
PLASMA: Combining Predicate Logic and Probability for Information
Fusion and Decision Support

Francis Fung1, Kathryn Laskey2, Mike Pool1, Masami Takikawa1, Ed Wright1

1Information Extraction and Transport, Inc.

1911 North Fort Myer Dr., Suite 600
Arlington, VA 22209

2Department of Systems Engineering and Operations Research
George Mason University

Fairfax, VA 22030
{fung, pool, takikawa, wright}@iet.com

klaskey@gmu.edu

Abstract
Decision support and information fusion in complex
domains requires reasoning about inherently uncertain
properties of and relationships among varied and often
unknown number of entities interacting in differing and
often unspecified ways. Tractable probabilistic reasoning
about such complex situations requires combining efficient
inference with logical reasoning about which variables to
include in a model and what the appropriate probability
distributions are. This paper describes the PLASMA
architecture for predicate logic based assembly of situation-
specific probabilistic models. PLASMA maintains a
declarative representation of a decision theoretically
coherent first-order probabilistic domain theory. As
evidence about a situation is absorbed and queries are
processed, PLASMA uses logical inference to reason about
which known and/or hypothetical entities to represent
explicitly in the situation model, which known and/or
uncertain relationships to represent, what functional forms
and parameters to specify for the local distributions, and
which exact or approximate inference and/or optimization
techniques to apply. We report on a prototype
implementation of the PLASMA architecture within IET’s
Quiddity*Suite, a knowledge-based probabilistic reasoning
toolkit. Examples from our application experience are
discussed.

Introduction

Decision support in complex, dynamic, uncertain
environments requires support for situation assessment. In
an open world, situation assessment involves reasoning
about an unbounded number of entities of different types
interacting with each other in varied ways, giving rise to
observable indicators that are ambiguously associated with
the domain entities generating them. There are strong ar-
guments for probability as the logic of choice for reasoning

 Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

under uncertainty (e.g., Jaynes, 2003). Graphical models,
and in particular Bayesian networks (Pearl, 1988), provide
a parsimonious language for expressing joint probability
distributions over large numbers of interrelated random
variables. Efficient algorithms are available for updating
probabilities in graphical models given evidence about
some of the random variables. For this reason, Bayesian
networks have been widely and successfully applied to
situation assessment (Laskey et. al., 2000; Das, 2000).

Despite these successes, there are major limitations to
the applicability of standard Bayesian networks for situa-
tion assessment. In open-world problems, it is impossible
to specify in advance a fixed set of random variables and a
fixed dependency structure that is adequate for the range of
problems a decision support system is likely to encounter.
Nevertheless, graphical models provide a powerful lan-
guage for parsimonious specification of recurring patterns
in the structural features and interrelationships among do-
main entities. In recent years, a number of languages have
emerged extending the expressiveness of Bayesian net-
works to represent recurring structural and relational
patterns as objects or frames with attached probabilistic
information (Laskey and Mahoney, 1997; Koller and
Pfeffer, 1997; Bangsø and Wuillemin, 2000). There is an
emerging consensus around certain fundamental ap-
proaches to representing uncertain information about the
attributes, behavior, and interrelationships of structured
entities (Heckerman, et al., 2004). This consensus reflects
fundamental logical notions that cut across surface syntac-
tic differences. The newly emerging languages express
probabilistic information as collections of graphical model
fragments, each of which represents a related collection of
generalizations about the domain. These model fragments
serve as templates that can be instantiated any number of
times and combined to form arbitrarily complex models of
a domain. Recent work in probabilistic logic has clarified
the semantics of such languages (e.g., Laskey, 2004; Sato,
1998; Bacchus, et al., 1997).

PLASMA has its logical basis in Multi-Entity Bayesian
Network (MEBN) logic. A theory in MEBN logic consists
of a set of Bayesian network fragments (MEBN fragments,
or MFrags) that collectively express a joint probability
distribution over a variable, and possibly unbounded num-
ber of random variables. MEBN logic can express a prob-
ability distribution over interpretations of any finitely
axiomatizable theory in first-order logic, and can represent
the accrual of new information via Bayesian conditioning
(Laskey, 2004).

The PLASMA architecture is depicted in Figure 1. A
domain model consisting of a set of MFrags represents
probabilistic knowledge about types of entities (e.g., ob-
jects, processes, concepts), the attributes of each type, and
the relationships in which they can participate. A first-
order logic knowledge base expresses knowledge about
how to combine the MFrags into a Bayesian network for
reasoning about a given situation, where a situation is de-
fined as a given collection of background information,
reports from external sensors, and queries posed by the
user. These Bayesian network construction rules are called
suggestors because they encode suggested actions for the
SSBN construction module to take. A data interchange
module accepts queries from users, reports from sensors,
and computational results from special-purpose external
reasoners (e.g., a tracking, clustering, linear programming,
or other special-purpose module). The data interchange
model can also task sensors, request computations to be
performed by external special-purpose reasoners, and pro-
vide situation updates to users. The SSBN construction
module contains a logical reasoner that has access both to
the suggestors from the FOL knowledge base and to the
situation-specific probabilistic model. It performs FOL
inference by querying the suggestor rules to derive a set of
model construction actions. These actions may include
retrieving and instantiating MFrags from the MFrag
knowledge base; connecting the MFrag instances to the
SSBN by adding arcs and/or possible values for random
variables; and possibly pruning parts of the SSBN that
have become unnecessary to represent explicitly.

The remainder of the paper is organized as follows. The
next section discusses why integrating probability and
logic is both important and difficult, and provides an
argument for the approach taken by PLASMA. Next, an
example is presented of the kind of problem to which
PLASMA can be applied. The example is followed by a
brief overview of MEBN logic and situation-specific
Bayesian network construction. Next, the PLASMA
architecture is described in greater detail, followed by
conclusions and discussion.

Why Logic and Probability

An important technical challenge for combining first-order
logic with probability is that most statements about an un-
certain world are not known to be true, but rather are
assigned a probability. It is known that attempts to apply
first-order logic directly to uncertain situations can quickly

lead to undesirable deductions within the model. Bamber
(1998) gives an example in which a pure logical reasoner
applies the two rules: (1) “Aircraft carriers can launch
planes,” and (2) “Aircraft carriers with broken catapults
cannot launch planes,” and draws the conclusion that an
aircraft carrier with a broken catapult is a destroyer. This
happens because in classical first-order logic, rules cannot
have exceptions. If rules can have no exceptions, then
there can be no aircraft carriers with broken catapults and
any inference whatsoever about a null set of entities is
vacuously true.

Domain Model
(MEBN

Fragments)

User
Interaction

HCI

MEBN /
Rule HCI

Specialized
Reasoners

External Data
Sources

Queries

Query
responses

PLASMA
Queries

Data
Interchange

FOL KB
 (including
PLASMA

Suggestors)

Situation Updates

Incoming
Reports

Situation Specific
Probabilistic Model

SSBN
Constructor

BN
Inference

Sensor
tasking

Figure 1: PLASMA Architecture

Of course, rules in the real world have exceptions. A
burgeoning literature on default reasoning systems has
arisen to cope with the problem of handling exceptions.
However, there is no consensus on the fundamental princi-
ples that should govern the choice of when to apply de-
faults and what conclusions to retract when default conclu-
sions conflict. This lack of a firm theoretical foundation
gives rise to major practical difficulties for the application
developer. When a system performs incorrectly, it is not
clear whether the problem resides in the knowledge
encoded in the system or in the heuristics built into the
default reasoner. Additional difficulties arise from
attempts to share knowledge between applications built
under different reasoning paradigms. Heuristics applied
by modelers to induce a default reasoner to behave well on
a given application may work poorly when the knowledge
is ported to a different default reasoner. These are the
kinds of issues that led Bamber and others to argue for
probability as a logical basis for design of rule-based
reasoners. A probabilistic logic that can express
probability distributions over interpretations of arbitrary
first-order theories provides a solid foundation for a
probabilistic semantics of defaults.

It is often natural to state relationships using logical
implications even when the relationship is not strictly a
logical implication. For example, consider the statement,
“If a hostile ship is on a direct approach toward a friendly
ship and is moving rapidly, then it is attacking.” There is a
considerable degree of fuzziness about the definition of
terms such as “direct approach,” or “moving rapidly,” and
the rule may be applied even when there is some question
about whether there actually is an approaching ship or

whether the report is spurious. We would like to allow the
modeler to express model construction actions in a natural
rule form, without forcing the modeler to explicitly ac-
count for probabilistic relationships in the suggestor itself.

We have touched on some of the many difficulties that
can arise from the attempt to give ad-hoc probabilistic
interpretations to logical rules. IET’s approach to
overcoming this technical challenge is: to maintain a fully
probabilistic representation of the situation-specific model,
to use logical inference only as a guide for constructing
and augmenting the model, and then to compute query
responses by performing probabilistic inference on the
constructed model. To achieve this, PLASMA provides a
mechanism for promoting likely statements into provi-
sional assumptions that are analyzed by a logical inference
engine as if they were true. The inference engine is used
to evaluate suggestor triggers that guide the construction of
a situation-specific Bayesian network. That is, logical rea-
soning with default assumptions is used to select
hypotheses that are sufficiently promising to merit explicit
reasoning about their relative likelihoods, and exact or
approximate probabilistic inference is used to evaluate
these likelihoods.

For example, suppose that a limited amount of flu vac-
cine exists and we require judicious distribution in order to
prevent localized outbreaks from turning into national epi-
demics. Suppose that we define a local outbreak as any
situation in which more than ten people in a neighborhood
have the flu. Suppose that our data are at the symptom
level and that we also have data about patient addresses.
Our reasoning tools must be able to adroitly move back
and forth between probabilistically diagnosing individual
cases based on symptoms, aggregating the individual
cases, reasoning about which likely flu holders live in the
same neighborhood, and evaluating the likelihood of out-
breaks. PLASMA accomplishes this via threshold values
on model construction operations. So, for example, we
might set a threshold of .8 indicating that for purposes of
our suggestor reasoning tools, any person whose likelihood
of having the flu is greater than .8 is simply assumed to
have the flu. These individuals are regarded as definite flu
cases for purposes of constructing the situation-specific
model, but when the model is applied to draw inferences,
their medical conditions are again treated as uncertain.

A Case Study

We illustrate the PLASMA functionality using a scenario
taken from Cohen, Freeman and Wolf (1996). The article
presents a model of human cognition that the authors argue
accounts for the decision making process of the U.S.
captain and Tactical Air Officer (TAO). The authors state
that the officers’ reasoning was not Bayesian. We argue
that although they are correct that this kind of situated,
adaptive reasoning cannot be captured by a standard
Bayesian network, it can be modeled quite naturally by
MEBN logic and situation-specific Bayesian network
construction.

As the scenario begins, U.S. ships were conducting
freedom of navigation demonstrations in Libyan-claimed
waters. The Libyan leader was threatening to attack any
vessel that ventured below the “Line of Death.” One
night, a gunboat emerged from a Libyan port, turned
toward an AEGIS-equipped cruiser, and increased its
speed. The U.S. officers believed the gunboat’s behavior
indicated an intent to attack. First, a direct approach at a
speed of 75 knots by a combat vessel from a hostile power
is strongly indicative of an attack. Second, the Aegis
cruiser was a logical target for an attack by Libya, being 20
miles within the "Line of Death." Furthermore, apparent
missile launches toward other American ships had been
detected earlier that day, indicating that Libya was actively
engaging surface vessels.

However, there were conflicting indicators. The
gunboat was ill-equipped to take on the Aegis cruiser, let
alone the larger U.S. fleet poised to come to its aid. The
Libyans possessed air assets that were far better suited for
such an assault. However, the officers reasoned that the
Libyans might be willing to use every asset at hand against
the U.S., regardless of the consequences to the striking
asset. On the other hand, a more natural target for attack
would have been another U.S. cruiser even further below
the “Line of Death.”

A more serious complication was that the officers
believed that the gunboat probably did not have the
capability to detect the cruiser at the range at which it had
turned inbound. Perhaps, they reasoned, the gunboat was
receiving localization data from another source, or perhaps
it possessed superior sensing technology of which U.S.
intelligence was unaware. On the other hand, virtually any
maneuver by the track would have put it on a vector to
some friendly ship. Perhaps its direct line of approach was
merely a coincidence.

Thus, the evidence regarding the gunboat’s intent was
ambiguous and conflicting. The officers considered
several hypotheses, juxtaposing each against the available
background information and situation-specific evidence, in
an attempt to ascertain the intent of the gunboat. They
considered the hypothesis that the gunboat was on patrol,
but discarded that hypothesis because its speed was too
fast for a ship on patrol. The hypothesis they finally
settled on was that the gunboat was following a plan of
opportunistic attack (i.e., to proceed into the Gulf ready to
engage any ship it encountered). This hypothesis
explained its rapid speed, its inability to localize the Aegis
cruiser, and the fact that it was not the most appropriate
asset to target against a U.S. Aegis cruiser.

We developed a knowledge base consisting of:
• A set of entity types that represents generic knowledge

about naval conflict. These include:
o Combatants: Friendly and hostile combatant

MFrags represent background knowledge about
their high-level goals and their level of
aggressiveness.

o Plans: There are plans for provoked attacks,
opportunistic attacks, and patrols, as well as a
generic non-specific plan type to represent a plan

type not included among the hypotheses being
considered.

o Attack Triggers: An attack trigger is a kind of
behavior that might provoke an attack. We
modeled the U.S. presence below the “Line of
Death” as an instance of an attack trigger.

o Reports: Reports are used to model observable
evidence that bears on the hypotheses under
consideration.

• A set of suggestors that represents knowledge about
which hypotheses should be explicitly considered in
given kinds of situation. Suggestors are expressed as
first-order rules. The rules operate on observed
evidence (e.g., the cruiser is situated below the “Line
of Death”; the gunboat is on a rapid direct approach),
together with information about the current status of
the Bayesian network (e.g., no attack hypothesis has
yet been enumerated for the gunboat), and nominate
suggested network construction actions. Future
implementations will allow suggestors to nominate
pruning actions that delete low-probability hypotheses
from the probabilistic KB, to help make inference
more efficient.

• Particular facts germane to the scenario, including
background knowledge and observed evidence.

The suggestors for the gunboat model were based on the
following general rules, which are reflective of the kinds
of reasoning the officers applied in this scenario.
• Any ship sailing in its own territorial waters may be

on patrol. This was implemented as a suggestor
nominating a patrol as a possible plan for any hostile
ship.

• If a friendly ship is engaging in behavior against
which enemy has threatened to retaliate, then an attack
may occur. In this particular scenario, venturing
within the Line of Death might provoke an attack.

• A hostile asset approaching on a bearing directly
toward a ship may be attacking the ship it is
approaching. A rapidly approach strengthens this
inference. These rules were not implemented as
suggestors, but were instead represented as likelihood
information for the attack plans.

• In a provoked attack, the attacker must be able to
localize the target it is attacking in advance of the
attack. In an opportunistic attack, this is unnecessary.
This knowledge was implemented as likelihoods on
localization given provoked and opportunistic attacks.
There is also a suggestor that fires when the
probability of an attack exceeds a threshold, that
generates a request for evidence on whether the
attacker can localize the target, and another suggestor
that inserts the result of the report if the report exists.

• When there is evidence consistent with an attack but
the evidence conflicts with the hypothesis of a
deliberate, provoked attack, then opportunistic attack
is a possible explanation. This rule was implemented
as follows. There was a suggestor nominating a
generic “other” plan for any asset, representing a plan
other than the ones explicitly enumerated. There was

another suggestor specifying that if an attack has been
hypothesized, but the probability of “other” exceeds a
threshold (an indication of conflicting evidence), then
hypothesize an opportunistic attack as a possible plan
for the asset.

We exercised PLASMA on this scenario, obtaining
qualitative results similar to the analysis reported by
Cohen, et al. Initially, the provoked attack hypothesis
dominates, but as the evidence is processed, its incongruity
with the provoked attack hypothesis becomes more
apparent. This increases the probability of the “other”
hypothesis. A natural hypothesis to consider is the patrol
hypothesis, but it too is incongruent with the available
evidence. When the opportunistic attack hypothesis is
nominated in response to the failure of other plans to
account for the evidence, it becomes the dominant
hypothesis.

MEBN Logic

MEBN logic combines the expressive power of first-order
predicate calculus with a sound and logically consistent
treatment of uncertainty. MEBN fragments (MFrags) use
directed graphs to specify local dependencies among a
collection of related hypotheses. MTheories, or collections
of MFrags that satisfy global consistency constraints,
implicitly specify joint probability distributions over
unbounded and possibly infinite numbers of hypotheses.
MEBN logic can be used to reason consistently about
complex expressions involving nested function
application, arbitrary logical formulas, and quantification.
A set of built-in MFrags gives MEBN logic the expressive
power of first-order logic.

A set of MFrags representing knowledge for modeling a
gunboat attack scenario is shown as Figure 2. Each MFrag
contains a set of random variables. Random variables are
functions that map the entities filling their arguments to a
set of possible values characteristic of the random variable.
For example, IntendedOutcome(p) maps a plan p to a value
representing the outcome the agent intends to achieve.
Each MFrag contains resident random variables, whose
distribution is defined in the MFrag, input random
variables, whose distribution is defined in another MFrag,
and context random variables, which represent conditions
under which the distribution defined in the MFrag applies.
Whether a random variable is resident, input or context is
indicated by shading and bordering in Figure 2: bold-
bordered and dark gray indicates context, light gray and
thin-bordered indicates input, and white indicates resident.
Our example also includes report MFrags which are not
shown in the figure for reasons of space.

Logical and mathematical relationships can also be
expressed as MFrags. For example, in the gunboat
scenario the officers received a report that the gunboat was
headed directly toward the U.S. cruiser. For purposes of
this illustrative example, we chose to represent the
direction an asset was traveling with respect to its target as
a random variable with four possible values:

DirectApproach, GenerallyToward, NotToward, and
NotRelevant, and we assumed that evidence was provided
as likelihoods for these values. In a fielded decision
support application, a sensor would provide likelihood
information about the heading of the gunboat and the
geospatial coordinates of the U.S. ship. A coordinate
transformation would be applied to obtain the bearing of
the gunboat with respect to the U.S. ship. Although an
implementation might choose for efficiency reasons to
have coordinate transformations performed externally,
MEBN logic is capable of representing such
transformations as MFrags.

Figure 2: MFrags for Naval Attack MTheory

Typically, context random variables represent type and
relational constraints that must be satisfied for the MFrag
to be meaningful. A default distribution assigns a
probability distribution when the context constraints are
not met. In some cases, the default distribution will assign
probability 1 to the undefined symbol ⊥; in other cases, it
is appropriate to assign a “leak” distribution representing
the influence of not-yet-enumerated parents.

Figure 3: Situation-Specific Bayesian Network

The MFrags of Figure 2 define a coherent (that is,
consistent with the constraints of probability theory)
probability distribution over entities in the domain. This
probability distribution can be used to reason about group
membership of different numbers of objects reported on by
sensors with varying spatial layouts. For instance, Figure 3
shows a situation-specific Bayesian network (SSBN) for a
situation with two friendly cruisers and two enemy assets,

and several attack hypotheses. This SSBN was generated
by instantiating and assembling MFrags that represent the
relevant entities.

A straightforward combinatorial argument shows,
however, that this extremely simple MTheory can result in
situation-specific models of staggering computational
complexity when applied to problems with many assets
and significant uncertainty about the plans the assets are
pursuing. In typical problems encountered in
applications, excellent results can be obtained by applying
heuristic model construction rules to identify and include
those random variables most relevant to a given query, and
to exclude those having sufficiently weak influence to be
ignored.

PLASMA Architecture

To address the challenge of open-world situation assess-
ment, IET has developed, as part of its Quiddity*Suite
modeling and inference environment, an Execution
Management framework (Quiddity*XM) for specifying
and constructing situation-specific probabilistic models.
Situation-specific models are assembled from domain
models expressed in the Quiddity*Modeler probabilistic
frame and rule language. A Quiddity*Modeler frame rep-
resents a type of entity, its attributes (slots in the frame),
and the relationships it can bear to other entities (reference
slots that can be filled by instances of frames). Each frame
encodes an MFrag, where the resident random variables
correspond to slots for which the frame defines a distribu-
tion, the input random variables correspond to slots in
other frames that influence the distributions of resident
random variables, and the context random variables corre-
spond to logical conditions under which the distributions
are well-defined. A domain model also includes sugge-
stors, which are rules that represent knowledge about how
to construct situation-specific models. Suggestors can
specify which frames to instantiate or modify in a given
situation, and how to connect the frame instances to exist-
ing portions of the model. The execution manager uses
suggestors to manage the size and complexity of the situa-
tion-specific network. Quiddity*XM draws from the data-
driven and query-driven paradigms (Wellman, et al., 1992)
of knowledge-based model construction to assemble
situation-specific models in response to both incoming
data and queries.

As the suggestors recognize trigger conditions, they
make suggestions about which kind of objects or events
exist or might exist in the domain, and the kinds of
relationships these objects bear to the previously observed
or posited objects. In the original Quiddity*XM,
suggestors were implemented as small, often stateless,
procedural code modules. This approach is powerful, and
provides all the computational advantages of procedural
code versus declarative languages. However, the need to
write programs to express model construction knowledge
puts an undue burden on modelers to perform outside their
area of primary expertise. IET has attempted to make

HighLevelGoal(?c)

IntendedOutcome(?p) Owner(Platform(?p))

Agent(?p)

Platform(?p)
Owner(?a) Exists(?p)

Type(?p)

Attack Capability MFrag

NavalPlan

Isa(Asset,?a)
Isa(NavalPlan,?p)

Capability(?p)

Isa(Combatant,?c)

Exists(?r) Exists(?p)

Instigator(?r)
Isa(ProvokedAttack,?p)
Isa(AttackTrigger,?r) ?r=Trigger(?p)

SubType(Combatant,?c)

HighLevelGoal(?c) Aggressiveness(?c)

Combatant MFrag

Isa(Asset,?a) Isa(NavalPlan,?p)
Plan(?a) Exists(?p)

Exists(?a)
Asset MFrag

ProvokedAttack Existence MFrag

Isa(AttackTrigger,?g)
Isa(Combatant,?c)

?c=Agent(?g)

Capability(?p)

Aggressiveness(?c)

Exists(?p)

OpportunisticAttack Existence MFrag

Isa(Attack,?p) ?a=Platform(?p)
?c=Owner(?a)

Isa(Attack,?p) ?t=Target(?p) ?c=Owner(Platform(?p))
Type(?p)

Aggressiveness(?c) Instigator(?g)

Exists(?g)

Severity(?g)

AttackTrigger MFrag

Type(?t)

?a=Platform(?p))

suggestors less opaque with respect to our representation
language by moving them into the declarative knowledge-
based reasoning system within which our modeling
language is embedded. Thus, suggestors are represented
as first-order rules encoding knowledge about which
hypotheses to enumerate and which relationships to
represent, as a function of current beliefs, current evidence,
and the current query. The PLASMA architecture allows
the reasoner to move gracefully back and forth between
conclusions reached in the probabilistic reasoning system
and the first order logical reasoning system. Logical
reasoning about model construction actions is interleaved
with probabilistic inference within the current model.

We illustrate with our Libyan gunboat example how
PLASMA can implement first order-logic to represent
knowledge that facilitates the efficient creation of situation
specific networks. The DSS knowledge base contains a
domain model consisting of modeler-specified MFrags and
SSBN construction rules. These MFrags are represented as
frames with uncertain slots annotated with probability
information. In this problem, there are frames representing
combatants, naval assets, plans, reports, and other entities
of interest. These MFrags can represent relationships
between entities of different types (e.g., the owner slot of a
naval asset instance is filled by a combatant instance; the
target slot of a hostile attack plan instance is filled by a
friendly naval asset instance). Along with the MFrags, the
modeler also creates a set of suggestors that describe
conditions under which the situation-specific probabilistic
model should be revised, and network construction actions
to be taken under the given conditions. These suggestors
are represented as Prolog-style rules that suggest
conjunctions of network construction actions to be
executed as a bundle.

At run-time, this knowledge base is exercised against
reports and user queries to construct a situation-specific
Bayesian network that represents query-relevant
information about the current situation. At any given time,
there will be a current situation-specific Bayesian network
that reflects currently available reports and their
implications for queries of current interest. In our example,
the query of interest is the gunboat’s plan. Given this
current situation-specific Bayesian network, the Bayesian
inference module draws conclusions about the likelihood
of the different possible plans for the gunboat.

Changes to the current SSBN can occur as a result of
incoming reports, queries posed by the user, or internal
triggers stated in terms of the current belief state. The
current prototype uses a Prolog-type language and
inference, reasoning with Horn clauses. The PLASMA
model construction paradigm can be described as follows.
First, there is the FOL KB, where the modeler defines the
vocabulary to express trigger conditions. Using the
supplied interface predicates for interfacing with the
probabilistic KB, the modeler can capture a fine-grained,
expressive set of assertions that declare when particular
model construction actions should take place. For instance,
we can define a trigger that asserts that “IF ship is slightly

below LOD, THEN moderately severe attack trigger
should be hypothesized”:
 instigatesAttackTrigger(?shp,Libya,Moderate) :-

 location(?shp, BelowLOD, Slightly);

Then, the modeler declares what actions should be taken
as a result of the appropriate trigger conditions being
satisfied. These are declared in a convenient form
 <predicateName>(<set of actions to be taken>) :-
 <trigger conditions>.

For instance, the following suggestor indicates that a
hypothetical instance of AttackTrigger (i.e., one with an
uncertain probability of existing) should be declared if the
trigger condition holds.
 hypotheticalEntity(AttackTrigger,"instigator",

 ?platform):-

 instigatesAttackTrigger(?platform,?agnt,

 ?severity)

The hypotheticalEntity predicate is one of a set of
generic PLASMA predicates which modelers can use in
the construction of domain-specific suggestors. This
predicate is used to suggest the model construction action
of creating a hypothetical instance of the AttackTrigger
frame and setting its “instigator” slot to the frame
instance bound to ?platform. Specifically, when a binding
succeeds for hypotheticalEntity such that its first
argument is a frame type, its second argument is a
reference slot for the frame type, and its third argument is
an instance of the correct type for the slot, the following
network constructions are suggested:
• Create a hypothetical instance of the frame type

(AttackTrigger in this example);
• Set the third argument as a possible value of the slot

denoted by the second argument (in this example, the
U.S. cruiser, which binds to ?platform, becomes a
possible value for the “instigator” slot of the
AttackTrigger frame instance).

A hypothetical instance of a frame corresponds to a
possible entity of the given type that may or may not be an
actual entity. Each hypothetical entity has an “exists”
slot, with a probability distribution representing the
likelihood that the entity actually exists. In this case, the
attack trigger is hypothetical because it is not known
whether presence below the Line of Death actually will
trigger an attack.

As reports arrive, new nodes are added to the SSBN to
represent the reports; the reports are connected to entities
(platform and plan instances) that might explain them;
beliefs are updated to reflect the new information; and new
hypotheses are introduced when warranted. The
incremental model revision process is controlled by the
built-in and modeler-defined suggestors.

Table 1 shows a few of the generic suggestors in the
PLASMA library. The generic suggestors are available for
use in constructing domain-specific suggestors. The table
also gives examples of how these generic suggestors are
applied in the gunboat scenario.

Declarative specification of suggestors makes our
knowledge representation language more robust and

scalable than procedural encoding, as facilitates the
explicit representation of semantic information that can be
applied flexibly in a variety of contexts. The suggestors
applied in the gunboat scenario could of course be
implemented as procedural code. However, suggestors
often draw upon semantic knowledge such properties of
sets, partial orderings, or spatio-temporal phenomena. A
declarative representation allows suggestors to draw upon
upper ontologies for set-theoretic, mereological, or spatio-
temporal reasoning, to compose these concepts as
necessary for each new suggestor, and to rely on reasoning
services optimized to a given ontology when executing
suggestors related to that ontology. Also, note that the
recognition of trigger condition A may require recognition
of trigger condition B which in turn requires recognition of
trigger condition C, etc. Backward chaining can be used to
implement such reasoning chains.

Suggestor Example Usage

Instantiate known entities
& set known properties

A hostile gunboat is approaching
Libya’s high-level goal is
protecting territorial rights

Hypothesize new entities
to fill unfilled roles

“Unknown plan” hypothesis should
be introduced for any entity with
no enumerated plan

Represent reciprocal &
composed relationship
hypotheses

If HostileGunboat.0 may be
the platform performing
ProvokedAttack.1, then
ProvokedAttack.1 may be the
plan of HostileGunboat.0

Specify probability
thresholds for model
construction actions

If the probability of an attack
exceeds 0.6 then call for a report
on whether attacker can localize
target

Table 1: Some PLASMA Generic Suggestors

Considerations such as these suggest that a modeler-
friendly toolkit must be able to represent general concepts
such as transitive reasoning, set membership, existential
quantification, and spatio-temporal reasoning.
Furthermore, the toolkit must provide logical reasoning
services such as subsumption, constraint satisfaction, and
forward and backward chaining in a way that hides
implementation details from modelers. Such a toolkit
enables a scaleable and robust approach to suggestor
development, allowing modelers to use existing atomic
concepts to articulate new complex trigger conditions for
suggestors. Hence, we have adopted first order logic as
the basis for our suggestor language; we have implemented
a Prolog-like backward chaining algorithm for basic
logical reasoning; and our architecture allows an
application to interface with special-purpose reasoners
when appropriate.

The PLASMA suggestor language provides the ability
to specify declaratively the conditions under which a given
MFrag or collection of MFrags should be retrieved and
instantiated. Such conditions include satisfaction of the
context constraints of the MFrags, as well as additional
constraints on the input and resident random variables of
the MFrag. These additional constraints typically involve

conditions on the marginal likelihood of input random
variables which, when satisfied, tend to indicate that the
relevant hypotheses are sufficiently likely to merit
consideration. Logical reasoning is then applied to
identify promising random variables to include in the
situation-specific model. Suggestors can also provide
numerical scores used to prioritize model construction
actions and control rule execution. The resulting
architecture generalizes logical inference to uncertain
situations in a mathematically sound manner, while freeing
the modeler from tedious and error-prone code
development.

Once a situation specific model has been constructed,
we also require the ability to prune hypotheses that are
either extremely unlikely or very weakly related to the
results of a query of interest. Logical reasoning can also
be used to apply thresholds or other rules for pruning parts
of a model that are only weakly related to the desired
query result.

Many of our suggestors are strictly heuristic, but we
have also developed suggestors based on decision theoretic
reasoning applied to an approximate model. For example,
if we specify penalties for false alarms, missed
identifications, and use of computational resources, then an
MTheory can represent a decision model for the task
model construction problem, in which computational cost
is traded off against task performance. Of course, exact
solution of this decision model may be more
computationally challenging than the task model itself, but
we may be able to specify a low-resolution approximation
that is accurate enough to provide a basis for suggestor
design. We can allow modelers to specify a suggestor as a
fragment of an influence diagram, and then automatically
translate the decision regions into logical rules to be
applied by the logical reasoning engine. Collections of
suggestors can be evaluated and compared by running
simulations across a variety of scenarios.

The PLASMA system realizes an efficient division of
labor by exploiting the respective strengths of logic-based
and probability-based representation and reasoning
paradigms. We use a logic-based tool for managing the
inventory of objects in our reasoning domain. Variable
binding, transitive reasoning, set theoretic reasoning and
existential quantification is available for purposes of
maintaining and pruning our inventory of objects in our
domain, recognizing relevant relationships and quickly
connecting relevant objects for purposes of representing
and reasoning about when and how to assemble our more
fine-tuned Bayesian representation tools. However, we are
also able to quickly instantiate a more focused, fine-
grained probabilistic model for the complex situational
reasoning that the Bayesian tools can then perform. A
somewhat useful analogy here is the surgeon and
surgeon’s assistant. The assistant keeps the workspace
clean and uncluttered ensuring that the right tools are
available for the surgeon’s effort. Similarly, we have
implemented the PLASMA suggestor logic tool as a
“surgeon’s assistant” ensuring that the precise tools of our
Bayesian reasoner are not hindered by being forced to

consider irrelevant objects and relationships, but can be
focused on the accurate fine-grained reasoning that it does
best.

Summary and Conclusions

The PLASMA architecture combines logical and
probabilistic inference to construct tractable situation-
specific Bayesian network models from a knowledge base
of model fragments and suggestor rules. This architecture
permits us to smoothly integrate the representational
advantages of two distinct reasoning and representational
paradigms to overcome central challenges in hypothesis
management. Logic-based concept definitions encode
complex definitional knowledge about the structure and
makeup of objects in the reasoning domain while
probabilistic knowledge allows us to process uncertain and
potentially contradictory information about the actual
objects under observation.

This architecture permits declarative specification of
model construction knowledge as well as knowledge about
the structure of and relationships among entities in the
application domain. The concepts underlying PLASMA
have been applied to problems in several application
domains such as military situation assessment and cyber
security. We believe that this prototype implementation
will increase the accessibility of our modeling tools, and
provide reasoning services that take care of
implementation details, thus freeing modelers to
concentrate on how best to represent knowledge about the
domain.

Acknowledgements

This research has been supported under a contract with the
Office of Naval Research, number N00014-04-M-0277.
We are grateful to Suzanne Mahoney and Tod Levitt for
their contributions to the ideas underlying this work.

References

Bacchus, F., Grove, A., Halpern, J. and Koller, D. 1997.
From statistical knowledge bases to degrees of belief.
Artificial Intelligence 87(1-2):75-143.

Bamber, D. 1998. How Probability Theory Can Help Us
Design Rule-Based Systems. In Proceedings of the 1998
Command and Control Research and Technology
Symposium, Naval Postgraduate School, Monterey, CA,
pp. 441–451.

Olav Bangsø, O., and Wuillemin, P.-H. 2000. Object
Oriented Bayesian Networks: A Framework for Topdown
Specification of Large Bayesian Networks and Repetitive
Structures, Technical Report CIT-87.2-00-obphw1,
Department of Computer Science, Aalborg University.

Cohen, M., Freeman, J., and Wolf, S. 1996.
Metarecognition In Time-Stressed Decision-Making.
Human Factors 38(2):206-219.

Das, B. 2000. Representing Uncertainties Using Bayesian
Networks, Technical Report, DSTO-TR-0918, Defence
Science and Technology Organization, Electronics and
Surveillance Research Lab, Salisbury, Australia.

Heckerman, D., Meek, C. and Koller, D. 2004.
Probabilistic Models for Relational Data, Technical Report
MSR-TR-2004-30, Microsoft Corporation.

IET, Quiddity*Suite Technical Guide. 2004. Technical
Report, Information Extraction and Transport, Inc.

Jaynes, E. T. 2003. Probability Theory: The Logic of
Science. New York, NY: Cambridge Univ. Press.

Koller, D. and Pfeffer, A. 1997. Object-Oriented Bayesian
Networks. In Uncertainty in Artificial Intelligence:
Proceedings of the Thirteenth Conference, 302-313. San
Mateo, CA: Morgan Kaufmann Publishers.

Laskey, K. B. 2004. MEBN: A Logic for Open-World
Probabilistic Reasoning, Working Paper, http://ite.gmu.edu
/~klaskey/papers/Laskey_MEBN_Logic.pdf, Department
of Systems Engineering and Operations Research, George
Mason University,

Laskey, K.B., d’Ambrosio, B., Levitt, T. and Mahoney, S.
2000. Limited Rationality in Action: Decision Support for
Military Situation Assessment. Minds and Machines,
10(1), 53-77.

Laskey, K. B. and Mahoney, S. M. 1997. Network
Fragments: Representing Knowledge for Constructing
Probabilistic Models. In Uncertainty in Artificial
Intelligence: Proceedings of the Thirteenth Conference,
334-341. San Mateo, CA: Morgan Kaufmann Publishers.

Sato, T. 1998, Modeling scientific theories as PRISM
programs. In ECAI-98 Workshop on Machine Discovery,
37-45. Hoboken, NJ: John Wiley & Sons.

Wellman, M., Breese, J., Goldman, R. 1992. From
Knowledge Bases to Decision Models. Knowledge
Engineering Review 7:35–53.

