and (b) the rules specifying how to com-
bine cue values to determine the level of threat.

In addition, decision making in human society is typically
connected with societal hierarchies; a higher-level decision-
making task usually depends on the results of lower-level
decision-making tasks. In order to support multiple-level de-
cision makings (Hollenbecket al. 1995), in our model, we
use the concept of “decision spaces” to organize experiences
hierarchically according to decision types: experiences re-
lated to one decision type are maintained in one decision
space or experience knowledge base (EKB).

Treated as such, decision making and information fusion
can be tightly coupled at multiple levels, if we view the pro-
cess of decision making as a process of fusing input informa-
tion into decision results. This is also flexible for supporting
teams where knowledge and expertise are distributed among
team members. For instance, members of an anti-terrorist
analyst team may have different access to various informa-
tion sources due to security concerns or due to their roles
and responsibility in the team. The team members can make
decisions at different levels relative to their past experiences.

What is also important is that an agent can be involved
in multiple decision tasks, which may or may not have re-
lations. It is thus necessary for an RPD-agent to be able
to effectively manage multiple attentions (RPD processes).
For the flexibility of the C2RPD model, we leave the issue
of attention management open to the designers of agent ar-
chitectures.

Now we come to the experience representation. Each ex-
perience has four parts: cues, goals, course of actions, and
expectancies. An experience can be formally denoted as
ei = 〈Ci, Gi, Ei, Ai〉, whereCi, Gi, andEi are collections
of predicates, andAi is a set of plan names, referring to pre-
defined courses of actions. Let the collection of cues con-
sider by a decision spaceEKB beCEKB =

⋃
ei∈EBK Ci.

In our model, no restriction is placed on the sources of
decision tasks1. Responding to a decision taskt, an RPD-
agent will first follow the procedure below to initialize the
RPD process:

1. From the current situation, determine the collectionFt of
features that are potentially relevant to the task;

2. Explore the decision space hierarchy to pick one that is
applicable to the decision task. A decision spaceEKBj

is chosen and fixed in the rest of the RPD process ifFt can

1It could be a pre-specified step in a plan, could be a request
from a human partner or other teammates, or could be dynamically
identified by an agent itself.
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Figure 2: The C2RPD Model

be covered byCEKBj . However, the determination ofFt

itself is a high-demanding cognitive task, and the selected
decision space might not be the desired one. Thus, an
internal mechanism of decision-space adaptation is highly
needed so that the RPD-agent can recover from wrong
selections of the decision space.

3. If there is no decision space applicable tot, i.e., the RPD-
agent cannot handle the task due to lack of expertise, this
agent has to find one competent RPD-agent and transfer
the task to that agent.

4. The agent whoever makes an commitment to a decision
task will then let others know so that the others can help
in the rest of the decision making process. Those agents
who also have the required decision-making knowledge

(they thus know what is needed in making that decision)
can proactively help on taskt and lower-level decision
tasks, if any. Although those agents who do not have the
required knowledge cannot easily anticipate the decision
maker’s needs, they can also provide help if they receive
information requests for developing situation awareness.

Now we look at the organization of experiences within a
decision space. We can formally define a refinement relation
(v) among experiences (recognitions). For any experiences
ei = 〈Ci, Gi, Ei, Ai〉 andej = 〈Cj , Gj , Ej , Aj〉 in a deci-
sion space,ei v ej iff Ci ⊆ Cj . This is a rather weaker
requirement: an experience is a refinement of another if it
considered more information (cues) in the recognition. A
stronger refinement relation can be defined in terms of addi-
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tional relations between the other components. For instance,
for some types of decisions, it may make sense to define:
ei v′ ej iff Ci ⊆ Cj , Gi = Gi+1, andAi ≺ Ai+1, where
≺ is sequence prefix relation: an experience is a refinement
of another if it considered more information (cues) in the
recognition, both share the same goals, and the course of
actions associated withei is simply the prefix of what is as-
sociated withej . From such a perspective, experiences in an
EKB can be virtually viewed as being partitioned by some
experience refinement relations. For the example illustrated
in Figure 3, after experiencee10 being considered, experi-
encee23 (where bothe10 v e23 ande32 v e23 hold) may
be selected in the next round of recognition as more infor-
mation becomes available. However, to elicit a meaning-
ful experience-refinement relation from a decision space is
domain-dependent, and the detailed discussion of it is out of
the scope of this paper.

Collaborative Situation Awareness

The termfeatureis used to refer to those environmental vari-
ables that describe elementary physical or mental param-
eters (e.g., velocity, moving direction, etc.) (Sokolowski
2003). These environmental variables together characterize
the decision situation, and circumscribe the range of infor-
mation to which the decision-making team should pay at-
tention. Each team member may have limited sensing capa-
bilities (e.g., types of sensors, sensing ranges) regarding the
environmental variables, therefore the whole team has to ex-
change information in order to develop a shared awareness
of the global situation. We assume each agent use an indi-
vidual knowledge base (KB) to maintain all the information
(acquired either from the environment or from other agents)
regarding the current situation.

The term “cue” refers to an agent’s internal representation
of the decision situation. Cues are higher-level abstractions
of the elementary data or synthesization of lower-level in-
formation. For example, internally an agent may only care
the fuzzy category (e.g., high, medium, low) rather than the
real value of an object’s velocity; the “moving pattern” of an
approaching unit can be synthesized (fused) from the infor-
mation regarding the moving directions of all the individuals
in the unit. Generally, a cue can be the root of several tree-
like information-dependence structures, which describe the
ways how the cue is abstracted from low-level information.
We use{τ(A)i

c} to denote the collection of information-
dependence trees with cuec as the root, relative to agentA’s
expertise; useT (A)′c to denote the instantiation ofτ(A)′c,

where marked are the nodes of which the agentA is lacking
information, relative toA’s KB.

Situation Awareness Driven By Relevant Cue Analy-
sisAn agent can derive information requirements regarding
the current decision task from the cues under its considera-
tion. The following process can be used to collect missing
information:

ProcedureInvestigate(task, Team)
1. if (self is the decision maker fortask)
2. EKB = getDecisionSpace(task);
3. Cues = getRelevantCues(EKB);
4. Repeat
5. {〈ck, T (self)ck

〉} = getCuesUnknown(Cues);
6. for each〈ck, T (self)ck

〉
7. Peers = getProviders(〈ck, T (self)ck

〉);
8. Ask(Peers,〈ck, T (self)ck

〉);
9. if (〈cn, T (sender)cn

〉 received)
10. SynthesizeInfo(self.KB,〈cn, T (sender)cn

〉);
11. Learning(〈cn, T (sender)cn

〉);
12. Until (Terminated)
13. else
14. if (self has expertise fortask)
15. EKB’ = getDecisionSpace(task);
16. Cues’ = getRelevantCues(EKB’);
17. Repeat
18. {〈cj , T (self)cj 〉} = getCuesAvailable(Cues’);
19. Tell(task.decisionMaker(),{〈cj , T (self)cj 〉});
20. Until (Terminated)
21. else
22. Repeat
23. if (Being asked of〈ck, T (sender)ck

〉)
24. m = getAvailableInfo(〈ck, T (sender)ck

〉);
25. Reply(sender, m);
26. Until (Terminated)

Figure 4: The algorithm for shared awareness

As is encoded in the algorithm in Figure 4, agents in a
team may play different roles when investigating a situation.

• The decision maker agent (DM), while trying to synthe-
size the available information into appropriate cues, may
not be able to attain a sufficient level of situation aware-
ness due to lack of critical information. For every un-
known cue, the DM can ask for help from some poten-
tial information providers. Upon receiving information
from teammates, as well as synthesize the new acquired
information to develop better situation awareness, the DM
could also learn new information-dependence trees from
teammates, and revise experiences in its EKB to incorpo-
rate additional cues being considered by other agents.

• Teammates who have the experiences pertinent to the cur-
rent task can proactively tell the decision maker (DM)
about the information relevant to the cues that need to
be considered. Since an agent and the DM agent may
have different EKBs and information-dependence struc-
tures, the teammate can (1) inform the DM agent about



the cues that have been synthesized in ways beyond the
DM’s existing expertise, (2) share experiences by inform-
ing the cues that are considered in its EKB, but may not
in the DM agent’s.

• Teammates who have no experience for the current task
can help the DM agent upon being requested of certain in-
formation. Here, an teammate could reply the DM agent
with information that is synthesized in a way different
from the structure being considered by the DM agent.

It is worth noting that the information exchanged among
RPD-agents is of form〈cue, dependence-structure〉. This
has two benefits. First, in doing so, the agents are not
only requesting/sending information relevant to the cue, they
also explicitly requesting/sending information that isindi-
rectly related to the cue according to the accompanying
dependence-structure. In essence, the dependence-structure
establishes an information use context; an agent can help the
information needer with all the information matched with
the nodes of the dependence-structure that are marked as
‘unknown’ by the needer. Second, an agent may respond
to an information request using a dependence structure dif-
ferent from the one being used by the requesting agent. Ac-
cordingly, the agents in a team can exchange and learn ex-
pertise about information-dependence structures from each
other. This can progressively enable the agents to better an-
ticipate others’ information needs.

The investigation process is the key to evolving recogni-
tions. It is an anytime algorithm; the decision making agent
can trigger the feature-matching function at any point of the
investigation process, as long as the agent has attained a sat-
isfactory level of awareness of the current situation. Since
the information regarding the current situation is recorded
in the DM agent’s KB, the feature matching process sim-
ply iterates over the experiences in the active EKB and casts
queries to the DM agent’s KB with the cues to be evaluated.
The experiences with the most number of cues satisfied wrt.
the DM agent’s KB are returned as the recognition results.

Collaborative Story Building
While feature matching is used to find past experiences that
most match the current situation, story building is used when
agents are experiencing unfamiliar situations. From another
perspective, feature matching is to build a story for the cur-
rent situation using ‘templates’ worked before, while story
building is to construct a story from scratch.

Story building also involves information gathering, but it
is more than cue-driven information investigation (Fig.4),
because the agents are still unclear about what cues to inves-
tigate. Therefore, the key is to identify a collection of cues
which the team needs to pay attention to. C2RPD adopts
a combination of two mechanisms:hypothesis exploration
andexperience synthesization.

A hypothesis could be an abstract story (e.g., there is a
chance that City Y is facing some terroristic attack within
2 weeks), or a plausible intention (e.g., the object moving
toward Building Z is probably hostile). To support collabo-
rative hypothesis exploration, we employ the idea of multi-
party conversation (Dignum & Vreeswijk 2004), where all
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Figure 5: Hypothesis exploration in story building

the agents can hear the messages exchanged in a team, even
though some are not necessarily the intended audiences. For
instance, agent B can comment on agent C’s messages di-
rected to agent A. Figure 5 illustrates the process of hypoth-
esis exploration. First, the decision maker agent (DM) can
initiate a conversation to collect potential hypotheses that the
team needs to further investigate. The team can use differ-
ent strategies (e.g., agreed by most, proposed by a creditable
agent, suggested by human partners, etc.) to determine the
hypotheses that reflect the current situation best. To explore
a hypothesish, the team members are involved in conver-
sations under four contexts: (1) given thath is true, each
agent, based on its expertise, infers what things should/not
have happened, and proclaim to others for confirmation. A
thing that should have happened but actually not, or the other
way around, shows a negative evidence toh; (2) given that
h is true, each agent infers what things should/not be doing
now, and proclaim to others for confirmation. A thing that
should be doing but actually not, or the other way around,
shows a negative evidence toh; (3) given thath is true, each
agent infers what things should/not happen later, and pro-
claim to others for validation. A thing that should happen
within a minute but actually not as expected, or the other
way around, shows a negative evidence toh; (4) given that
h is true, each agent draws reasonable conclusions of form
“X must/not be Y” (e.g., the unidentified object must be a
neutral force; City P must have an airport) and proclaim to
others for verification. In case that X must be Y but actu-
ally not, or the other way around, shows a negative evidence
to h. Note that all the above four kinds of claims could be
associated with a value that indicates the claiming agent’s
confidence degree.

To evaluate a hypothesis, the DM agent needs to consider
both the positive and negative evidences collected in the
multi-party conversation, and to reconcile conflicting con-
clusions drawn by different team members, if any. Certain
human-adjustable thresholds can be used to judge whether
the hypothesis applicable to the current situation. If not, the
agents continue to explore another hypothesis until find an
acceptable one. If yes, the DM agent can then generate a
pseudo-experiencein the following way: (1) use the proven



hypothesis to produce goals, the fulfillment of which could
prevent the situation from evolving toward undesired direc-
tion (e.g., to invalidate a hostile attempt, to protect a vul-
nerable place); (2) use the information gathered in context
1, 2, and 4 to produce cues; (3) use the information gath-
ered in context 3 and 4 to produce expectancies; and (4) use
the information gathered in context 2 and 3 to construct a
course of actions (COA). Once it is proved that the COA
works, the pseudo-experience will be stored as a valid ex-
perience for dealing with ensuing similar situations. Agents
can also learn from unworkable pseudo-experiences so that
they would not make the same mistakes when similar situa-
tions occur.

Experience synthesization is used when two or more past
experiences can be combined together to deal with an un-
usual situation. Synthesization could be based on experi-
ences from single or multiple agents, and the four compo-
nents of a synthesized experience are typically the coupling
of the corresponding parts of the input experiences. From
another perspective, novel situations offer opportunities for
agents to share and reflect on their experiences.

Collaborative Expectancy Monitoring
After an RPD-agent makes a recognition, it will continu-
ously monitor the associated expectancies until the comple-
tion of the selected course of actions. Expectancy monitor-
ing is one of the key features to support adaptive decision
makings (Serfaty, Entin, & Johnston 1998). A DM agent
can subscribe information relevant to the expectancies that
need to be continuously monitored. Such collaborative ex-
pectancy monitoring can take full advantage of the team’s
distributed cognition, so that the DM agent can terminate
the actions resulted from a wrong recognition at the earliest
opportunity.

First, expectancies can be used to initiate a complete new
decision. An expectancy states what will happen, serving as
a gate-condition for keeping following the current recogni-
tion. Some expectancies may be socrucial that whenever
they conflict with the new observed facts, it indicates the
decision maker has heavily misinterpreted the current sit-
uation. In such cases, the RPD-agent has to diagnose the
current recognition, re-considering thewhole space of the
active EKB for another time.

Second, RPD-agents can use expectancies torefinea deci-
sion, leveraging some structures within the active EKB. The
invalidation of some expectancies may indicate that the once
workable recognition is no longer applicable to the changing
situation. The already executed part of the selected course of
actions may still make sense, but the rest part has to be ad-
justed. In such cases, the RPD-agent can start another round
of recognition, using the experience refinement relation de-
scribed earlier to develop a better solution.

Therefore, the computational C2RPD model is an iterative
model. It explicitly incorporates the idea of “recognition re-
finement”, and supports situation reconsideration during ac-
tion execution phase. In addition, the computational model
is much flexible for studying the time pressure issue in deci-
sion making. Since RPD-agent can make a sequence of de-
cisions (the length of the sequence is restricted by the exter-

nal time pressure), with one decision refining the preceding
ones, it can always return an acceptable decision relative to
the timing constraints. This guarantees no critical decision
is missed under stress situations.

Human-Agent Collaboration
As shown in Figure 2, a human may collaborate with his/her
partner agent in various ways along the RPD process. On
the one hand, as an assistant to its human decision maker,
an agent needs to help the human partner develop situation
awareness, considering the limitation of human’s cognitive
capacity; needs to help the human understand the progress
of its internal RPD process (e.g., displaying the progress in
a user-friendly flow chart); needs to request heuristic infor-
mation from the human without imposing too much inter-
ruption; needs to recommend workable solutions to the hu-
man, clarifying what’s the impact to other teammates if one
option is chosen.

On the other hand, RPD-agents, leveraging humans’
meta-level reasoning, are reflective and self-adaptable. First,
a human can direct the process of recognition refinement
by suggesting/revising the experience refinement relations
in the current decision space. Agents can thus take hu-
mans’ meta-cognition into consideration in the next round
of recognition. This can also stepwisely help people elicit
the tacit expertise that may reside solely in their minds, and
transform it into explicit knowledge that can be effectively
used by agents in later decision situations.

Second, a human can guide an RPD-agent in its informa-
tion gathering and sharing by suggesting new or revising the
existing information dependence structures. The new or re-
vised dependence structures, which reflect the human’s dy-
namic adaptation, will largely affect the patterns of informa-
tion exchange among team members.

Third, human’s input is critical for effective story build-
ing. (a) An RPD-agent’s exploration strategy is governed by
its human partner. A human can initiate, suspend, or termi-
nate the exploration of a specific hypothesis, considering all
the supporting and negative evidences so far collected by the
RPD-agent. (b) In order to orchestrate the information from
distributed sources into a coherent form, the key is to dis-
cover the tacit information linkages, which can be gracefully
handled by human. The information linkages suggested by
human can be further generalized to create new, or incorpo-
rate into the existing, information dependence structures. (c)
To finalize the story being built, an RPD-agent has to ask its
human partner for approval regarding the four components
of the pseudo-experience. Once a proven pseudo-experience
is appended into an RPD-agent’s experience KB, human’s
insights have actually been encoded as reusable knowledge
for handling similar situations in the future.

Fourth, human can also help in monitoring the develop-
ment of certain expectancies, in adjusting the expectancies
that are no longer applicable, in proposing crucial expectan-
cies that have been neglected before, and in suggesting ways
to handle exceptions accompanied by the violation of an ex-
pectancy. An RPD-agent can benefit from such human-agent
interactions in two ways. (a) Based on human’s input during
expectancy monitoring, the experience (say,ei) selected for



handling the current situation can be evolved into a better
format (e′i). Alternatively, the agent can alter the structure
of the active decision space by creating a new experience
ei+1 that refinesei. (b) An agent can learn from human’s
response to exceptions, and incrementally gain experiences
for handling similar exceptions.

Fifth, the recognition phase may result in several solu-
tions (COAs). To find a workable COA, the DM agent needs
to consider multiple factors such as potential resource con-
flicts, timing conflicts, and side effects upon failure. In such
a case, human’s intuition about the priorities of the factors
can facilitate the agent to make a better and faster selection.

Summary
There has been much theory and research presented that in-
vestigates team cognition, naturalistic decision making, and
collaborative technology as it relates to real world, com-
plex domains of practice. However, there has been very
little work in combining intelligent agent technology and
naturalistic decision-making models to support distributed
team decision making. In this paper, we described the
collaborative RPD model (C2RPD), which extends Klein’s
Recognition-Primed Decision model, leveraging both agent-
agent collaborations and agent-human collaborations during
the decision-making process. This model encourages proac-
tive information seeking and sharing in distributed team-
work settings, thus can be incorporated into cognitive agent
architectures to support distributed team cognition and deci-
sion making. R-CAST (Yenet al. 2004), which extends the
CAST agent architecture (Yenet al. 2001), is one system
that has realized the C2RPD model.

C2RPD is an abstract model that naturally combines natu-
ralistic decision making with computational intelligence. It
can be used to develop agent systems for enhancing the ca-
pabilities of anti-terrorist analysts in early detection of po-
tential terrorist threats. C2RPD supports adjustable auton-
omy: agents, together with human partners, can collabora-
tively monitor expectancies and progressively refine recog-
nitions. C2RPD is also a self-evolving model, encouraging
the learning of novel experiences and strategies for handling
exceptions from human partners.
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