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Abstract 
Homeland security researchers and analysts more than ever 
must process large volumes of textual information.  
Information extraction techniques have been proposed to 
help alleviate the burden of information overload.   
Information extraction techniques, however, require re-
training and/or knowledge re-engineering when document 
types vary as in the homeland security domain.  Also, while 
effectively reducing the volume of the information, 
information extraction techniques do not point researchers 
to unanticipated interesting relationships identified within 
the text.  We present the Arizona TerrorNet, a system that 
utilizes less specified information extraction rules to extract 
less choreographed relationships between known terrorists.  
Extracted relations are combined in a network and 
visualized using a network visualizer.  We processed 200 
unseen documents using the TerrorNet which extracted over 
500 relationships between known terrorists.  An Al Qaeda 
network expert made a preliminary inspection of the 
network and confirmed many of the network links. 

Introduction 
Terrorism researchers and analysts must process large 
amounts of news and other journalistic data to understand 
terror networks and analyze events. However, the amount 
of information published by national and international 
journalistic sources is quickly outstripping the boundaries 
of manual effort. While basic searching tools are helpful, 
there is a lack of automated document analysis that is 
tailored to tasks performed by terrorism researchers.  
Recently homeland security researchers have benefited 
from understanding the relationships between terrorists 
and their cells (Sageman 2004).  Information extraction 
techniques, however, have typically focused on fact 
finding and filling event templates as opposed to extracting 
terrorist networks.  
 In addition, relevant information about terrorism is 
spread in varied genre over the Internet.   For example, 
sources of information vary between personal interviews 
with suspected terrorists to the 9/11 commission reports 
and domestic and foreign court transcripts.  The varied 

sources of information reviewed by homeland security 
researchers and analysts would create a need for greater 
knowledge engineering efforts and/or algorithm training to 
create information extraction tools.  This need would be 
even greater for the MUC-style template filling extraction 
techniques that are highly specified with lexical 
constraints.  The requirement to re-train algorithms for 
every type and topic of document dims the promise of 
information extraction for reducing information overload. 
 We present the Arizona TerrorNet, a tool which 
automatically extracts terror networks from varied types of 
documents.  The AZ TerrorNet utilizes less specified 
information extraction techniques than those found in 
systems participating in the Message Understanding 
Conference template tasks.  The lower level of 
specification has two benefits.  First, a greater variety of 
less anticipated relations can be extracted from the text.  
Once aggregated, relations can potentially reveal less 
obvious and more interesting relations.  Second, the 
reduced use of specific lexical constraints in the Arizona 
TerrorNet makes it able to process a greater variety of 
document types from a greater number of domains.  As a 
result, the costs associated with knowledge re-engineering 
are reduced. 
 In this paper we first present some research background 
in the field of information extraction (IE).  The focus of 
the review is on different IE techniques that have different 
needs for knowledge re-engineering given new document 
types and domains.  Next, we present the collection of 
information extraction algorithms utilized in the Arizona 
TerrorNet.  We propose that the collection of algorithms 
and the aggregation process can discover relationships that 
are not entirely obvious in the text and thus are more 
interesting.  We then briefly present the result of parsing 
200 previously unseen documents from various 
International news sources.  A subset of the relations is 
shown and comments from a terrorist network expert are 
included.    



Background 
Missed information and subsequent lost opportunities have 
been reported as previous homeland security shortcomings 
(Kean, Hamilton et al. 2004).  Information extraction has 
been proposed as a method to manage vast amounts of 
information and thus avoid lost opportunities (Cowie and 
Lehnert 1996).  Information extraction techniques attempt 
to whittle away large amounts of text leaving only the most 
relevant pieces of information in a structured format.  The 
resulting information in its structured form can then be fed 
into databases for future analysis and mining.  
 Most previous information extraction tasks have focused 
primarily on incident and entity extraction, text 
summarization (Mani, House et al. 1998), and filling 
scenario templates (DARPA 1998). We are aware of one 
information extraction project where relationships between 
people were extracted.  In the early 1980's, Zarri worked 
on extracting semantic relationships between French 
historical figures from relevant texts (Zarri 1983). 
 Using information extraction techniques in hopes of 
assisting national security effort, however, is not new.  
Information extraction research has been aided largely by 
seven Message Understanding Conferences (MUC) funded 
by DARPA.  In the MUC-3 and MUC-4, newspaper and 
newswire texts were used that contained information about 
terrorist activities in Latin America (DARPA 1991; 
DARPA 1992).  Templates were created for different 
incidents such as arson and kidnapping.  Within each 
template, relevant information to the incident would be 
added such as the incident’s date, location, and incident 
type.  Use of the templates allowed precision and recall 
performance evaluations to be compared to human 
performance. 
 However information extraction algorithms are often 
designed to extract only specific information to fill 
templates.  As users’ tasks change over time, the need to 
engineer new information extraction routines is inevitable.  
This process of having to re-create information extraction 
routines to suit new domains and tasks is referred to as the 
knowledge engineering bottleneck (Cowie and Lehnert 
1996).   It is generally thought that the knowledge 
engineering bottleneck is the greatest impediment to more 
widespread adoption of information extraction (Ciravegna 
2001).  Research efforts in information extraction have 
attempted to reduce this bottleneck by lowering the 
knowledge engineering cost.  If algorithms can capture 
“shallow knowledge” automatically, then knowledge 
engineering has no significant cost. With no significant 
cost, the knowledge invested in the extraction routines 
does not necessarily have to be reused to be justified.  
Besides work on automatically extracting shallow 

knowledge, work has been done trying to maximize the use 
of end-users to train systems that can learn rules behind the 
scenes (Ciravegna and Petrelli 2001).  This line of research 
recognizes the cost of corpus annotation and tries to 
facilitate maximum end-user participation.  We now 
separate our review into systems that are highly specified 
and those that are more portable between tasks. 

Highly-Specified IE Template Systems 
As mentioned, information extraction systems are 
engineered to fill the slots of well-defined templates.   
Systems have often relied on specific lexical semantic 
patterns in sentences to guide the extraction of template 
information.  Autoslog (Riloff 1993), for example, utilized 
a trigger slot that was filled with a verb such as “bombed” 
or “robbed” to activate extraction.  Other systems such as 
Liep (Huffman 1995), Palka (Kim and Moldovan 1995), 
and Crystal (Soderland, Fisher et al. 1995) also utilized an 
exact word or verb root constraint as part of the extraction 
process.  While utilizing such narrow rules became a 
necessity to achieve high performance on the highly 
specified template filling tasks in MUC, such rules and 
template tasks in general have some drawbacks. First, the 
information that is extracted is not in a format that can be 
utilized for any but the intended task, which might be an 
alerting system and/or a historical record.  In addition, 
there is no text mining or discovery taking place with the 
text processing (Tan 1999).  Relations extracted are of a 
type that is anticipated and less interesting, despite being 
very relevant and accurate. Second, because systems use 
lexical constraints, the performance of the system is more 
dependent upon having training data of the type and 
domain of documents being processed. 

More Portable IE Parsing Algorithms 
While generally MUC systems have been task specialized 
and less portable, there are also examples of individual 
information extraction algorithms that have utilized more 
general and portable knowledge.  Many of these 
algorithms involve syntax parsing.  Ciravegna and Lavelli 
present a full parsing approximation approach using finite-
state cascades that is well suited for information extraction 
tasks (Ciravegna and Lavelli 2001).  Autoslog, mentioned 
earlier, also included a syntax module that was able to 
determine the functional role of phrases in sentences.  Such 
a module can be more easily reused on different domains. 
Also, one of the first to perform syntax analysis via 
cascaded finite state parsers was the FASTUS system from 
SRI (Hobbs, Appelt et al. 1996).  These systems all 
perform more syntax analysis than just phrasing and are 
able to do it using regular grammars and cascaded finite 
state automata, making the approaches feasible for large 
scale information extraction.   



The Arizona TerrorNet Approach 
As mentioned above, some information extraction systems 
are more tailored to specific tasks and thus less portable to 
different domains and document types.  The Arizona 
TerrorNet is required to parse documents and extract 
networks from varied source documents, thus requiring 
fewer lexical constraints.  Despite using fewer lexical 
constraints, semantic phrase analysis is still required as 
relations of interest include only those between people.  To 
meet the requirements of our extraction task and remain 
capable of extracting relations from multiple document 
types, we utilize a two-pronged strategy.  First, we utilize a 
hybrid syntax-semantic tag with inherited properties for 
tagging the words in each document.  The proper 
assignment of a hybrid tag is crucial for our semantic 
analysis.  Second, we utilize a large amount of syntax 
parsing in the network extraction process. 

Hybrid Syntax-Semantic Tag 
Typical information extraction systems conduct syntax and 
then semantic tagging/analysis in a pipelined approach. In 
the Arizona TerrorNet, we have combined that information 
into one tag.  We generally followed a naming convention 
where the tag head carried the semantic information and 
the syntactic information was carried by the tag tail (i.e. 
SEMANTIC_SYNTAX or LOCATION_NNP).  In 
addition, each hybrid tag is defined in a tag ontology 
where tags have "is a" relationships with multiple parent 
tags. For example, Figure 1 shows an example of a 
LOCATION_NNP tag and its inheritance path.  
LOCATION_NNP is a singular proper noun.  The tag, 
however, also inherits from general noun phrase, general 
semantic noun, semantic location, general proper noun, 
and finally named entity.  All algorithms that deal with the 
hybrid tags, such as transformation-based algorithms and 
parsing algorithms are aware of each tags inherited 
identities.  Thus, the more general a tag used in a rule is 
the more word classes and thus words will be affected. 
There are over 7,500 entries in the ontology with 3800 
different tags.   The majority of the tags come from verb 
groupings made by Beth Levine (Levin 1993).  For each 
verb class, for example WALTZ, there are corresponding 
syntax additions: WALTZ_INF, WALTZ_VB, 
WALTZ_VBD, WALTZ_VBG, WALTZ_VBN, 
WALTZ_VBP, and WALTZ_VBZ 
 Using hybrid tags allows the grammar to be expressed in 
terms of syntax, semantics, or both because some parents 
have entirely semantic properties while others have syntax 
properties.  For example, a rule that says combine a 
determiner (i.e. the) with a noun phrase (i.e. bomb) to 
create a new noun phrase (DT+NP=> NP) would apply to 

all the tags beneath NP in the hierarchy (shown in Figure 
1).  For that rule to just apply to location nouns, however, 
the rule would need to state a determiner with a location 
tag equals a noun phrase (DT+LOCATION=>NP).  In 
cases where more than one rule applies to a sequence of 
tags, the rule with the combined least number of hops to 
the actual tags is the one that is activated.  Syntax and 
semantic constraints can of course be expressed together in 
a grammar without using hybrid tags.  However, having 
the hybrid information in the tag allowed us to statistically 
learn many grammar rules from lexicon and corpora thus 
reducing the first-time knowledge engineering cost. 
 TerrorNet’s semantic analysis relies on properly 
assigning the hybrid tag, particularly the semantic portion 
of the tag.  There are differing views on how many word 
senses a lexical entry should contain (Wilks and Stevenson 
1997).  In our dictionary, we use fewer more vague tags 
more in line with research from Wierzbicka (Wierzbicka 
1989).  Our intention is to limit the number of semantic 
alternatives and thus improve tagging accuracy.  

More Syntax Parsing 
While full parse tree construction was limited in MUC, we 
have implemented additional syntax parsing to 
approximate fuller parsing.  While syntax parsing cannot 
outperform lexically-based extraction rules, generally 
fewer rules are required to cover a domain (McDonald, 
Chen et al. 2004). In addition, syntax rules can be more 
readily reused between domains.  By producing fewer 
rules that can potentially be reused on different types of 
documents, we reduce our knowledge engineering cost. 
We control the accuracy of our extraction rules by relying, 
when needed, on the semantic properties of the hybrid tag.   

NP (noun phrase) 
|-NN (non-proper noun) 

|-NN_SG (singular non-proper noun) 
|-LOCATION_SG 

|-NN_PL (plural non-proper noun) 
|-LOCATION_PL 

|-SEMNOUNS (semantic noun classes) 
|-LOCATION 

|-LOCATION_NNP 
|-LOCATION_NNPS 
|-LOCATION_SG 
|-LOCATION_PL 

|-NNPP (proper noun) 
|-NNP_PHS (plural proper noun) 
|-NNP_PH (singular proper noun) 

|-NAMEDENTITY 
|-LOCATION_NNP 

Figure 1 – Tag ontology inheritance for 
LOCATION_NNP 



Our parsing algorithm uses a regular grammar that 
recognizes dependencies up to 20 tags away.  Parsing rules 
are applied in six cascaded finite state automata (FSA).  
The first three levels of the FSA complete named entity 
recognition and noun phrasing, not including noun 
conjuncts.  The last three FSA recognize embedded 
clauses, complementary phrases, and the functional role of 
the different phrases, such as subject, verb and object.  In 
many cases we ignore prepositional attachment.  While the 
first three levels rely heavily on rules using semantic word 
classes to recognize named entities, the final three levels 
utilize more syntax-related rules.  We will now discuss the 
parsing steps in greater detail. 

AZ TerrorNet Components 
The Arizona TerrorNet consists of several natural language 
processing modules that are combined together to 
recognize relationships between known terrorists and then 
assemble those relationships into networks.  The ordering 
of the components that make up the architecture of the 
TerrorNet is shown in Figure 2.  We now explain in 
greater detail the function of each component.  

Tokenization and Tagging 
The steps of tokenization and tagging are shown in Figure 
2 within the box labeled 1.The parsing begins by applying 
regular expressions that recognize dates, percents, address 
information, and monetary expressions in the text. Next, 
tokenization algorithms recognize word boundaries and 
sentence boundaries. The sentence splitting relies on a 
lexicon of 300 common abbreviations and rules to 
recognize new abbreviations. Documents are tokenized 
generally according to the PENN TREE BANK tokenizing 
rules for handling apostrophes and punctuation. In 
addition, words are also split on hyphens. After 
tokenization, phrases are recognized and tagged using 
finite state automata (FSA) so that each word in the text is 
visited only once.  Approximately 18,000 phrases are 
tagged.  Tagged phrases include locations, organizations, 
as well as discourse phrases such as “on the other hand” 
and multi-word prepositions, such as “by means of”.  
Discourse phrases were adopted from research by Marcu 
(Marcu 2000).  Tags applied to phrases are hybrid tags.  
Next hybrid word tags are applied to remaining words in 
the text using Brill’s transformation-based algorithm (Brill 
1993).  The contextual rules, originally trained on the 

Tokenization
Hybrid
Phrase
Tagging

Entity
Identification

2. Phrasing
(chunking)

3. Tree
Construction

4. Relation Extraction

1. Tokenization/Tagging
Regular
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Transformation 
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correction
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IF 
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5. Network
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and link 
naming

LOOP 2 WORK

START LOOP 2

LOOP 2

Figure 2 – The components of the Arizona TerrorNet 



PENN TREE BANK and Brown corpora have been altered 
to reflect the hybrid tags.  In addition, due to our use of 
hybrid syntax-semantic tags, many transformations are 
related to word sense disambiguation.  Thus we are using 
the transformation-based algorithm for semantic and 
syntax tagging at the same time.  The transformation-based 
algorithm has also previously been used for semantic 
tagging  in research (Wilks and Stevenson 1997).  

Phrasing (Chunking) 
Following tokenization and hybrid tagging, we perform 
phrasing or chunking.  Chunking, first proposed by Abney 
(Abney 1991), is an attempt to group words together 
recognizing linguistic theory as well as empirical studies of 
how users group words.  Chunking has been used before to 
improve the parsing process (Ciravegna and Lavelli 1997). 
An additional benefit is that chunks can be recognized by 
computationally inexpensive methods.  The process of 
recognizing chunks takes place at different levels.  The 
smallest chunk we recognize is a named entity as defined 
by the MUC-7 conference (DARPA 1998).  These entities 
include locations, people, organizations, dates, times, 
money, and percents.  So at the entity stage the phrase 
“Microsoft employee Bill Gates” would be three chunks, 
Microsoft/ORGANIZATION_NNP, employee/ROLE_SG, 
Bill Gates/PERSON_NNP.  Entity identification rules by 
default do not descend the tag ontology, though adding a 
flag to a tag forces it to descend the ontology.  Level 1 of 
the FSA performs just as the entity identification step, with 
the only difference being that by default rules do use the 
ontology to match candidate tag sequences.  For evaluation 
purposes, entities are considered named after level one of 
the FSA.  After training the parser on 41 (of the 100 total) 
of the dry-run documents from MUC-7 we were able to 
achieve an 85 percent f-score (equal weighting for 
precision and recall) on the MUC-7 test set.  Details of our 
entity extraction approach are beyond the scope of this 
paper.  In general, sequences of hybrid tags are used to 
identify named entities.  All the parsing rules (including 
both sections 3 and 4) use a binary rule format, with a rule 
pattern (γαδ) and a corresponding transformation.  From 
the rule pattern, α is the rule core and cannot be empty. 
The γ is prior context and the δ is future context and either 
can be empty.  A transformation is the new hybrid tag that 
is added to the parse tree at the next higher level.  An 
example parsing rule is shown in Figure 3.  In Figure 3, the 
rule core is “NP CC NP” and is transformed to an NP 
when the rule core is preceded by a “BY” tag and followed 
by a “.” tag. 
 At level 2 of the FSA, certain named entities are 
combined together to form new named entities.  For 
example, the three tags “CITY_NNP , STATE_NNP” are 
transformed to the tag LOCATION_NNP, where at level 1 

the locations are left separate.  At level 3 of the FSA 
multiple entities of any kind can be combined together into 
a single noun phrase.  For example, “Microsoft employee 
Bill Gates” would now all be a single phrase with the tag 
PERSONCOMPLEX_NNP.  Unlike just the 
PERSON_NNP tag, the PERSONCOMPLEX_NNP lets 
the parser know that a noun relationship exists within the 
noun string, namely “Bill Gates - is employee of – 
Microsoft”.  After level 3, all noun phrases should be as 
long as possible without creating any noun phrases with 
coordinating conjunctions.   

Tree Construction 
At this stage, phrase structure parsing takes place. Rules 
corresponding to this stage are primarily syntactic.  As a 
result, fewer rules exist in levels 4, 5, and 6 than at the 
lower phrasing levels which tend to have more semantic 
rules.  In level 4, conjuncts of noun phrases are recognized 
and transformed into new noun phrases, while 
conjunctions serving discourse purposes are left alone.  
Pronouns are also now combined with noun phrases and 
prepositional phrases are constructed but not attached.  The 
rules at levels 5 and 6 identify embedded and relative 
clauses.  The tag string after the 6th cascade should have no 
remaining embedded or relative clauses. 

Relation Extraction 
The relation extraction algorithm takes as input sequences 
of up to 20 hybrid tags from the output of the phrasing and 
tree construction stage.  Relations at this stage are only 
recognized within single sentences.  Relation extraction 
rule have a similar format as the parsing rules.  The tag 
sequence is matched against a rule pattern (γαδ) that has a 
corresponding transformation. Like the parsing rules, only 
the rule core (α) cannot be empty.  The essence of the 
transformation is that a set of relation definitions are 

<GRAMMAR LEVEL= “4”> 
<RULE NUM=1> 
<RULEPATTERN> 
<PREVIOUSCONTEXT TAG=”BY” /> 
<RULECORE>NP CC NP</RULECORE> 
<FUTURECONTEXT TAG=”.” /> 
</RULEPATTERN> 
<TRANSFORMATION> 
NP 
</TRANSFORMATION> 
</RULE> 
</GRAMMAR> 

Figure 3 – A parsing rule with a rule pattern and 
transformation 



returned that correspond to the input sequence of hybrid 
tags.  Relations are roughly equivalent to subject, verb, 
object relations.  Which phrases participate in which 
relations and in what capacity is then recorded to be 
utilized by the transformation-based algorithm and by the 
network construction algorithm. 
 After relation identification has occurred for the first 
time, AZ TerrorNet loops back to the transformation-based 
algorithm.  In this iteration, the transformation-based 
algorithm transforms identified entities and/or their 
boundaries based on an expanded group of features.  The 
feature set we use in this iteration includes the phrases’ 
functional role in the sentence (subject or object), the verb 
class(es) corresponding to the phrase, and various 
combinations of the hybrid tags surrounding the entity.  
Some of the new features were made possible by the 
higher-level parsing and relation identification steps 
performed in the first loop.  After the transformation-based 
algorithm is done, control passes to the cascade of FSA 
that perform chunking.  All the parsing rules are rerun 
based on the sequence of tags that have been transformed 
for the second time.  In this second loop, there are also 
additional components that are added to the phrasing stage.  
After level 1 of the FSA a within document co-reference 
algorithm is run.  In this step primarily pronouns are 
resolved to their antecedents in the document.  Because we 
are extracting relations between people, the resolution of 
pronouns is important.  After level 2, the transformation-
based algorithm is run for the third and final time.  
Different from the prior two times, the input into the 
algorithm is a sequence of tags that have been combined at 
a higher level in the tree.  In addition, the transformations 
taking place rely primarily on corresponding verb classes 
and the functional role of the tags being transformed.  
Finally, all transformations are allowed to occur at this 
level regardless of whether the phrase has a history of ever 
being properly tagged as the new tag.    

Network Construction 
Once the second loop of processing is complete, the 
network is assembled in the network construction stage, 
which is a two step process involving between document 
co-reference and link classification.  A between document 
co-reference algorithm must recognize when different 
noun strings in the nodes of the relations actually refer to 
the same person.  Because we are interested only in known 
terrorists, the process of identifying the nodes begins by 
comparing the people listed in the relations to a list of 400 
known terrorist identified in previous research (Sageman 
2004). The name matching algorithm requires at least last 
names to match under all circumstances.  If there are two 
names in the string, then the last name and first name must 
match.  Heuristics are used to differentiate last names from 

names indicating lineage, such as “al-Zawahiri”. If 
matches cannot be made at first pass, different 
transliterations of the names are generated and the 
matching process is repeated.  Examples of different 
transliterations for the last name “Hussein” include 
“Hocine”, “Husayn”, and “Hussayn”.  We are currently 
using a lexicon containing nearly 1,000 Arab names with 
various transliterations. 
 Once the nodes have been matched up and interactions 
have been aggregated, the nature of the relationship 
between the two people is characterized.  A link 
classification algorithm takes as input the verb classes of 
the interactions between two people.  The output of the 
classification algorithm is one of seven relation categories.  
The seven relationship categories used include friend, kin, 
Imam, teacher, antagonistic type, operational/work type, 
and one that cannot be determined.  We are using the verb 
classes identified by Beth Levine to train the classifier 
(Levin 1993).  When verbs of the MURDER class are 
encountered, the classifier should return antagonistic type 
of relationship.  When verbs of the ADMIRE class, 
however, are encountered the resulting classification 
should be either friend or teacher.  The classification 
algorithm is currently being trained to improve 
performance. 

An Example Network 
Once the relationships have been aggregated and a label 
for the type of relationship generated, the network is 
generated in XML and passed to a network visualizer for 
display. A screen shot of the network visualizer is shown 
in Figure 4.  As a test of the Arizona TerrorNet, we 
selected 200 previously unseen open-source news 
documents that had been identified as useful by a domain 
expert (Sageman 2004).  We then ran all 200 documents 
and produced a network.  A subset of that network is 
shown in Figure 4.  As is seen in Figure 4, we have not yet 
applied the link classification to the multiple connectors 
between terrorists.  As mentioned earlier, training is 
currently underway to test the potential of a classification 
into one of seven different relationship groups.  The 200 
documents used in the test came from such sources as the 
New York Times, Washington Post, Al-Sharq al-Awsat, 
The Boston Globe, Le Figaro, The Straits Times, Agence 
France Presse, and the Los Angeles Times.  Over 500 
relationships were extracted from the 200 documents.  In 
Figure 4, the names that are capitalized have been matched 
to lists of known terrorists.  An Al Qaeda network expert 
inspected the entire network produced from the 200 
documents and confirmed many of the links. 



Conclusions 
We have presented an approach for extracting terrorist 
networks from open-source texts, the Arizona TerrorNet.  
The task requires the system to extract relationships from 
various types of documents and thus extraction rules have 
to be somewhat portable.  In addition, more than just 
extracting reported relationships, the system has to 
aggregate relations and connect them in a network.  The 
aggregation and analysis steps have the potential to alert 
analysts to relations that might not have been explicitly 
stated in the text.  An example of such a situation may 
involve a transitive relation or a newly understood 
interaction that is the result of several aggregated 
interactions between the two terrorists.  We ran the parser 

on 200 previously unseen documents and produced some 
promising results although very preliminary. 
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