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Abstract 

We establish theoretical limits on the performance of  cer-
tain data mining algorithms based only on the properties of 
the data sets being considered. We demonstrate the use of 
the bounds with an example based on data generated by an 
artificial world simulator. We point to extensions of this 
work and to connections with other fields. 

Introduction1 
Data mining techniques can discover and extract hidden 
patterns about terrorist activities buried in large data 
stores, or so it is conjectured. However, given the finan-
cial and social costs of collecting and processing such 
data, it is incumbent upon those responsible for homeland 
security to evaluate the potential benefit of such data min-
ing systems, namely, assess the ability to detect rare threat 
events and not to produce a large number of false alarms. 
We describe techniques from information theory that al-
low one to estimate performance before actually building 
the data mining system. These methods can also help to 
identify what kinds of information are most useful for 
detecting specified threat patterns. 

Technical Approach 

Objective 
We would like to establish a basis for evaluation of the 
performance of data mining algorithms. To do so, we set 
out to determine how much information is provided in the 
evidence relative to the question we are trying to answer 
(e.g. classification of a “case” as threat or non-threat). 
Specifically, given a sequence of events describing a case, 
we seek to measure how much additional information is 
needed, in order to always correctly classify it.  
 
The key to solving this problem is to cast it into a frame-
work that allows us to formally define and quantify the 
information contained in a dataset, as it relates to the de-
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tection task at hand. We will use the formalism of Infor-
mation Theory to define and quantify information 
 
We will approach our objective in three stages. First we 
will develop an information theoretic metric for data sets. 
Second we will develop an information theoretic metric 
for classifiers. And finally we will establish a connection 
between the two. The approach presented here builds on 
the work in White et al. 2004. 
Brief Review of Information Theory 
Given a discrete random variable X, with probability 
mass  function p(x),  we define the entropy of X, meas-
ured in bits as: 
 

 
(1) 

 

 
The entropy can be interpreted as a lower bound on the 
average number of bits necessary to encode realizations 
of the random variable X. 
 
Given two random variables X and Y, the conditional 
entropy of X given Y is defined as 
  

 

(2) 
 

 
 The conditional entropy can be interpreted as a lower 
bound on the number of bits necessary to encode realiza-
tions of X if Y is known. This leads to the definition of 
mutual information, that captures how much of the vari-
able X is known, by knowing only the variable Y and the 
joint distribution p(X,Y). The mutual information is de-
fined as: 
 

 
(3) 

 



 
The mutual information is the difference between the in-
formation in X and the information left in X once Y is 
known.  
Applying Bayes’ rule provides the following alternative 
expressions for the mutual information 
  

 

(4) 
 

The relative mutual information is defined as 
 

(5) 

 which measures the fraction of the information in X cap-
tured by Y. 
 
Characterization of Classifiers using Relative 
Mutual Information  
An important  special case occurs when X is a binary 
variable and Y is the output of classifier trying to detect 
the value of X.  In this case the conditional probabilities 
in the last row of Equation (4) are the true positive (Tp), 
false positive (Fp), true negative (Tn), and false negative 
(Fn) rates of the detector. Besides depending on the char-
acteristics of the detector, mutual information also de-
pends on the probability distribution of X. 
For a given  prior p(X), we can compute all the Tp, Fn 
pairs that correspond to a given relative mutual informa-
tion. These values correspond to the ROC curve of a clas-
sifier with the given Relative Mutual Information. Figure 
1 shows an example of these curves for a source with 
signal to noise ratio (SNR=p(X=true)/p(X=false)) of 1/9. 
 

 
Figure 1: ROC curves as a function of Relative Mutual 
Information for a classifier with input probability dis-

tribution p(X=F)=.9 
A common scalar figure of merit for a classifier is the 
area under the ROC curve (AUC). For a given Input 
source SNR, we can plot the AUC as a function of rela-
tive mutual information.  
 

 
Figure 2: Area under the curve as a function of relative 
mutual information, for a binary classifier with input 
SNR=1/9. 

 
As can be seen from Figure 2, these two scalar characteri-
zations of the classifier are in one-to-one correspondence 
for a specified SNR. 
 
Characterization of Classification Features using 
Relative Mutual Information  
Frequently, we wish to detect a hidden characteristic of a 
n entity, by relying on some of its observable aspects or 
features. In this case we will have three random variables 
to contend with. Variable X encodes the “ground truth” of 
the entity as to whether it satisfies the hidden characteris-
tic. Variable Y encodes the noisy observation of whether 
the source contains the feature selected for characteriza-
tion. Variable Z is the output of our classifier, i.e., our 
estimation of whether the source verifies the hidden char-
acteristic.  
The data processing inequality states that since X →Y→Z 
we will have (Cover and Thomas 1991) 
 
  

 
(6) 

 
 
And thus the classifier based on Y can’t provide  any 
more information than Y. The relative mutual information 
of the feature Y with respect to the input source is thus an 
upper bound on the performance of the classifier. 
 

 

 



Example 
As an example we consider relational evidence in an arti-
ficial world simulation. In this artificial world groups of 
people are busy at work carrying out various activities 
called exploitations. Some of these exploitations are part 
of the normal productive activity of society. Productive 
exploitations carried out by legitimate (non-threat) groups 
are denoted PNT. Productivity exploitations carried out 
by non-legitimate groups are denoted PT. Finally criminal 
exploitations are denoted V (and can only be carried out 
by threat groups). With each of these types of exploita-
tions there is an associated exploitation pattern: the set of 
activities carried out by the group to consummate the ex-
ploitation. Part of these pattern is the set of assets re-
quired to consummate them. These sets are called modes. 
We identify  legitimate productivity modes and unlawful 
vulnerability modes. We will analyze the information 
content of the different components of the exploitation 
pattern. Every exploitation is either a V-type, a PT-type, 
or a PNT-type. We are trying to detect the V-type exploi-
tations. Each of these exploitations is “encoded” in the 
evidence by a sequence of events, such as team commu-
nications (FTC), visit to targets, acquisition of resources 
and application of assets. We extract one or more features 
of that pattern to determine how much information it con-
tains (with respect to the exploitation type). For example 
we will consider the delay between team communication 
events and team visit events, the number of team commu-
nication events, or the type of team communication event 
used. (See Figure 3) 
For each of these pattern components we compute the 
(relative) mutual information as well as the tell strength as 

defined in Equation (7). The numerical results are shown 
in Table 1. 

 
To compute the relative mutual information with respect 
to the application of pairs or triples of assets we assume 
that the productivity and vulnerability modes exploited 
are picked at random with uniform probability among all 
the declared modes. If this is not the case the numbers 
reported can degrade significantly. 
For distinguishing between V and not-V we compare mu-
tual information to tell-strength, a metric of the difference 
between two probability  distributions f and g defined as: 
 

 
(7) 

Relative Mutual Information Sub-pattern  Component 
V, PT,PNT V, not-V 

Tell Strength 

1 1 Delay between FTC events 0.071655 0.077672 0.258966 
2 2 Delays between FTC events 0.141408   
3 3 Delays between FTC events 0.208852   
4 1 Delay between 2-ways in FTC 0.078632 0.112209 0.383471 
5 Choice of communication type 0.216642 0.242149 0.571109 
5a 4 Choices of Communication type 0.596593   
6 Number of cycles in an FTC Event 0.034999 0.029379 0.193191 
7 Team Visit Target Event 0.017829 0.024477 0.132577 
8 Two asset applications observed  0.396797 0.734418 
9 Three asset applications observed  0.844339 0.974580 
10 1+4+5+7 0.351227 0.390343  
11 1+4+5+7+8  0.6388  
12 5+9  0.863613  

 

Table 1:  Relative Mutual Information for single and combined features of the pattern 

 
 

 
Figure 3: Definition of the variables X and Y used in 

the analysis of information contained in the Event 
pattern components. 



Quantifying Data Association 
The results in Table 1 are based on correctly associating 
all pieces of evidence with their unique cause. This is 
represented graphically in Figure 4. We will denote the 
corresponding random variable Ŷ. 

 
Figure 4: What we need: evidence connected to their 
exploitation. Line types denote separate cases. 
 

 
In practice, the datasets will not include case tables for 
the evidence. This situation is represented in Figure 5. We 
denote the random variable that commingles the data cor-
responding to all the cases with the symbol Y. To quantify 
the information loss due to the commingling of the data 
we introduce an additional random variable C, which  
encodes the association of each piece of evidence with its 
corresponding case. 

Figure 5: What we have: all evidence commingled. 
Cases are not labeled. 
 

 
Applying the transitive property of mutual information 
we can connect the information content of Ŷ and Y, as 
shown in Equation (7).  

 
(7) 

 
The second term on the right-hand side  in Equation (7) is 
the information lost  

 (8) 

 

Connections to System Identification 
The problem of bounding the performance of a classifier 
is akin to the problem of System Identification. In its dis-
crete event form, the most common application of system 
identification is in the field of Hidden Markov Models. 
The problem is to determine which model can best predict 
the output of a target or true system. Information theoretic 
metrics are used to measure the distance between the tar-
get system and the proposed model. Given the target 
model and the set of models from which to choose a 
bound on the goodness of fit can be obtained using argu-
ments similar to those in this paper. (See, for example, 
Ljung 87.) 

Conclusions and Challenges 

 
Our research indicates that Information theory can be 
used to develop consistent metrics for data mining algo-
rithm performance and for the information content of  
evidence data-bases. These metrics can be used to deter-
mine how well a data mining  algorithm can possibly per-
form even before the algorithm is constructed. To further 
our theoretical developments and to develop practical 
applications further progress is required. 
 
This analysis assumes that the components of the evi-
dence associated with an event of interest have been cor-
rectly identified. We are currently investigating how to 
measure the effect of clutter and corruption. 
 
Exact computation of mutual information has combina-
toric complexity. When computing the relative mutual 
information due to a set of features, the computation time 
grows with the product of the number of possible values 
of each feature. This fact makes exact computation im-
practical for more than a few features with low cardinal-
ity. Approximate computation of Mutual Information is 
an active field of research (e.g., in bioinformatics), and 
several new methods have been proposed. These methods 
need to be extended and applied to the problem of meas-
uring the information on large relational databases. 
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