
Transforming Open-Source Documents to Terror Networks: The
Arizona TerrorNet

Daniel M. McDonald, Hsinchun Chen, and Robert P. Schumaker

Artificial Intelligence Lab, University of Arizona
Department of Management Information Systems

1130 East Helen Street Tucson, AZ 85721
dmm,hchen,rschumak@eller.arizona.edu

Abstract
Homeland security researchers and analysts more than ever
must process large volumes of textual information.
Information extraction techniques have been proposed to
help alleviate the burden of information overload.
Information extraction techniques, however, require re-
training and/or knowledge re-engineering when document
types vary as in the homeland security domain. Also, while
effectively reducing the volume of the information,
information extraction techniques do not point researchers
to unanticipated interesting relationships identified within
the text. We present the Arizona TerrorNet, a system that
utilizes less specified information extraction rules to extract
less choreographed relationships between known terrorists.
Extracted relations are combined in a network and
visualized using a network visualizer. We processed 200
unseen documents using the TerrorNet which extracted over
500 relationships between known terrorists. An Al Qaeda
network expert made a preliminary inspection of the
network and confirmed many of the network links.

Introduction
Terrorism researchers and analysts must process large
amounts of news and other journalistic data to understand
terror networks and analyze events. However, the amount
of information published by national and international
journalistic sources is quickly outstripping the boundaries
of manual effort. While basic searching tools are helpful,
there is a lack of automated document analysis that is
tailored to tasks performed by terrorism researchers.
Recently homeland security researchers have benefited
from understanding the relationships between terrorists
and their cells (Sageman 2004). Information extraction
techniques, however, have typically focused on fact
finding and filling event templates as opposed to extracting
terrorist networks.
 In addition, relevant information about terrorism is
spread in varied genre over the Internet. For example,
sources of information vary between personal interviews
with suspected terrorists to the 9/11 commission reports
and domestic and foreign court transcripts. The varied

sources of information reviewed by homeland security
researchers and analysts would create a need for greater
knowledge engineering efforts and/or algorithm training to
create information extraction tools. This need would be
even greater for the MUC-style template filling extraction
techniques that are highly specified with lexical
constraints. The requirement to re-train algorithms for
every type and topic of document dims the promise of
information extraction for reducing information overload.
 We present the Arizona TerrorNet, a tool which
automatically extracts terror networks from varied types of
documents. The AZ TerrorNet utilizes less specified
information extraction techniques than those found in
systems participating in the Message Understanding
Conference template tasks. The lower level of
specification has two benefits. First, a greater variety of
less anticipated relations can be extracted from the text.
Once aggregated, relations can potentially reveal less
obvious and more interesting relations. Second, the
reduced use of specific lexical constraints in the Arizona
TerrorNet makes it able to process a greater variety of
document types from a greater number of domains. As a
result, the costs associated with knowledge re-engineering
are reduced.
 In this paper we first present some research background
in the field of information extraction (IE). The focus of
the review is on different IE techniques that have different
needs for knowledge re-engineering given new document
types and domains. Next, we present the collection of
information extraction algorithms utilized in the Arizona
TerrorNet. We propose that the collection of algorithms
and the aggregation process can discover relationships that
are not entirely obvious in the text and thus are more
interesting. We then briefly present the result of parsing
200 previously unseen documents from various
International news sources. A subset of the relations is
shown and comments from a terrorist network expert are
included.

Background
Missed information and subsequent lost opportunities have
been reported as previous homeland security shortcomings
(Kean, Hamilton et al. 2004). Information extraction has
been proposed as a method to manage vast amounts of
information and thus avoid lost opportunities (Cowie and
Lehnert 1996). Information extraction techniques attempt
to whittle away large amounts of text leaving only the most
relevant pieces of information in a structured format. The
resulting information in its structured form can then be fed
into databases for future analysis and mining.
 Most previous information extraction tasks have focused
primarily on incident and entity extraction, text
summarization (Mani, House et al. 1998), and filling
scenario templates (DARPA 1998). We are aware of one
information extraction project where relationships between
people were extracted. In the early 1980's, Zarri worked
on extracting semantic relationships between French
historical figures from relevant texts (Zarri 1983).
 Using information extraction techniques in hopes of
assisting national security effort, however, is not new.
Information extraction research has been aided largely by
seven Message Understanding Conferences (MUC) funded
by DARPA. In the MUC-3 and MUC-4, newspaper and
newswire texts were used that contained information about
terrorist activities in Latin America (DARPA 1991;
DARPA 1992). Templates were created for different
incidents such as arson and kidnapping. Within each
template, relevant information to the incident would be
added such as the incident’s date, location, and incident
type. Use of the templates allowed precision and recall
performance evaluations to be compared to human
performance.
 However information extraction algorithms are often
designed to extract only specific information to fill
templates. As users’ tasks change over time, the need to
engineer new information extraction routines is inevitable.
This process of having to re-create information extraction
routines to suit new domains and tasks is referred to as the
knowledge engineering bottleneck (Cowie and Lehnert
1996). It is generally thought that the knowledge
engineering bottleneck is the greatest impediment to more
widespread adoption of information extraction (Ciravegna
2001). Research efforts in information extraction have
attempted to reduce this bottleneck by lowering the
knowledge engineering cost. If algorithms can capture
“shallow knowledge” automatically, then knowledge
engineering has no significant cost. With no significant
cost, the knowledge invested in the extraction routines
does not necessarily have to be reused to be justified.
Besides work on automatically extracting shallow

knowledge, work has been done trying to maximize the use
of end-users to train systems that can learn rules behind the
scenes (Ciravegna and Petrelli 2001). This line of research
recognizes the cost of corpus annotation and tries to
facilitate maximum end-user participation. We now
separate our review into systems that are highly specified
and those that are more portable between tasks.

Highly-Specified IE Template Systems
As mentioned, information extraction systems are
engineered to fill the slots of well-defined templates.
Systems have often relied on specific lexical semantic
patterns in sentences to guide the extraction of template
information. Autoslog (Riloff 1993), for example, utilized
a trigger slot that was filled with a verb such as “bombed”
or “robbed” to activate extraction. Other systems such as
Liep (Huffman 1995), Palka (Kim and Moldovan 1995),
and Crystal (Soderland, Fisher et al. 1995) also utilized an
exact word or verb root constraint as part of the extraction
process. While utilizing such narrow rules became a
necessity to achieve high performance on the highly
specified template filling tasks in MUC, such rules and
template tasks in general have some drawbacks. First, the
information that is extracted is not in a format that can be
utilized for any but the intended task, which might be an
alerting system and/or a historical record. In addition,
there is no text mining or discovery taking place with the
text processing (Tan 1999). Relations extracted are of a
type that is anticipated and less interesting, despite being
very relevant and accurate. Second, because systems use
lexical constraints, the performance of the system is more
dependent upon having training data of the type and
domain of documents being processed.

More Portable IE Parsing Algorithms
While generally MUC systems have been task specialized
and less portable, there are also examples of individual
information extraction algorithms that have utilized more
general and portable knowledge. Many of these
algorithms involve syntax parsing. Ciravegna and Lavelli
present a full parsing approximation approach using finite-
state cascades that is well suited for information extraction
tasks (Ciravegna and Lavelli 2001). Autoslog, mentioned
earlier, also included a syntax module that was able to
determine the functional role of phrases in sentences. Such
a module can be more easily reused on different domains.
Also, one of the first to perform syntax analysis via
cascaded finite state parsers was the FASTUS system from
SRI (Hobbs, Appelt et al. 1996). These systems all
perform more syntax analysis than just phrasing and are
able to do it using regular grammars and cascaded finite
state automata, making the approaches feasible for large
scale information extraction.

The Arizona TerrorNet Approach
As mentioned above, some information extraction systems
are more tailored to specific tasks and thus less portable to
different domains and document types. The Arizona
TerrorNet is required to parse documents and extract
networks from varied source documents, thus requiring
fewer lexical constraints. Despite using fewer lexical
constraints, semantic phrase analysis is still required as
relations of interest include only those between people. To
meet the requirements of our extraction task and remain
capable of extracting relations from multiple document
types, we utilize a two-pronged strategy. First, we utilize a
hybrid syntax-semantic tag with inherited properties for
tagging the words in each document. The proper
assignment of a hybrid tag is crucial for our semantic
analysis. Second, we utilize a large amount of syntax
parsing in the network extraction process.

Hybrid Syntax-Semantic Tag
Typical information extraction systems conduct syntax and
then semantic tagging/analysis in a pipelined approach. In
the Arizona TerrorNet, we have combined that information
into one tag. We generally followed a naming convention
where the tag head carried the semantic information and
the syntactic information was carried by the tag tail (i.e.
SEMANTIC_SYNTAX or LOCATION_NNP). In
addition, each hybrid tag is defined in a tag ontology
where tags have "is a" relationships with multiple parent
tags. For example, Figure 1 shows an example of a
LOCATION_NNP tag and its inheritance path.
LOCATION_NNP is a singular proper noun. The tag,
however, also inherits from general noun phrase, general
semantic noun, semantic location, general proper noun,
and finally named entity. All algorithms that deal with the
hybrid tags, such as transformation-based algorithms and
parsing algorithms are aware of each tags inherited
identities. Thus, the more general a tag used in a rule is
the more word classes and thus words will be affected.
There are over 7,500 entries in the ontology with 3800
different tags. The majority of the tags come from verb
groupings made by Beth Levine (Levin 1993). For each
verb class, for example WALTZ, there are corresponding
syntax additions: WALTZ_INF, WALTZ_VB,
WALTZ_VBD, WALTZ_VBG, WALTZ_VBN,
WALTZ_VBP, and WALTZ_VBZ
 Using hybrid tags allows the grammar to be expressed in
terms of syntax, semantics, or both because some parents
have entirely semantic properties while others have syntax
properties. For example, a rule that says combine a
determiner (i.e. the) with a noun phrase (i.e. bomb) to
create a new noun phrase (DT+NP=> NP) would apply to

all the tags beneath NP in the hierarchy (shown in Figure
1). For that rule to just apply to location nouns, however,
the rule would need to state a determiner with a location
tag equals a noun phrase (DT+LOCATION=>NP). In
cases where more than one rule applies to a sequence of
tags, the rule with the combined least number of hops to
the actual tags is the one that is activated. Syntax and
semantic constraints can of course be expressed together in
a grammar without using hybrid tags. However, having
the hybrid information in the tag allowed us to statistically
learn many grammar rules from lexicon and corpora thus
reducing the first-time knowledge engineering cost.
 TerrorNet’s semantic analysis relies on properly
assigning the hybrid tag, particularly the semantic portion
of the tag. There are differing views on how many word
senses a lexical entry should contain (Wilks and Stevenson
1997). In our dictionary, we use fewer more vague tags
more in line with research from Wierzbicka (Wierzbicka
1989). Our intention is to limit the number of semantic
alternatives and thus improve tagging accuracy.

More Syntax Parsing
While full parse tree construction was limited in MUC, we
have implemented additional syntax parsing to
approximate fuller parsing. While syntax parsing cannot
outperform lexically-based extraction rules, generally
fewer rules are required to cover a domain (McDonald,
Chen et al. 2004). In addition, syntax rules can be more
readily reused between domains. By producing fewer
rules that can potentially be reused on different types of
documents, we reduce our knowledge engineering cost.
We control the accuracy of our extraction rules by relying,
when needed, on the semantic properties of the hybrid tag.

NP (noun phrase)
|-NN (non-proper noun)

|-NN_SG (singular non-proper noun)
|-LOCATION_SG

|-NN_PL (plural non-proper noun)
|-LOCATION_PL

|-SEMNOUNS (semantic noun classes)
|-LOCATION

|-LOCATION_NNP
|-LOCATION_NNPS
|-LOCATION_SG
|-LOCATION_PL

|-NNPP (proper noun)
|-NNP_PHS (plural proper noun)
|-NNP_PH (singular proper noun)

|-NAMEDENTITY
|-LOCATION_NNP

Figure 1 – Tag ontology inheritance for
LOCATION_NNP

Our parsing algorithm uses a regular grammar that
recognizes dependencies up to 20 tags away. Parsing rules
are applied in six cascaded finite state automata (FSA).
The first three levels of the FSA complete named entity
recognition and noun phrasing, not including noun
conjuncts. The last three FSA recognize embedded
clauses, complementary phrases, and the functional role of
the different phrases, such as subject, verb and object. In
many cases we ignore prepositional attachment. While the
first three levels rely heavily on rules using semantic word
classes to recognize named entities, the final three levels
utilize more syntax-related rules. We will now discuss the
parsing steps in greater detail.

AZ TerrorNet Components
The Arizona TerrorNet consists of several natural language
processing modules that are combined together to
recognize relationships between known terrorists and then
assemble those relationships into networks. The ordering
of the components that make up the architecture of the
TerrorNet is shown in Figure 2. We now explain in
greater detail the function of each component.

Tokenization and Tagging
The steps of tokenization and tagging are shown in Figure
2 within the box labeled 1.The parsing begins by applying
regular expressions that recognize dates, percents, address
information, and monetary expressions in the text. Next,
tokenization algorithms recognize word boundaries and
sentence boundaries. The sentence splitting relies on a
lexicon of 300 common abbreviations and rules to
recognize new abbreviations. Documents are tokenized
generally according to the PENN TREE BANK tokenizing
rules for handling apostrophes and punctuation. In
addition, words are also split on hyphens. After
tokenization, phrases are recognized and tagged using
finite state automata (FSA) so that each word in the text is
visited only once. Approximately 18,000 phrases are
tagged. Tagged phrases include locations, organizations,
as well as discourse phrases such as “on the other hand”
and multi-word prepositions, such as “by means of”.
Discourse phrases were adopted from research by Marcu
(Marcu 2000). Tags applied to phrases are hybrid tags.
Next hybrid word tags are applied to remaining words in
the text using Brill’s transformation-based algorithm (Brill
1993). The contextual rules, originally trained on the

Tokenization
Hybrid
Phrase
Tagging

Entity
Identification

2. Phrasing
(chunking)

3. Tree
Construction

4. Relation Extraction

1. Tokenization/Tagging
Regular

Expressions
(dates &
nums)

Hybrid
Word

Tagging

Transformation
based

correction

FSA
LEVEL 1

FSA
LEVEL 2

FSA
LEVEL 3

Within document
Co-reference

Transformation
based word-sense

disambiguation

FSA
LEVEL 6

FSA
LEVEL 5

FSA
LEVEL 4

VERB Relation
identification

on LEVEL 6 output

VERB
relations

from levels
5 & 4

NOUN
relations

from levels
2 & 3

IF
Relation

Tag

5. Network
Construction

Between
doc co-

reference

Network
Aggregation

and link
naming

LOOP 2 WORK

START LOOP 2

LOOP 2

Figure 2 – The components of the Arizona TerrorNet

PENN TREE BANK and Brown corpora have been altered
to reflect the hybrid tags. In addition, due to our use of
hybrid syntax-semantic tags, many transformations are
related to word sense disambiguation. Thus we are using
the transformation-based algorithm for semantic and
syntax tagging at the same time. The transformation-based
algorithm has also previously been used for semantic
tagging in research (Wilks and Stevenson 1997).

Phrasing (Chunking)
Following tokenization and hybrid tagging, we perform
phrasing or chunking. Chunking, first proposed by Abney
(Abney 1991), is an attempt to group words together
recognizing linguistic theory as well as empirical studies of
how users group words. Chunking has been used before to
improve the parsing process (Ciravegna and Lavelli 1997).
An additional benefit is that chunks can be recognized by
computationally inexpensive methods. The process of
recognizing chunks takes place at different levels. The
smallest chunk we recognize is a named entity as defined
by the MUC-7 conference (DARPA 1998). These entities
include locations, people, organizations, dates, times,
money, and percents. So at the entity stage the phrase
“Microsoft employee Bill Gates” would be three chunks,
Microsoft/ORGANIZATION_NNP, employee/ROLE_SG,
Bill Gates/PERSON_NNP. Entity identification rules by
default do not descend the tag ontology, though adding a
flag to a tag forces it to descend the ontology. Level 1 of
the FSA performs just as the entity identification step, with
the only difference being that by default rules do use the
ontology to match candidate tag sequences. For evaluation
purposes, entities are considered named after level one of
the FSA. After training the parser on 41 (of the 100 total)
of the dry-run documents from MUC-7 we were able to
achieve an 85 percent f-score (equal weighting for
precision and recall) on the MUC-7 test set. Details of our
entity extraction approach are beyond the scope of this
paper. In general, sequences of hybrid tags are used to
identify named entities. All the parsing rules (including
both sections 3 and 4) use a binary rule format, with a rule
pattern (γαδ) and a corresponding transformation. From
the rule pattern, α is the rule core and cannot be empty.
The γ is prior context and the δ is future context and either
can be empty. A transformation is the new hybrid tag that
is added to the parse tree at the next higher level. An
example parsing rule is shown in Figure 3. In Figure 3, the
rule core is “NP CC NP” and is transformed to an NP
when the rule core is preceded by a “BY” tag and followed
by a “.” tag.
 At level 2 of the FSA, certain named entities are
combined together to form new named entities. For
example, the three tags “CITY_NNP , STATE_NNP” are
transformed to the tag LOCATION_NNP, where at level 1

the locations are left separate. At level 3 of the FSA
multiple entities of any kind can be combined together into
a single noun phrase. For example, “Microsoft employee
Bill Gates” would now all be a single phrase with the tag
PERSONCOMPLEX_NNP. Unlike just the
PERSON_NNP tag, the PERSONCOMPLEX_NNP lets
the parser know that a noun relationship exists within the
noun string, namely “Bill Gates - is employee of –
Microsoft”. After level 3, all noun phrases should be as
long as possible without creating any noun phrases with
coordinating conjunctions.

Tree Construction
At this stage, phrase structure parsing takes place. Rules
corresponding to this stage are primarily syntactic. As a
result, fewer rules exist in levels 4, 5, and 6 than at the
lower phrasing levels which tend to have more semantic
rules. In level 4, conjuncts of noun phrases are recognized
and transformed into new noun phrases, while
conjunctions serving discourse purposes are left alone.
Pronouns are also now combined with noun phrases and
prepositional phrases are constructed but not attached. The
rules at levels 5 and 6 identify embedded and relative
clauses. The tag string after the 6th cascade should have no
remaining embedded or relative clauses.

Relation Extraction
The relation extraction algorithm takes as input sequences
of up to 20 hybrid tags from the output of the phrasing and
tree construction stage. Relations at this stage are only
recognized within single sentences. Relation extraction
rule have a similar format as the parsing rules. The tag
sequence is matched against a rule pattern (γαδ) that has a
corresponding transformation. Like the parsing rules, only
the rule core (α) cannot be empty. The essence of the
transformation is that a set of relation definitions are

<GRAMMAR LEVEL= “4”>
<RULE NUM=1>
<RULEPATTERN>
<PREVIOUSCONTEXT TAG=”BY” />
<RULECORE>NP CC NP</RULECORE>
<FUTURECONTEXT TAG=”.” />
</RULEPATTERN>
<TRANSFORMATION>
NP
</TRANSFORMATION>
</RULE>
</GRAMMAR>

Figure 3 – A parsing rule with a rule pattern and
transformation

returned that correspond to the input sequence of hybrid
tags. Relations are roughly equivalent to subject, verb,
object relations. Which phrases participate in which
relations and in what capacity is then recorded to be
utilized by the transformation-based algorithm and by the
network construction algorithm.
 After relation identification has occurred for the first
time, AZ TerrorNet loops back to the transformation-based
algorithm. In this iteration, the transformation-based
algorithm transforms identified entities and/or their
boundaries based on an expanded group of features. The
feature set we use in this iteration includes the phrases’
functional role in the sentence (subject or object), the verb
class(es) corresponding to the phrase, and various
combinations of the hybrid tags surrounding the entity.
Some of the new features were made possible by the
higher-level parsing and relation identification steps
performed in the first loop. After the transformation-based
algorithm is done, control passes to the cascade of FSA
that perform chunking. All the parsing rules are rerun
based on the sequence of tags that have been transformed
for the second time. In this second loop, there are also
additional components that are added to the phrasing stage.
After level 1 of the FSA a within document co-reference
algorithm is run. In this step primarily pronouns are
resolved to their antecedents in the document. Because we
are extracting relations between people, the resolution of
pronouns is important. After level 2, the transformation-
based algorithm is run for the third and final time.
Different from the prior two times, the input into the
algorithm is a sequence of tags that have been combined at
a higher level in the tree. In addition, the transformations
taking place rely primarily on corresponding verb classes
and the functional role of the tags being transformed.
Finally, all transformations are allowed to occur at this
level regardless of whether the phrase has a history of ever
being properly tagged as the new tag.

Network Construction
Once the second loop of processing is complete, the
network is assembled in the network construction stage,
which is a two step process involving between document
co-reference and link classification. A between document
co-reference algorithm must recognize when different
noun strings in the nodes of the relations actually refer to
the same person. Because we are interested only in known
terrorists, the process of identifying the nodes begins by
comparing the people listed in the relations to a list of 400
known terrorist identified in previous research (Sageman
2004). The name matching algorithm requires at least last
names to match under all circumstances. If there are two
names in the string, then the last name and first name must
match. Heuristics are used to differentiate last names from

names indicating lineage, such as “al-Zawahiri”. If
matches cannot be made at first pass, different
transliterations of the names are generated and the
matching process is repeated. Examples of different
transliterations for the last name “Hussein” include
“Hocine”, “Husayn”, and “Hussayn”. We are currently
using a lexicon containing nearly 1,000 Arab names with
various transliterations.
 Once the nodes have been matched up and interactions
have been aggregated, the nature of the relationship
between the two people is characterized. A link
classification algorithm takes as input the verb classes of
the interactions between two people. The output of the
classification algorithm is one of seven relation categories.
The seven relationship categories used include friend, kin,
Imam, teacher, antagonistic type, operational/work type,
and one that cannot be determined. We are using the verb
classes identified by Beth Levine to train the classifier
(Levin 1993). When verbs of the MURDER class are
encountered, the classifier should return antagonistic type
of relationship. When verbs of the ADMIRE class,
however, are encountered the resulting classification
should be either friend or teacher. The classification
algorithm is currently being trained to improve
performance.

An Example Network
Once the relationships have been aggregated and a label
for the type of relationship generated, the network is
generated in XML and passed to a network visualizer for
display. A screen shot of the network visualizer is shown
in Figure 4. As a test of the Arizona TerrorNet, we
selected 200 previously unseen open-source news
documents that had been identified as useful by a domain
expert (Sageman 2004). We then ran all 200 documents
and produced a network. A subset of that network is
shown in Figure 4. As is seen in Figure 4, we have not yet
applied the link classification to the multiple connectors
between terrorists. As mentioned earlier, training is
currently underway to test the potential of a classification
into one of seven different relationship groups. The 200
documents used in the test came from such sources as the
New York Times, Washington Post, Al-Sharq al-Awsat,
The Boston Globe, Le Figaro, The Straits Times, Agence
France Presse, and the Los Angeles Times. Over 500
relationships were extracted from the 200 documents. In
Figure 4, the names that are capitalized have been matched
to lists of known terrorists. An Al Qaeda network expert
inspected the entire network produced from the 200
documents and confirmed many of the links.

Conclusions
We have presented an approach for extracting terrorist
networks from open-source texts, the Arizona TerrorNet.
The task requires the system to extract relationships from
various types of documents and thus extraction rules have
to be somewhat portable. In addition, more than just
extracting reported relationships, the system has to
aggregate relations and connect them in a network. The
aggregation and analysis steps have the potential to alert
analysts to relations that might not have been explicitly
stated in the text. An example of such a situation may
involve a transitive relation or a newly understood
interaction that is the result of several aggregated
interactions between the two terrorists. We ran the parser

on 200 previously unseen documents and produced some
promising results although very preliminary.

References
Abney, S. (1991). Parsing by chunks. Principle-Based Parsing.

Dordrecht, Kluwer Academic Publishers.
Brill, E. (1993). A Corpus-Based Approach to Language

Learning. Computer Science. Philadelphia, University
of Pennsylvania.

Ciravegna, F. (2001). "Challenges in Information Extraction from
Text for Knowledge Management." IEEE Intelligent
Systems and their Applications 16(6): 84.

Ciravegna, F. and A. Lavelli (1997). Controlling Bottom-Up
Chart Parsers through Text Chunking. 5th International

Figure 4: Automatically generated terrorist network from open source documents

Workshop on Parsing Technologies (IWPT97), Boston,
MA.

Ciravegna, F. and A. Lavelli (2001). "Full Parsing
Approximation for Information Extraction via Finite-
State Cascades." Natural Language Engineering 1(1):
1-21.

Ciravegna, F. and D. Petrelli (2001). User Involvement in
Adaptive Information Extraction: Position Paper.
IJCAI-2001 Workshop on Adaptive Text Extraction and
Mining, Seattle, WA, AAAI Working Notes.

Cowie, J. and W. Lehnert (1996). "Information Extraction."
Communications of the ACM 39(1): 80-91.

DARPA (1991). Proceedings of the 3rd Message Understanding
Conference (MUC-3), San Diego, California, Morgan
Kaufmann.

DARPA (1992). Proceedings of the 4th Message Understanding
Conference (MUC-4), McLean, VA, Morgan
Kaufmann.

DARPA (1998). Proceedings of the 7th Message Understanding
Conference (MUC-7), Washington, D.C., Morgan
Kaufmann.

Hobbs, J., D. Appelt, et al. (1996). FASTUS: Extracting
Information from Natural Language Texts. Finite State
Devices for Natural Language Processing. E. Roche
and Y. Schabes, MIT Press.

Huffman, S. (1995). Learning information extraction patterns
from examples. IJCAI-95 Workshop on new
approaches to learning for natural language
processing.

Kean, T. H., L. H. Hamilton, et al. (2004). The 9/11 Commission
Report, The 9/11 Commission. 2005.

Kim, J. and D. Moldovan (1995). "Acquisition of linguistic
patterns for automatic information extraction." IEEE
Transactions on Knowledge and Data Engineering
7(5): 713-724.

Levin, B. (1993). English Verb Classes and Alternations.
Chicago, The University of Chicago Press.

Mani, D., D. House, et al. (1998). The tipster summac text
summarization evaluation: Final report, DARPA.

Marcu, D. (2000). The Theory and Practice of Discourse Parsing
and Summarization. Boston, MA, MIT Press.

McDonald, D., H. Chen, et al. (2004). "Extracting Gene Pathway
Relations Using a Hybrid Grammar: The Arizona
Relation Parser." Bioinformatics.

Riloff, E. (1993). "Automatically constructing a dictionary for
information extraction tasks." Proceedings of the 11th
National Conference on Artificial Intelligence: 811-
816.

Sageman, M. (2004). Understanding Terror Networks, University
of Pennsylvania Press.

Soderland, S., D. Fisher, et al. (1995). Crystal: Inducing a
conceptual dictionary. 14th International Joint
Conference on Artificial Intelligence (IJCAI-95).

Tan, A.-H. (1999). Text Mining: The state of the art and the
challenges. PAKDD workshop on Knowledge
Discovery from Advanced Databases, Beijing, China.

Wierzbicka, A. (1989). Semantics, Culture and Cognition.
Oxford, Oxford University Press.

Wilks, Y. and M. Stevenson (1997). Sense Tagging: Semantic
Tagging with a Lexicon. SIGLEX Workshop on
Tagging Text with Lexical Semantics: Why, What and
How?, Washington D.C.

