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Abstract 
Decision support and information fusion in complex 
domains requires reasoning about inherently uncertain 
properties of and relationships among varied and often 
unknown number of entities interacting in differing and 
often unspecified ways.  Tractable probabilistic reasoning 
about such complex situations requires combining efficient 
inference with logical reasoning about which variables to 
include in a model and what the appropriate probability 
distributions are.  This paper describes the PLASMA 
architecture for predicate logic based assembly of situation-
specific probabilistic models. PLASMA maintains a 
declarative representation of a decision theoretically 
coherent first-order probabilistic domain theory.  As 
evidence about a situation is absorbed and queries are 
processed, PLASMA uses logical inference to reason about 
which known and/or hypothetical entities to represent 
explicitly in the situation model, which known and/or 
uncertain relationships to represent, what functional forms 
and parameters to specify for the local distributions, and 
which exact or approximate inference and/or optimization 
techniques to apply.  We report on a prototype 
implementation of the PLASMA architecture within IET’s 
Quiddity*Suite, a knowledge-based probabilistic reasoning 
toolkit. Examples from our application experience are 
discussed. 

Introduction     

Decision support in complex, dynamic, uncertain 
environments requires support for situation assessment. In 
an open world, situation assessment involves reasoning 
about an unbounded number of entities of different types 
interacting with each other in varied ways, giving rise to 
observable indicators that are ambiguously associated with 
the domain entities generating them. There are strong ar-
guments for probability as the logic of choice for reasoning 
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under uncertainty (e.g., Jaynes, 2003). Graphical models, 
and in particular Bayesian networks (Pearl, 1988), provide 
a parsimonious language for expressing joint probability 
distributions over large numbers of interrelated random 
variables. Efficient algorithms are available for updating 
probabilities in graphical models given evidence about 
some of the random variables. For this reason, Bayesian 
networks have been widely and successfully applied to 
situation assessment (Laskey et. al., 2000; Das, 2000). 

Despite these successes, there are major limitations to 
the applicability of standard Bayesian networks for situa-
tion assessment.  In open-world problems, it is impossible 
to specify in advance a fixed set of random variables and a 
fixed dependency structure that is adequate for the range of 
problems a decision support system is likely to encounter. 
Nevertheless, graphical models provide a powerful lan-
guage for parsimonious specification of recurring patterns 
in the structural features and interrelationships among do-
main entities.  In recent years, a number of languages have 
emerged extending the expressiveness of Bayesian net-
works to represent recurring structural and relational 
patterns as objects or frames with attached probabilistic 
information (Laskey and Mahoney, 1997; Koller and 
Pfeffer, 1997; Bangsø and Wuillemin, 2000). There is an 
emerging consensus around certain fundamental ap-
proaches to representing uncertain information about the 
attributes, behavior, and interrelationships of structured 
entities (Heckerman, et al., 2004). This consensus reflects 
fundamental logical notions that cut across surface syntac-
tic differences. The newly emerging languages express 
probabilistic information as collections of graphical model 
fragments, each of which represents a related collection of 
generalizations about the domain.  These model fragments 
serve as templates that can be instantiated any number of 
times and combined to form arbitrarily complex models of 
a domain.  Recent work in probabilistic logic has clarified 
the semantics of such languages (e.g., Laskey, 2004; Sato, 
1998; Bacchus, et al., 1997).  



PLASMA has its logical basis in Multi-Entity Bayesian 
Network (MEBN) logic. A theory in MEBN logic consists 
of a set of Bayesian network fragments (MEBN fragments, 
or MFrags) that collectively express a joint probability 
distribution over a variable, and possibly unbounded num-
ber of random variables.  MEBN logic can express a prob-
ability distribution over interpretations of any finitely 
axiomatizable theory in first-order logic, and can represent 
the accrual of new information via Bayesian conditioning 
(Laskey, 2004). 

The PLASMA architecture is depicted in Figure 1. A 
domain model consisting of a set of MFrags represents 
probabilistic knowledge about types of entities (e.g., ob-
jects, processes, concepts), the attributes of each type, and 
the relationships in which they can participate. A first-
order logic knowledge base expresses knowledge about 
how to combine the MFrags into a Bayesian network for 
reasoning about a given situation, where a situation is de-
fined as a given collection of background information, 
reports from external sensors, and queries posed by the 
user. These Bayesian network construction rules are called 
suggestors because they encode suggested actions for the 
SSBN construction module to take. A data interchange 
module accepts queries from users, reports from sensors, 
and computational results from special-purpose external 
reasoners (e.g., a tracking, clustering, linear programming, 
or other special-purpose module). The data interchange 
model can also task sensors, request computations to be 
performed by external special-purpose reasoners, and pro-
vide situation updates to users.  The SSBN construction 
module contains a logical reasoner that has access both to 
the suggestors from the FOL knowledge base and to the 
situation-specific probabilistic model. It performs FOL 
inference by querying the suggestor rules to derive a set of 
model construction actions.  These actions may include 
retrieving and instantiating MFrags from the MFrag 
knowledge base; connecting the MFrag instances to the 
SSBN by adding arcs and/or possible values for random 
variables; and possibly pruning parts of the SSBN that 
have become unnecessary to represent explicitly. 

The remainder of the paper is organized as follows.  The 
next section discusses why integrating probability and 
logic is both important and difficult, and provides an 
argument for the approach taken by PLASMA. Next, an 
example is presented of the kind of problem to which 
PLASMA can be applied. The example is followed by a 
brief overview of MEBN logic and situation-specific 
Bayesian network construction. Next, the PLASMA 
architecture is described in greater detail, followed by 
conclusions and discussion. 

Why Logic and Probability 

An important technical challenge for combining first-order 
logic with probability is that most statements about an un-
certain world are not known to be true, but rather are 
assigned a probability. It is known that attempts to apply 
first-order logic directly to uncertain situations can quickly 

lead to undesirable deductions within the model. Bamber 
(1998) gives an example in which a pure logical reasoner 
applies the two rules: (1) “Aircraft carriers can launch 
planes,” and (2) “Aircraft carriers with broken catapults 
cannot launch planes,” and draws the conclusion that an 
aircraft carrier with a broken catapult is a destroyer. This 
happens because in classical first-order logic, rules cannot 
have exceptions.  If rules can have no exceptions, then 
there can be no aircraft carriers with broken catapults and 
any inference whatsoever about a null set of entities is 
vacuously true.  
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Figure 1: PLASMA Architecture 

Of course, rules in the real world have exceptions. A 
burgeoning literature on default reasoning systems has 
arisen to cope with the problem of handling exceptions.  
However, there is no consensus on the fundamental princi-
ples that should govern the choice of when to apply de-
faults and what conclusions to retract when default conclu-
sions conflict. This lack of a firm theoretical foundation 
gives rise to major practical difficulties for the application 
developer.  When a system performs incorrectly, it is not 
clear whether the problem resides in the knowledge 
encoded in the system or in the heuristics built into the 
default reasoner.  Additional difficulties arise from 
attempts to share knowledge between applications built 
under different reasoning paradigms.  Heuristics applied 
by modelers to induce a default reasoner to behave well on 
a given application may work poorly when the knowledge 
is ported to a different default reasoner.  These are the 
kinds of issues that led Bamber and others to argue for 
probability as a logical basis for design of rule-based 
reasoners.  A probabilistic logic that can express 
probability distributions over interpretations of arbitrary 
first-order theories provides a solid foundation for a 
probabilistic semantics of defaults. 

It is often natural to state relationships using logical 
implications even when the relationship is not strictly a 
logical implication.  For example, consider the statement, 
“If a hostile ship is on a direct approach toward a friendly 
ship and is moving rapidly, then it is attacking.” There is a 
considerable degree of fuzziness about the definition of 
terms such as “direct approach,” or “moving rapidly,” and 
the rule may be applied even when there is some question 
about whether there actually is an approaching ship or 



whether the report is spurious.  We would like to allow the 
modeler to express model construction actions in a natural 
rule form, without forcing the modeler to explicitly ac-
count for probabilistic relationships in the suggestor itself. 

We have touched on some of the many difficulties that 
can arise from the attempt to give ad-hoc probabilistic 
interpretations to logical rules.  IET’s approach to 
overcoming this technical challenge is: to maintain a fully 
probabilistic representation of the situation-specific model, 
to use logical inference only as a guide for constructing 
and augmenting the model, and then to compute query 
responses by performing probabilistic inference on the 
constructed model. To achieve this, PLASMA provides a 
mechanism for promoting likely statements into provi-
sional assumptions that are analyzed by a logical inference 
engine as if they were true.  The inference engine is used 
to evaluate suggestor triggers that guide the construction of 
a situation-specific Bayesian network. That is, logical rea-
soning with default assumptions is used to select 
hypotheses that are sufficiently promising to merit explicit 
reasoning about their relative likelihoods, and exact or 
approximate probabilistic inference is used to evaluate 
these likelihoods.  

For example, suppose that a limited amount of flu vac-
cine exists and we require judicious distribution in order to 
prevent localized outbreaks from turning into national epi-
demics.   Suppose that we define a local outbreak as any 
situation in which more than ten people in a neighborhood 
have the flu.  Suppose that our data are at the symptom 
level and that we also have data about patient addresses. 
Our reasoning tools must be able to adroitly move back 
and forth between probabilistically diagnosing individual 
cases based on symptoms, aggregating the individual 
cases, reasoning about which likely flu holders live in the 
same neighborhood, and evaluating the likelihood of out-
breaks.  PLASMA accomplishes this via threshold values 
on model construction operations. So, for example, we 
might set a threshold of .8 indicating that for purposes of 
our suggestor reasoning tools, any person whose likelihood 
of having the flu is greater than .8 is simply assumed to 
have the flu.  These individuals are regarded as definite flu 
cases for purposes of constructing the situation-specific 
model, but when the model is applied to draw inferences, 
their medical conditions are again treated as uncertain. 

A Case Study 

We illustrate the PLASMA functionality using a scenario 
taken from Cohen, Freeman and Wolf (1996).  The article 
presents a model of human cognition that the authors argue 
accounts for the decision making process of the U.S. 
captain and Tactical Air Officer (TAO). The authors state 
that the officers’ reasoning was not Bayesian.  We argue 
that although they are correct that this kind of situated, 
adaptive reasoning cannot be captured by a standard 
Bayesian network, it can be modeled quite naturally by 
MEBN logic and situation-specific Bayesian network 
construction. 

As the scenario begins, U.S. ships were conducting 
freedom of navigation demonstrations in Libyan-claimed 
waters.  The Libyan leader was threatening to attack any 
vessel that ventured below the “Line of Death.”  One 
night, a gunboat emerged from a Libyan port, turned 
toward an AEGIS-equipped cruiser, and increased its 
speed. The U.S. officers believed the gunboat’s behavior 
indicated an intent to attack. First, a direct approach at a 
speed of 75 knots by a combat vessel from a hostile power 
is strongly indicative of an attack.  Second, the Aegis 
cruiser was a logical target for an attack by Libya, being 20 
miles within the "Line of Death." Furthermore, apparent 
missile launches toward other American ships had been 
detected earlier that day, indicating that Libya was actively 
engaging surface vessels. 

However, there were conflicting indicators.  The 
gunboat was ill-equipped to take on the Aegis cruiser, let 
alone the larger U.S. fleet poised to come to its aid.  The 
Libyans possessed air assets that were far better suited for 
such an assault.  However, the officers reasoned that the 
Libyans might be willing to use every asset at hand against 
the U.S., regardless of the consequences to the striking 
asset. On the other hand, a more natural target for attack 
would have been another U.S. cruiser even further below 
the “Line of Death.”  

A more serious complication was that the officers 
believed that the gunboat probably did not have the 
capability to detect the cruiser at the range at which it had 
turned inbound. Perhaps, they reasoned, the gunboat was 
receiving localization data from another source, or perhaps 
it possessed superior sensing technology of which U.S. 
intelligence was unaware. On the other hand, virtually any 
maneuver by the track would have put it on a vector to 
some friendly ship. Perhaps its direct line of approach was 
merely a coincidence.   

Thus, the evidence regarding the gunboat’s intent was 
ambiguous and conflicting.  The officers considered 
several hypotheses, juxtaposing each against the available 
background information and situation-specific evidence, in 
an attempt to ascertain the intent of the gunboat.  They 
considered the hypothesis that the gunboat was on patrol, 
but discarded that hypothesis because its speed was too 
fast for a ship on patrol.  The hypothesis they finally 
settled on was that the gunboat was following a plan of 
opportunistic attack (i.e., to proceed into the Gulf ready to 
engage any ship it encountered).  This hypothesis 
explained its rapid speed, its inability to localize the Aegis 
cruiser, and the fact that it was not the most appropriate 
asset to target against a U.S. Aegis cruiser. 

We developed a knowledge base consisting of: 
• A set of entity types that represents generic knowledge 

about naval conflict. These include: 
o Combatants:  Friendly and hostile combatant 

MFrags represent background knowledge about 
their high-level goals and their level of 
aggressiveness.  

o Plans: There are plans for provoked attacks, 
opportunistic attacks, and patrols, as well as a 
generic non-specific plan type to represent a plan 



type not included among the hypotheses being 
considered. 

o Attack Triggers:  An attack trigger is a kind of 
behavior that might provoke an attack.  We 
modeled the U.S. presence below the “Line of 
Death” as an instance of an attack trigger. 

o Reports:  Reports are used to model observable 
evidence that bears on the hypotheses under 
consideration. 

• A set of suggestors that represents knowledge about 
which hypotheses should be explicitly considered in 
given kinds of situation.  Suggestors are expressed as 
first-order rules.  The rules operate on observed 
evidence (e.g., the cruiser is situated below the “Line 
of Death”; the gunboat is on a rapid direct approach), 
together with information about the current status of 
the Bayesian network (e.g., no attack hypothesis has 
yet been enumerated for the gunboat), and nominate 
suggested network construction actions.  Future 
implementations will allow suggestors to nominate 
pruning actions that delete low-probability hypotheses 
from the probabilistic KB, to help make inference 
more efficient. 

• Particular facts germane to the scenario, including 
background knowledge and observed evidence. 

The suggestors for the gunboat model were based on the 
following general rules, which are reflective of the kinds 
of reasoning the officers applied in this scenario.  
• Any ship sailing in its own territorial waters may be 

on patrol.  This was implemented as a suggestor 
nominating a patrol as a possible plan for any hostile 
ship.  

• If a friendly ship is engaging in behavior against 
which enemy has threatened to retaliate, then an attack 
may occur.  In this particular scenario, venturing 
within the Line of Death might provoke an attack. 

• A hostile asset approaching on a bearing directly 
toward a ship may be attacking the ship it is 
approaching. A rapidly approach strengthens this 
inference.  These rules were not implemented as 
suggestors, but were instead represented as likelihood 
information for the attack plans.  

• In a provoked attack, the attacker must be able to 
localize the target it is attacking in advance of the 
attack.  In an opportunistic attack, this is unnecessary.  
This knowledge was implemented as likelihoods on 
localization given provoked and opportunistic attacks. 
There is also a suggestor that fires when the 
probability of an attack exceeds a threshold, that 
generates a request for evidence on whether the 
attacker can localize the target, and another suggestor 
that inserts the result of the report if the report exists. 

• When there is evidence consistent with an attack but 
the evidence conflicts with the hypothesis of a 
deliberate, provoked attack, then opportunistic attack 
is a possible explanation.  This rule was implemented 
as follows.  There was a suggestor nominating a 
generic “other” plan for any asset, representing a plan 
other than the ones explicitly enumerated.  There was 

another suggestor specifying that if an attack has been 
hypothesized, but the probability of “other” exceeds a 
threshold (an indication of conflicting evidence), then 
hypothesize an opportunistic attack as a possible plan 
for the asset. 

We exercised PLASMA on this scenario, obtaining 
qualitative results similar to the analysis reported by 
Cohen, et al.  Initially, the provoked attack hypothesis 
dominates, but as the evidence is processed, its incongruity 
with the provoked attack hypothesis becomes more 
apparent.  This increases the probability of the “other” 
hypothesis.  A natural hypothesis to consider is the patrol 
hypothesis, but it too is incongruent with the available 
evidence.  When the opportunistic attack hypothesis is 
nominated in response to the failure of other plans to 
account for the evidence, it becomes the dominant 
hypothesis. 

MEBN Logic 

MEBN logic combines the expressive power of first-order 
predicate calculus with a sound and logically consistent 
treatment of uncertainty. MEBN fragments (MFrags) use 
directed graphs to specify local dependencies among a 
collection of related hypotheses. MTheories, or collections 
of MFrags that satisfy global consistency constraints, 
implicitly specify joint probability distributions over 
unbounded and possibly infinite numbers of hypotheses. 
MEBN logic can be used to reason consistently about 
complex expressions involving nested function 
application, arbitrary logical formulas, and quantification. 
A set of built-in MFrags gives MEBN logic the expressive 
power of first-order logic. 

A set of MFrags representing knowledge for modeling a 
gunboat attack scenario is shown as Figure 2.  Each MFrag 
contains a set of random variables.  Random variables are 
functions that map the entities filling their arguments to a 
set of possible values characteristic of the random variable.  
For example, IntendedOutcome(p) maps a plan p to a value 
representing the outcome the agent intends to achieve.   
Each MFrag contains resident random variables, whose 
distribution is defined in the MFrag, input random 
variables, whose distribution is defined in another MFrag, 
and context random variables, which represent conditions 
under which the distribution defined in the MFrag applies. 
Whether a random variable is resident, input or context is 
indicated by shading and bordering in Figure 2:  bold-
bordered and dark gray indicates context, light gray and 
thin-bordered indicates input, and white indicates resident. 
Our example also includes report MFrags which are not 
shown in the figure for reasons of space. 

Logical and mathematical relationships can also be 
expressed as MFrags.  For example, in the gunboat 
scenario the officers received a report that the gunboat was 
headed directly toward the U.S. cruiser. For purposes of 
this illustrative example, we chose to represent the 
direction an asset was traveling with respect to its target as 
a random variable with four possible values:  



DirectApproach, GenerallyToward, NotToward, and 
NotRelevant, and we assumed that evidence was provided 
as likelihoods for these values. In a fielded decision 
support application, a sensor would provide likelihood 
information about the heading of the gunboat and the 
geospatial coordinates of the U.S. ship. A coordinate 
transformation would be applied to obtain the bearing of 
the gunboat with respect to the U.S. ship. Although an 
implementation might choose for efficiency reasons to 
have coordinate transformations performed externally, 
MEBN logic is capable of representing such 
transformations as MFrags. 

 
Figure 2: MFrags for Naval Attack MTheory 

Typically, context random variables represent type and 
relational constraints that must be satisfied for the MFrag 
to be meaningful.  A default distribution assigns a 
probability distribution when the context constraints are 
not met.  In some cases, the default distribution will assign 
probability 1 to the undefined symbol ⊥; in other cases, it 
is appropriate to assign a “leak” distribution representing 
the influence of not-yet-enumerated parents.   

  
Figure 3: Situation-Specific Bayesian Network 

The MFrags of Figure 2 define a coherent (that is, 
consistent with the constraints of probability theory) 
probability distribution over entities in the domain.  This 
probability distribution can be used to reason about group 
membership of different numbers of objects reported on by 
sensors with varying spatial layouts. For instance, Figure 3 
shows a situation-specific Bayesian network (SSBN) for a 
situation with two friendly cruisers and two enemy assets, 

and several attack hypotheses. This SSBN was generated 
by instantiating and assembling MFrags that represent the 
relevant entities. 

A straightforward combinatorial argument shows, 
however, that this extremely simple MTheory can result in 
situation-specific models of staggering computational 
complexity when applied to problems with many assets 
and significant uncertainty about the plans the assets are 
pursuing.   In typical problems encountered in 
applications, excellent results can be obtained by applying 
heuristic model construction rules to identify and include 
those random variables most relevant to a given query, and 
to exclude those having sufficiently weak influence to be 
ignored. 

PLASMA Architecture 

To address the challenge of open-world situation assess-
ment, IET has developed, as part of its Quiddity*Suite 
modeling and inference environment, an Execution 
Management framework (Quiddity*XM) for specifying 
and constructing situation-specific probabilistic models. 
Situation-specific models are assembled from domain 
models expressed in the Quiddity*Modeler probabilistic 
frame and rule language. A Quiddity*Modeler frame rep-
resents a type of entity, its attributes (slots in the frame), 
and the relationships it can bear to other entities (reference 
slots that can be filled by instances of frames). Each frame 
encodes an MFrag, where the resident random variables 
correspond to slots for which the frame defines a distribu-
tion, the input random variables correspond to slots in 
other frames that influence the distributions of resident 
random variables, and the context random variables corre-
spond to logical conditions under which the distributions 
are well-defined. A domain model also includes sugge-
stors, which are rules that represent knowledge about how 
to construct situation-specific models. Suggestors can 
specify which frames to instantiate or modify in a given 
situation, and how to connect the frame instances to exist-
ing portions of the model. The execution manager uses 
suggestors to manage the size and complexity of the situa-
tion-specific network.  Quiddity*XM draws from the data-
driven and query-driven paradigms (Wellman, et al., 1992) 
of knowledge-based model construction to assemble 
situation-specific models in response to both incoming 
data and queries.  

As the suggestors recognize trigger conditions, they 
make suggestions about which kind of objects or events 
exist or might exist in the domain, and the kinds of 
relationships these objects bear to the previously observed 
or posited objects.   In the original Quiddity*XM, 
suggestors were implemented as small, often stateless, 
procedural code modules.  This approach is powerful, and 
provides all the computational advantages of procedural 
code versus declarative languages. However, the need to 
write programs to express model construction knowledge 
puts an undue burden on modelers to perform outside their 
area of primary expertise.  IET has attempted to make 
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suggestors less opaque with respect to our representation 
language by moving them into the declarative knowledge-
based reasoning system within which our modeling 
language is embedded.  Thus, suggestors are represented 
as first-order rules encoding knowledge about which 
hypotheses to enumerate and which relationships to 
represent, as a function of current beliefs, current evidence, 
and the current query.  The PLASMA architecture allows 
the reasoner to move gracefully back and forth between 
conclusions reached in the probabilistic reasoning system 
and the first order logical reasoning system. Logical 
reasoning about model construction actions is interleaved 
with probabilistic inference within the current model.  

We illustrate with our Libyan gunboat example how 
PLASMA can implement first order-logic to represent 
knowledge that facilitates the efficient creation of situation 
specific networks. The DSS knowledge base contains a 
domain model consisting of modeler-specified MFrags and 
SSBN construction rules. These MFrags are represented as 
frames with uncertain slots annotated with probability 
information. In this problem, there are frames representing 
combatants, naval assets, plans, reports, and other entities 
of interest.  These MFrags can represent relationships 
between entities of different types (e.g., the owner slot of a 
naval asset instance is filled by a combatant instance; the 
target slot of a hostile attack plan instance is filled by a 
friendly naval asset instance). Along with the MFrags, the 
modeler also creates a set of suggestors that describe 
conditions under which the situation-specific probabilistic 
model should be revised, and network construction actions 
to be taken under the given conditions. These suggestors 
are represented as Prolog-style rules that suggest 
conjunctions of network construction actions to be 
executed as a bundle. 

At run-time, this knowledge base is exercised against 
reports and user queries to construct a situation-specific 
Bayesian network that represents query-relevant 
information about the current situation. At any given time, 
there will be a current situation-specific Bayesian network 
that reflects currently available reports and their 
implications for queries of current interest. In our example, 
the query of interest is the gunboat’s plan. Given this 
current situation-specific Bayesian network, the Bayesian 
inference module draws conclusions about the likelihood 
of the different possible plans for the gunboat.  

Changes to the current SSBN can occur as a result of 
incoming reports, queries posed by the user, or internal 
triggers stated in terms of the current belief state.  The 
current prototype uses a Prolog-type language and 
inference, reasoning with Horn clauses. The PLASMA 
model construction paradigm can be described as follows. 
First, there is the FOL KB, where the modeler defines the 
vocabulary to express trigger conditions. Using the 
supplied interface predicates for interfacing with the 
probabilistic KB, the modeler can capture a fine-grained, 
expressive set of assertions that declare when particular 
model construction actions should take place. For instance, 
we can define a trigger that asserts that “IF ship is slightly 

below LOD, THEN moderately severe attack trigger 
should be hypothesized”: 
 instigatesAttackTrigger(?shp,Libya,Moderate) :- 

     location(?shp, BelowLOD, Slightly); 

Then, the modeler declares what actions should be taken 
as a result of the appropriate trigger conditions being 
satisfied. These are declared in a convenient form  
 <predicateName>(<set of actions to be taken>) :-  
     <trigger conditions>.  

For instance, the following suggestor indicates that a 
hypothetical instance of AttackTrigger (i.e., one with an 
uncertain probability of existing) should be declared if the 
trigger condition holds.  
 hypotheticalEntity(AttackTrigger,"instigator", 

                                    ?platform):-  

    instigatesAttackTrigger(?platform,?agnt, 

                                    ?severity) 

The hypotheticalEntity predicate is one of a set of 
generic PLASMA predicates which modelers can use in 
the construction of domain-specific suggestors. This 
predicate is used to suggest the model construction action 
of creating a hypothetical instance of the AttackTrigger 
frame and setting its “instigator” slot to the frame 
instance bound to ?platform. Specifically, when a binding 
succeeds for hypotheticalEntity such that its first 
argument is a frame type, its second argument is a 
reference slot for the frame type, and its third argument is 
an instance of the correct type for the slot, the following 
network constructions are suggested: 
• Create a hypothetical instance of the frame type 

(AttackTrigger in this example); 
• Set the third argument as a possible value of the slot 

denoted by the second argument (in this example, the 
U.S. cruiser, which binds to ?platform, becomes a 
possible value for the “instigator” slot of the 
AttackTrigger frame instance). 

A hypothetical instance of a frame corresponds to a 
possible entity of the given type that may or may not be an 
actual entity.  Each hypothetical entity has an “exists” 
slot, with a probability distribution representing the 
likelihood that the entity actually exists. In this case, the 
attack trigger is hypothetical because it is not known 
whether presence below the Line of Death actually will 
trigger an attack. 

As reports arrive, new nodes are added to the SSBN to 
represent the reports; the reports are connected to entities 
(platform and plan instances) that might explain them; 
beliefs are updated to reflect the new information; and new 
hypotheses are introduced when warranted.  The 
incremental model revision process is controlled by the 
built-in and modeler-defined suggestors.  

Table 1 shows a few of the generic suggestors in the 
PLASMA library.  The generic suggestors are available for 
use in constructing domain-specific suggestors. The table 
also gives examples of how these generic suggestors are 
applied in the gunboat scenario. 

Declarative specification of suggestors makes our 
knowledge representation language more robust and 



scalable than procedural encoding, as facilitates the 
explicit representation of semantic information that can be 
applied flexibly in a variety of contexts. The suggestors 
applied in the gunboat scenario could of course be 
implemented as procedural code. However, suggestors 
often draw upon semantic knowledge such properties of 
sets, partial orderings, or spatio-temporal phenomena.  A 
declarative representation allows suggestors to draw upon 
upper ontologies for set-theoretic, mereological, or spatio-
temporal reasoning, to compose these concepts as 
necessary for each new suggestor, and to rely on reasoning 
services optimized to a given ontology when executing 
suggestors related to that ontology. Also, note that the 
recognition of trigger condition A may require recognition 
of trigger condition B which in turn requires recognition of 
trigger condition C, etc.  Backward chaining can be used to 
implement such reasoning chains.   

Suggestor Example Usage 

Instantiate known entities 
& set known properties 

A hostile gunboat is approaching 
Libya’s high-level goal is 
protecting territorial rights 

Hypothesize new entities 
to fill unfilled roles 

“Unknown plan” hypothesis should 
be introduced for any entity with 
no enumerated plan 

Represent reciprocal & 
composed relationship 
hypotheses 

If HostileGunboat.0 may be 
the platform performing 
ProvokedAttack.1, then 
ProvokedAttack.1 may be the 
plan of HostileGunboat.0 

Specify probability 
thresholds for model 
construction actions 

If the probability of an attack 
exceeds 0.6 then call for a report 
on whether attacker can localize 
target 

Table 1: Some PLASMA Generic Suggestors 

Considerations such as these suggest that a modeler-
friendly toolkit must be able to represent general concepts 
such as transitive reasoning, set membership, existential 
quantification, and spatio-temporal reasoning. 
Furthermore, the toolkit must provide logical reasoning 
services such as subsumption, constraint satisfaction, and 
forward and backward chaining in a way that hides 
implementation details from modelers.  Such a toolkit 
enables a scaleable and robust approach to suggestor 
development, allowing modelers to use existing atomic 
concepts to articulate new complex trigger conditions for 
suggestors.  Hence, we have adopted first order logic as 
the basis for our suggestor language; we have implemented 
a Prolog-like backward chaining algorithm for basic 
logical reasoning; and our architecture allows an 
application to interface with special-purpose reasoners 
when appropriate.  

The PLASMA suggestor language provides the ability 
to specify declaratively the conditions under which a given 
MFrag or collection of MFrags should be retrieved and 
instantiated.  Such conditions include satisfaction of the 
context constraints of the MFrags, as well as additional 
constraints on the input and resident random variables of 
the MFrag. These additional constraints typically involve 

conditions on the marginal likelihood of input random 
variables which, when satisfied, tend to indicate that the 
relevant hypotheses are sufficiently likely to merit 
consideration.  Logical reasoning is then applied to 
identify promising random variables to include in the 
situation-specific model.  Suggestors can also provide 
numerical scores used to prioritize model construction 
actions and control rule execution.  The resulting 
architecture generalizes logical inference to uncertain 
situations in a mathematically sound manner, while freeing 
the modeler from tedious and error-prone code 
development. 

Once a situation specific model has been constructed, 
we also require the ability to prune hypotheses that are 
either extremely unlikely or very weakly related to the 
results of a query of interest.  Logical reasoning can also 
be used to apply thresholds or other rules for pruning parts 
of a model that are only weakly related to the desired 
query result. 

Many of our suggestors are strictly heuristic, but we 
have also developed suggestors based on decision theoretic 
reasoning applied to an approximate model.  For example, 
if we specify penalties for false alarms, missed 
identifications, and use of computational resources, then an 
MTheory can represent a decision model for the task 
model construction problem, in which computational cost 
is traded off against task performance.  Of course, exact 
solution of this decision model may be more 
computationally challenging than the task model itself, but 
we may be able to specify a low-resolution approximation 
that is accurate enough to provide a basis for suggestor 
design.  We can allow modelers to specify a suggestor as a 
fragment of an influence diagram, and then automatically 
translate the decision regions into logical rules to be 
applied by the logical reasoning engine. Collections of 
suggestors can be evaluated and compared by running 
simulations across a variety of scenarios. 

The PLASMA system realizes an efficient division of 
labor by exploiting the respective strengths of logic-based 
and probability-based representation and reasoning 
paradigms.   We use a logic-based tool for managing the 
inventory of objects in our reasoning domain.   Variable 
binding, transitive reasoning, set theoretic reasoning and 
existential quantification is available for purposes of 
maintaining and pruning our inventory of objects in our 
domain, recognizing relevant relationships and quickly 
connecting relevant objects for purposes of representing 
and reasoning about when and how to assemble our more 
fine-tuned Bayesian representation tools.  However, we are 
also able to quickly instantiate a more focused, fine-
grained probabilistic model for the complex situational 
reasoning that the Bayesian tools can then perform.  A 
somewhat useful analogy here is the surgeon and 
surgeon’s assistant.  The assistant keeps the workspace 
clean and uncluttered ensuring that the right tools are 
available for the surgeon’s effort.  Similarly, we have 
implemented the PLASMA suggestor logic tool as a 
“surgeon’s assistant” ensuring that the precise tools of our 
Bayesian reasoner are not hindered by being forced to 



consider irrelevant objects and relationships, but can be 
focused on the accurate fine-grained reasoning that it does 
best. 

Summary and Conclusions 

The PLASMA architecture combines logical and 
probabilistic inference to construct tractable situation-
specific Bayesian network models from a knowledge base 
of model fragments and suggestor rules.  This architecture 
permits us to smoothly integrate the representational 
advantages of two distinct reasoning and representational 
paradigms to overcome central challenges in hypothesis 
management.  Logic-based concept definitions encode 
complex definitional knowledge about the structure and 
makeup of objects in the reasoning domain while 
probabilistic knowledge allows us to process uncertain and 
potentially contradictory information about the actual 
objects under observation. 

This architecture permits declarative specification of 
model construction knowledge as well as knowledge about 
the structure of and relationships among entities in the 
application domain.  The concepts underlying PLASMA 
have been applied to problems in several application 
domains such as military situation assessment and cyber 
security.  We believe that this prototype implementation 
will increase the accessibility of our modeling tools, and 
provide reasoning services that take care of 
implementation details, thus freeing modelers to 
concentrate on how best to represent knowledge about the 
domain. 
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