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Abstract 
The dependability of health care organizations may be improved 
limiting clinical risks and adverse events. This paper describes a 
project, implemented in a haemodialysis department, which is 
aimed at exploiting the results of a dialysis monitoring system to 
dynamically extract risk profiles for the patients and the clinical 
centres. These risk profiles allow defining decision support 
strategies able to adaptively minimize risks and improve patient 
safety. We focus on the problem of managing clinical risks, in 
terms of events which influence the risk of hospitalization and 
mortality and their expected costs. The developed tool takes 
advantage of an “Incident Reporting System” (Hemostat) and 
exploits a Bayesian network approach to estimate clinical risk 
and to propose therapeutic and strategic decisions. 

Introduction 
Health care organizations (HCOs) have nowadays evolved 
into complex enterprises, in which the capability of 
managing risks is a key factor of success for what 
concerns both the efficiency (including economic results) 
and the efficacy (outcome results) of the delivered care. 
Risk management involves all activities and actions 
performed to improve health care performances and to 
guarantee security of patients; the security is also based on 
learning from events [Clements 1995]. 
In HCOs we can distinguish two different kinds of risk 
management: “innate” risk management and clinical risk 
(CR) management. The former is the management of the 
generic risks of any company (such as fires, natural 
disasters, liability lawsuits, work injuries, and other types 
of accidents or legal actions). The latter is linked with the 
particular service supplied, i.e. the health care delivery. In 
general, an adverse event is defined as an unwanted 
damage and uneasiness due to health service’s supply 
which provoke morbidity, mortality or a longer hospital 
stay; the damage and the uneasiness should not be related 
to the natural worsening of patient disease. Malpractice is 
defined as a medical care under average standard of a 
person with specialized training and education [Committee 
on Quality of Health Care in America, Institute of 
Medicine 1999, Commissione tecnica sul rischio clinico 
2003]. 
The events which provoke a damage and financial losses 
are more frequent during the health service’s supply than 
in other activity (Fig. 1); denunciations and insurance 
premiums are rising since patients started to actively 

protect their rights. Sometimes, in the United States 
physicians have difficulties to work due to the high costs 
of professional insurances. It is therefore crucial not only 
for the patients’ benefit but also for the overall healthcare 
system to develop methods for adaptively assessing risks 
and to take decisions to reduce or hold them [Walshe 
2001]. 
 

 
Figure 1: Different causes that provoke annual accidental deaths 
in the United States. 

In our case, we will concentrate on the problem of 
managing clinical risks in haemodialysis departments. We 
will focus on patient safety, i.e. the basic problem that 
diagnostic and therapeutic practices may cause adverse 
events that influence the hospitalization and mortality risks 
of patients. We also analyze how the clinical risk impacts 
on expected costs both for the patients and the clinical 
department. In the paper we describe the decisional and 
adaptive features of the developed tool, consisting of two 
elements: an “Incident Reporting System” (called 
Hemostat) and a graphical model (Bayesian Network). 

Managing clinical risks in haemodialysis 
departments 

End Stage Renal Disease (ESRD) is a severe chronic 
condition that corresponds to the final stage of kidney 
failure. Without medical intervention, ESRD leads to 



death. More than 80% of the ESRD patients are treated 
with Hemodialysis (HD). In HD the blood passes through 
an extra-corporal circuit where metabolites are eliminated, 
the acid-base equilibrium is re-established and the water in 
excess is removed: a device called hemodialyzer regulates 
the overall procedure. In general, HD patients undergo a 
dialysis session for about four hours three times a week in 
day-hospital [Wolff et al. 2001]. 
The dialysis treatment has very high costs and it is very 
demanding from an organizational viewpoint: a medium 
size centre may manage up to 60 patients per day and this 

process requires highly specialized personnel, day hospital 
beds, and at least 30 hemodialyzers plus the disposable 
material. HD patients, besides the natural worsening of 
ESRD, undergo several clinical risks affecting their safety 
and the health care performances. In particular, the main 
risks are re-hospitalization, due to cardiovascular 
complications, vascular access problems, septicaemia, and 
death [Rayner et al 2004]. 
Recent clinical studies have shown that such risks are 
increased by several factors (see Fig. 2), mainly related to 
a poor adherence of patients and health care givers to the

treatment plans periodically provided by nephrologists 
[Saran et al. 2003]. For our purpose, non-adherence is 
defined as the failure to follow a prescribed treatment 
during a dialysis session; as a consequence, at the end of 
dialysis sessions, one or more patient monitoring variables 
will not attain their target. We denote the non-adherence 
as the adverse event occurring during dialysis sessions. 
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Figure 2: Associations with mortality, hospitalization and non-
adherence [Saran et al. 2003]. Missed dose means missing one or 
more dialysis session per month (vs. not missing); IDWG = 
Interdialytic Weight Gain; PO4= Phosphate levels > 7,5 mg/dL. 

It is possible to define also “near miss events”. They occur 
whenever controls (e.g. automatic system or staff 
interventions) avoid adverse event to happen. “Near-
misses” have a double function: they inform teamwork on 
critical aspects of a patient’s dialysis sessions and the 
vulnerability type (e.g. efficiency of the hemodialyzer or 
dialysis, see above) [Brennan et al. 1991]. They’re useful 
to sort the adverse event into foreseeable and 
unforeseeable ones. In this way, staff or governance may 
choose the optimal decisions to manage, reduce and hold 
clinical risks. 
We define as a near-miss a session in which the 
compliance with the therapeutic protocol is reached after 
an intervention not foreseen in the therapeutic protocol 
itself. 

Data Sources for estimating Clinical Risk 
To monitor non-adherence we have implemented an 
Incident Reporting System, called Hemostat [Bellazzi et 
al. 2004] (Fig. 3), which collects automatically the data 
measured during each dialysis session, compares them 

with the treatment plan and provides statistics about the 
achievement of the treatment goals [Leape 1999]. This  
 
 

 
 
 
 
 

Figure 3: The architecture of the Incident Reporting System. 

system is designed to overcome the open problems of 
obligatory or voluntary reporting, since the automation 
allows to not modify the usual clinical workflow. 
Moreover it treats non-adherence events as incidents; on 
the contrary, in general, staff acknowledges them as 
natural consequences of health care’s supply and disease. 
Hemostat allows building a data base where the adverse 
events and the “near-misses” are reported every time they 
happen. In more detail, the data collected on each patient 
during HD monitoring are related to: 

i) dialysis efficiency, evaluated by measuring the 
blood flow in the extra-corporal circuit (QB), the 
body weight loss (WL) and the dialysis time (T); 

ii) efficiency of the hemodialyzer, evaluated through 
the pressures of the extra-corporal circuit after 
blood extraction (arterial pressure, AP) and before 
blood re-entry (venous pressure VP); 

iii) body water reduction and hypotension episodes, 
measured through the systolic and diastolic blood 
pressures and the cardiac frequency; 

iv) overall patient’s status, measured through the 
difference with the “ideal” weight at the end of 
dialysis (PS), phosphate level (PO4), albumin and 
residual creatinine clearance; 

v) staff intervention on AP, VP, T, QB and WL 
through drug administration or target change. 

We exploit the following patient measures of non-
adherence: 

i) the comparison of the median HD session levels 
of VP, AP with pre-defined thresholds; 
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ii) the difference (QBR) between the prescribed 
QB and its median values; 

iii) the difference (TR) between the prescribed 
dialysis time and the observed one; 

iv) the difference (WLR) between the prescribed 
weight loss and the weight loss measured at the 
end of the dialysis; 

v) the difference between the weight reached at the 
end of the dialysis and the target weight of the 
patient (PSR). 

Data collection comprehends personal data and patients 
history, such as age, gender, comorbidity and number of 
days from the first dialysis session in the department; 
moreover quarterly follow-up updates are also collected, 
including Kt/V (i.e. a fraction that compares the amount of 
fluid that passes through the dialyser with the amount of 
fluid in the patient's body), albumin, residual creatinine 
clearance, phosphate level and parathyroid hormone. 
The whole data are aimed at managing CR: exploiting the 
results about non-adherence we dynamically derive risk 
profiles for the patients and we estimate the overall risk 
assessment of the clinical centre; these risk profiles allow 
defining decision support strategies able to adaptively 
minimize risks and improve patient safety. 

An adaptive decision risk management system 
In general, a risk is defined as the combination of the 
probability of occurrence of an harm and the severity of 
that harm. Risk management comprehends two aspects: 
assessment and control (Fig. 4). 
Clinical risk assessment is the process involving risk 
analysis and risk evaluation. The former is the systematic 

use of available data sources to identify CRs and estimate 
them; it also includes the choice of a methodology taking 
into account a given context (e.g. HCO, HD department or 
patient); the latter is the judgement, on the basis of risk 
analysis and context, of whether a risk is acceptable (for 
example, through cost/benefit analysis or outcome results 
versus targets). Whenever a risk is not acceptable, it is 
necessary to take decisions, in order to avoid it or to 
reduce its probability. This phase is defined as “risk 
control”. 
In our application risk assessment and risk evaluation are 
performed by the HD department through the evaluation 
of the data collected by the Hemostat system. Such 
evaluation is performed with an approach based on 
Bayesian Network (BN) [Jensen 1996, Heckerman 1996, 
Cornalba and Giudici 2004]. BNs are also applied to 
perform the decisions needed in the risk control phase. 
BNs are particularly suited for CR management. They 
allow to clearly express the relationships between the 
problem variables and to learn risk profiles from the 
available data. Furthermore, they may add knowledge on 
the dependences among adverse events and their causes 
(i.e. measures of non-adherence) and help to take the 
optimal decisions and interventions to minimize risks. 
Thanks to BNs’ decision theoretic approach, it is also 
possible to evaluate interventions, strategic decisions 
effects and their economic impact. 
Rather interestingly, our goal will be not only to enhance 
the patient safety, but also to improve the performance of 
the overall HD department. Our proposed system will 
allow to obtain an organizational learning, i.e. a “double 
loop-learning”, which learns at the patient and at the 
system level, as better explained in next paragraphs. 

 
 

 
Figure 4: The risk management process. 
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Bayesian Networks for defining risk profiles 
In our system we have identified two clinical “damages”; 
re-hospitalisation and survival; moreover, we have 
identified an organizational risk: the expected cost. 
Knowing that such risks are related to non adherence to 
treatment protocol [Saran et al. 2003], we have exploited 
non-adherence monitoring results to extract risk profiles 
for patients and clinical centres. In particular, there is a 
positive association between hospitalization and time of 
dialysis sessions and phosphate levels, while mortality is 
also related with interdialytic weight gain (figure 2, see 
before). 
Data for estimating risks are obtained from the data 
collected through Hemostat, from the personal data and 
the patient history. They are summarized through a set of 
discrete stochastic variables. A Bayesian Network model 
has been defined. The BN represents the probabilistic 
relationships 

i) among the monitoring variables, and 
ii) between such variables and the re-hospitalization 

and mortality risks. 
The probabilistic relationships between the outcome 
variables and the risks of re-hospitalization and of death 
are derived from a Cox regression model previously 
published [Saran et al. 2003]. Such model includes risk 
factors such as sex, age and type of renal disease. The 
relationships among the monitoring variables are learned 
from data. The model also includes direct expected costs, 
calculated through DRGs reimbursement rates. 
To complete the risk management system with risk control 
capabilities, the BN has been augmented with decision 
nodes, expressing the therapeutic protocol (see above). 
Dependencies among stochastic variables have been fixed 
before the learning phase, in order to express well-
established medical knowledge. Figure 5 shows the 
network topology constraint. 
 

 
Figure 5: The structure constrains and node’s typology. 

After the learning phase each patient’s network may have 
some new dependences discovered in the data (see above). 
The result is a therefore a different Bayesian Network for 
each patient, expressing the individualized risk profile. 
Such profile identifies all possible causes of non 
adherence and their relationships. The conditional 
probability distributions, learned exploiting the data 
coming from each dialysis session, complete the risk 
profile assessment. 
Our proposed risk assessment model gives us not only the 
probability of hospitalisation and mortality but also the 
statistical summaries of not adherence and their 
probabilistic relationships with the other monitoring 
variables. The overall model can be periodically updated 
in order to adapt both the structure and the conditional 
probabilities to the new data coming from patients’ 
monitoring. We decided to perform the updating of the 
conditionals quarterly, while the structure is changed with 
a sliding window of one year. 
The next step of the risk management process is risk 
evaluation: nephrologists and health care managers judge 
the acceptability of the risk of each patient of 
hospitalization, mortality and the expected costs.  
Thanks to the availability of decision and utility nodes, the 
model can also assist users in testing the effect of a change  
in diet or treatment (a longer dialysis session, a different 
blood flow in the extra-corporal circuit or body weight 
loss) and in taking proper decisions both at the patient and 
at the organizational level. In this way also risk control 
may be reached by using our system. 
 
 
Statistical analysis and results. A retrospective analysis 
has been performed on data coming from 46 patients 
without any residual renal function and with similar 
demographic characteristics (age, nationality and race) 
from the Limited Assistance Centre1 of the hospital of 
Mede (PV), Italy. The patients have been monitored for 
more than two years, and more than 6000 dialysis sessions 
have been collected. 
To simplify the assumptions, we suppose that the 
probability distributions of the database are unbiased. 
Moreover, the prior probabilities of the model are taken 
from literature; in case no information is available we 
assume that the variable has a uniform distribution. 
Two BNs derived for two different patients are shown in 
Figures 6 and 7. The network topology and the marginal 
distributions are different from each other. In the first 
network, a non-adherence in the dialysis session duration 
(TR) influences interdialytic weight gain non-adherence 
(WLR), while in the second one a monitoring variable, 
PO4, influence non-adherence for WLR. 
For what concerns the individualized risk profile for 
hospitalisation, we can see that the first patient presents a 
yearly risk lower than the second one. Of course, also the 
costs for re-hospitalization are lower. 
 
                                                 
1 A limited assistance centre is a dialysis centre where the 
permanent staff is composed only by nurses. 



 
 

 
Figure 6: The two BNs learned for two patients over a 
monitoring period of one year. BNs have been learned using the 
HuginTM package. 

 

 
Figure 7: The marginal distributions learned for the two patients 
described in the example. 

We have performed several scenario analyses to evaluate 
how the hospitalization’s and mortality’s risk and costs 
change, after the introduction of evidence in the network. 
The purpose is to complete the risk assessment phase. 
Figure 8 shows the results obtained after three different 
scenarios analysis. In the first column, we can see the 
current hospitalization risk profile for a patient, the 
probability distributions for of dialysis duration (T), PO4 
and Blood Flux (QB). Finally, the expected cost is also 
shown. In the second and third column we can evaluate 
what happens on risk and costs if we perform some actions 
on either Qb or T. In the second column we force the 
value of Qb to be in the range of “medium” values. In the 
third column we can evaluate the effect of forcing T to be 
in the interval 240-270 minutes. Rather interestingly, the 
hospitalization risk is better controlled with an action on 
Qb then strictly controlling the dialysis time. Also the 
distribution of expected cost shows that a tight control of 
Qb to medium values may lead to better results than fixing 
the dialysis time to (240-270) minutes. 
 

 
Figure 8: Three different scenario analysis and their marginal 
distribution, without introducing evidence, with Qb = “medium” 
and with T = “240-270 minutes”, respectively. 

Another interesting capability of our system is to 
dynamically adapt the estimates of the patient’s risk after 
conditional probability update. In Figure 9 it is possible to 
see how the marginal probability distributions change after 
a quarterly update. In this case the patient’s hospitalization 
risk worsened, due to a decrease of dialysis duration and a 
dramatic decrease of the blood flux. The latter was a 
consequence of a clinical problem, related to a bad 
functioning of the arterovenous fistula. 



 
Figure 9: Marginal distributions for a patient in the first and the 
second update. 

As far as we have seen, scenario analysis allows to 
highlights the critical elements which may have impact on 
patient’s risk. However, it is important to understand if 
there are aspects which are common to all patients, so that 
the dialysis department may suffer from the so-called 
“Vulnerable System Syndrome” (VSS). This issue may be 
dealt with the “double-loop learning” strategy. 

“Double loop learning” 
The “Vulnerable System Syndrome” (VSS) is usually 
present in every HCOs: adverse events and risks which 
affect each patient are also related to the organization and 
its context. To manage correctly the factors which 
determine VSS we need first to recognize them and then to 
apply effective methods to control them. This requires the 
so-called organizational learning. The basic level of 
organizational learning is the detection and correction of 
errors or unjustified clinical actions. This type of learning  
 
 

is known as “single loop learning”: it is implemented with 
the model described in the previous section. However, 
single loop learning tends to leave organisational goals 
and design of processes unchanged. More sophisticated 
learning which changes fundamental assumptions about 
the organisation is possible. This type of learning leads, 
for example, to redefine the organisation’s goals, 
management strategies, or design of processes. We can 
consider this organizational learning approach as a 
“double-loop learning”: it deals with the very nature of 
the management of a complex process, such as the 
workflow of a haemodialysis department. Double loop can 
overcame the current notion of human failure and identify 
and correct organizational conditions which generate a 
VSS [Reason, Carthey and De Leval 2001]. 
Using the scheme in Figure 10 it’s easy to understand how 
our system can be viewed as a tool for supporting 
organizational learning: single loop learning is 
implemented by learning the BN on each patient. 
To move to the double loop learning, we must scale up our 
proposed patient’s model to a department one. Figure 11 
highlights the double loop learning system implemented 
with BNs. Information on overall survival and 
hospitalisation risk is calculated taking into account all 
patients’ risk. It is therefore possible to evaluate the effect 
of the current strategy, in terms of personnel devoted to 
assist patients or the presence of self-management 
educators. Moreover, considering that the modifications of 
such policies have a direct impact on the probability of 
non adherence, it is possible to forecast the effect and to 
evaluate cost/utility of each alternative strategic actions 
both at the single patient and at the department level. In 
this case the tool is a patient-department-patients system. 
 
 

 
Figure 10: Single-loop versus double loop learning [Reason, Carthey and De Leval 2001]. 
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Figure 11: Double loop learning with BNs. The patient’s models 
allow to derive the risk profile of the dialysis centre and to make 
proper strategic decisions, which change the single patient 
policies. 

Conclusion and upcoming efforts 
The risk management process comprehends the 
identification, assessment and control of adverse events. 
Our proposed system implements such steps relying on 
two different tools: the Hemostat software, that collects 
data on each dialysis session, thus allowing to detect 
adverse events and “near-misses” and a Bayesian networks 
based risk assessment system, to derive risk profiles for 
single patients and HD departments. 
In this paper we have described the BN-based approach 
which analyse the available database to estimate a current 
risk profile for patients and departments. This approach 
also supports the prediction of the decision effects on the 
expected costs and utility thus allowing to choose the 
optimal treatment strategy to minimize risk: The BN 
probability distributions and topology are updated during 
the health care process, so that the risk assessment and risk 
control is made adaptive. 
There are intrinsic difficulties in empirical study of the 
BNs since they need to choose the prior distributions: we 
have derived them from the literature when possible, 
trying also to put some constraints in variables causal 
relationships. However, when the network topology is 
learned from data the overall conditional independence 
assumptions may change, and this may lead to network 
instability. For these reasons we are working on the 
selection of the most proper frequency of BN structure 
updating (actually, yearly). 
Moreover, we are currently working on the complete 
definition of the double loop learning system. In particular 
we are defining the possible alternative decision support 
strategies at an organizational level, such as the presence 
of a dietician in HD department and the change of facility 
size; moreover we are also trying to design a sound 
probabilistic model to describe the effect of those changes 

into non adherence measures. Other research directions 
that we are currently investigating are related to 
introduction of more variables, such as demographic ones 
and to the possibility of cluster patients with the same BN 
structure, in order to understand if there are classes of 
common behaviours. Later on, we will plan a prospective 
study in order to assess the impact of such system in 
clinical practice. 
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