
Recompiling Utility Functions in a Changing World

Michael McGeachie
Computer Science and AI Lab, MIT

32 Vassar St. 32-250
Cambridge, MA 02139

mmcgeach@csail.mit.edu

Abstract

Our previous work considers a method for building a numeric
utility function out of qualitativeceteris paribuspreferences,
or preferences other things held equal. Dynamic domains em-
body changes in preferences. This can come in many forms.
The preferences themselves may change, the variables over
which preferences are expressed may change, or the forms
of utility independence that hold in the domain may change.
We consider the consequences for each type of change to our
system, and conclude that inherent ambiguities in our rep-
resentation allow for simpler handling of change than might
otherwise be the case.

Decision Support and Preference
While classical decision theory can appear too limited or too
rigorous to support decision-making in dynamic domains
and under changing conditions, many decision-theoretic for-
malisms have great conceptual benefit. Researchers in arti-
ficial intelligence have made several formulations of quali-
tative decision theory (Wellman & Doyle 1991; Tan & Pearl
1994; Boutilieret al. 1999), applicable in domains where
accurate probabilities and time consuming preference elici-
tation techniques are either unavailable or undesirable. Such
qualitative preference formulations allow decision makers to
make natural statements, representing user’s intuitions about
the decision space and easing the preference elicitation task.

Including qualitative preferences in decision support sys-
tems allows personalization. Decision support systems that
aim to help more than one decision maker need a way to rep-
resent the differences between different users. The most di-
rect method is to represent their preferences. Bypreferences
we mean the desires, tastes, and priorities that a person has,
and that furthermore differ from person to person, causing
two different people faced with the same decision to make
different choices.

Ceteris ParibusPreferences in Dynamic
Domains

Our previous work includes a methodology for going from
preferences over a domain to making decisions in that do-
main (McGeachie & Doyle 2004). Our framework takes a

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

set ofceteris paribuspreferences (other things being equal)
and compiles a utility function. This approach has several
properties amenable to functioning in a dynamic domain.
Firstly, we allow some latitude in the way a user is able
to specify preferences. These preferences my well be in-
complete, may not refer to all variables in the domain, may
be conditional or unconditional, and may exhibit both util-
ity dependencies and utility independencies (McGeachie &
Doyle 2002). Secondly, we can add variables to the domain
without altering or invalidating the existing preferences. Re-
moving variables is also easy, however the existing prefer-
ences referencing those variables must be truncated, poten-
tially shifting their meaning.

In the following section, we provide basic background re-
garding the representation and semantics ofceteris paribus
preferences. This exegesis is a shorter version of that appear-
ing in (McGeachie & Doyle 2004). Readers familiar with
that source or the general theory ofceteris paribus might
skip the following section.

Representation of Preference
Doyle and Wellman (Wellman & Doyle 1991) have observed
that qualitative representations of preferences are a succinct
and reasonable approximation of at least one type of com-
mon human preferences. Doyle, Shoham, and Wellman
(Doyle, Shoham, & Wellman 1991) present a theoretical for-
mulation of human preferences of generalization in terms of
ceteris paribuspreferences,i.e., all-else-equal preferences.
Ceteris paribusrelations express a preference over sets of
possible worlds. We consider all possible worlds (or out-
comes) to be describable by some (large) set of binary fea-
turesF . Then eachceteris paribusrule specifies some fea-
tures of outcomes, and a preference over them, while ignor-
ing the remaining features. The specified features are in-
stantiated to either true or false, while the ignored features
are “fixed,” or held constant. Aceteris paribusrule might
be “we prefer programming tutors receiving an A in Soft-
ware Engineering to tutors not receiving an A, other things
being equal.” In this example, we can imagine a universe
of computer science tutors, each describable by some set of
binary featuresF . PerhapsF = {Graduated, SoftwareEngi-
neeringA, ComputerSystemsA, Cambridgeresident, Will-
ing to work on Tuesdays,. . .}. The preferences expressed
above state that, for a particular computer science tutor, they



are more desirable if they received an A in the Software En-
gineering course, all other features being equal.

We employ a restricted logical languageL, patterned af-
ter (Doyle, Shoham, & Wellman 1991) but using only the
standard logical operators¬ (negation) and∧ (conjunction)
to construct finite sentences over a set of atomsA.1 Each
atoma ∈ A corresponds to a featuref ∈ F , a space of
binary features describing possible worlds. We writef(a)
for the feature corresponding to atoma. By literals(A) we
denote the atoms ofA and their negations;literals(A) =
A ∪ {¬a | a ∈ A}. A complete consistent set of literalsm
is amodel. That is,m is a model iff exactly one ofa and¬a
are inm, for all a ∈ A. We useM for the set of all models
of L.

A model ofL assigns truth values to all atoms ofL, and
therefore to all formula inL and all features inF . We write
fi(m) for the truth value assigned to featurefi by model
m. A model satisfiesa sentencep of L if the truth values
m assigns to the atoms ofp makep true. We writem |= p
whenm satisfiesp. We define apropositionexpressed by a
sentencep, by [p] = {m ∈M | m |= p}.

A preference orderis a complete preorder (reflexive and
transitive relation)% overM. Whenm % m′, we say that
m is weakly preferredto m′. If m % m′ andm′ 6% m, we
write m Â m′ and say thatm is strictly preferredto m′. If
m % m′ andm′ % m, then we saym is indifferent to m′,
writtenm ∼ m′.

A statement of desire is an expression ofceteris paribus
preferences. We writep D q whenp is desired at least as
much asq. This is the statement thatp is desired overq
exactly when any model makingp true andq false is weakly
preferred to any model makingp false andq true, whenever
the two models assign the same truth values to all atoms
logically independent ofp and ofq.

Feature Vectors

We define the “feature vector representation” relative to an
enumerationV = (f1, . . . , fN ) of F (C).

We define the languageLr(V) of feature vector rules in
terms of a languageL(V) of propositions over the ternary
alphabetΓ = {0, 1, ∗}.

A statement inL(V) consists of a sequence ofN letters
drawn from the alphabetΓ, so thatL(V) consists of words of
lengthN overΓ. For example, ifV = (f1, f2, f3), we have
∗10 ∈ L(V). Given a statementp ∈ L(V) and a feature
f ∈ F (C), we writef(p) for the value inΓ assigned tof in
p. In particular, iff = Vi, thenf(p) = pi.

A feature vector rule inLr(V) consists of a triplep Â q in
which p, q ∈ L(V) have matching∗ values. That is,p Â q
is in Lr(V) just in casepi = ∗ if and only if qi = ∗ for
all 1 ≤ i ≤ N . For example, ifV = (f1, f2, f3), Lr(V)
contains the expression∗10 Â ∗00 but not the expression
∗10 Â 0∗0. We refer to the statement inL(V) left of the
Â symbol in a ruler as the left-hand side ofr, and denote

1We disallow the operators∨,→,↔ in L. Logical sentences
using disjunction, implication, and equivalence can be translated
into (possibly larger) equivalent logical sentences inL.

it LHS (r). We define right-hand sideRHS (r) analogously.
Thusp = LHS (p Â q) andq = RHS (p Â q).

We regard statements ofL(V) containing no∗ letters as
modelsof L(V), and writeM(V) to denote the set of all
such models. We say a modelm satisfiess, writtenm |= s,
just in casem assigns the same truth value to each feature
ass does for each non∗ feature ins. That is,m |= s iff
f(m) = f(s) for eachf ∈ F (C) such thatf(s) 6= ∗. For
example,0011 satisfies both∗0∗1 and00∗∗.

We project models inM to models inM(V) by a map-
pingα :

Definition 0.1 (Model Projection) The translation α :
M→M(V) is defined for eachm ∈M andf ∈ F (C) by
α(m) = m′, m′ ∈M(V). For all fi ∈ V,

• f(α(m)) = 1 if f ∈ m

• f(α(m)) = 0 if ¬f ∈ m

This projection induces an equivalence relation onM,
and we write[m] to mean the set of models inM mapped
to the same model inM(V) asm:

[m] = {m′ ∈M | α(m′) = α(m)} (1)

The translationα specifies thatm andm′ must assign the
same truth values to features that appear inL(V), but that on
features not appearing therein, there is no restriction. When
the feature vector ofL(V) is the set of featuresF , there is a
one-to-one correspondence of models inL(V) andL.

We say that a pair of models(m,m′) of L(V) satisfies
a rule r in Lr(V), and write(m, m′) |= r, if m satisfies
LHS (r), m′ satisfiesRHS (r), and m,m′ have the same
value for those features represented by∗ in r, that is,mi =
m′

i for each1 ≤ i ≤ N such thatLHS (r)i = ∗. For exam-
ple,(100, 010) |= 10∗ Â 01∗, but(101, 010) 6|= 10∗ Â 01∗.

The meaning[r] of a ruler in Lr(V) is the set of all pref-
erence ordersÂ overM such that for eachm,m′ ∈ M, if
(α(m), α(m′)) |= r, thenm Â m′. The meaning of a set
R of rules consists of the set of preference orders consistent
with each rule in the set, that is,[R] =

⋂
r∈R[r]. Thus a rule

∗∗01 Â ∗∗10 represents four specific preferences

0001 Â 0010
0101 Â 0110
1001 Â 1010
1101 Â 1110

Note that this says nothing at all about the preference rela-
tionship between,e.g., 0101 and 1010.

The support featuresof a statementp in L(V), written
s(p), are exactly those features inp that are assigned value
either 0 or 1, which represent the least set of features needed
to determine if a model ofL(V) satisfiesp. The support
features of a ruler inLr(V), denoteds(r), are the features in
s(LHS (r)). The definition ofLr(V) implies thats(LHS (r))
= s(RHS (r)).

We say that a pair of models(m,m′) of L(V) satisfies
a rule r in Lr(V), and write(m, m′) |= r, if m satisfies
LHS (r), m′ satisfiesRHS (r), and m,m′ have the same
value for those features represented by∗ in r, that is,mi =
m′

i for each1 ≤ i ≤ N such thatLHS (r)i = ∗. For exam-
ple,(100, 010) |= 10∗ Â 01∗, but(101, 010) 6|= 10∗ Â 01∗.



The meaning[r] of a ruler in Lr(V) is the set of all pref-
erence ordersÂ overM such that for eachm,m′ ∈ M, if
(α(m), α(m′)) |= r, thenm Â m′. The meaning of a set
R of rules consists of the set of preference orders consistent
with each rule in the set, that is,[R] =

⋂
r∈R[r]. Thus a rule

∗∗01 Â ∗∗10 represents four specific preferences

0001 Â 0010
0101 Â 0110
1001 Â 1010
1101 Â 1110

Note that this says nothing at all about the preference rela-
tionship between,e.g., 0101 and 1010.

Building a Utility Function
Writing ceteris paribuspreferences in a feature-vector for-
mation makes the relationship between the preference and
the preorder over outcomes more explicit. Each preference
statement is shorthand for a specific group of preference re-
lationsm Â m′ over outcomes. Thus, it is easy in principle
to enumerate the particular relations implied by each prefer-
ence statement. In previous work, we did this with what we
called amodel graph.

The model graph is a directed graph with2|F (C)| nodes,
representing models, and edges, representing preference.
Each edge fromm to m′ indicates a directly-expressed pref-
erence form overm′. Thus, there exists an edgee(m,m′)
if and only if (m,m′) |= r for some preference ruler ex-
pressed in the feature-vector representation. The graph is
then constructed by considering each preferencer and in-
cluding edges indicated byr.

When the model graph is complete, we can determine if
m is preferred tom′ by looking for a path fromm to m′
and a path fromm′ to m. If the path fromm to m′ exists,
we can conclude thatm Â m′ according to the expressed
preferences. If the path fromm′ to m exists, we conclude
the opposite, thatm′ Â m. If both pathes exist, then we
conclude thatm is preferred to itself; which we consider to
be an indication that the preferences themselves are incon-
sistent.

Further, such a graph can be used to assign utility values
to models. For example, a functionu(m) that assigns to a
nodem the integer value of the number of distinct nodes
reachable from pathes starting withm, is a utility function
consistent with the set of preferences used to construct the
model graph. This is an intuitively salient result; it relies on
the fact that whenm Â m′ thenm′ is reachable from a path
starting withm, and thus,u(m) > u(m′) since every node
reachable fromm′ is also reachable fromm, plus the node
m′ itself. We refer to such a function as aGraphical Utility
Function. This function isordinal in the sense that neither
u(m)−u(m′) oru(m)/u(m′) have meaningful values; only
the ordering of the values ofu are important.

Utility Independence
For reasons of computational efficiency, it is desirable to
have a utility function that is not computed directly from a
graph defined on the entire feature space, but rather a utility

function that is a linear combination of subutility functions,
each computed from model graphs of subsets of the feature
space. In particular we considergeneralized additively inde-
pendent utility functions, which are functions of the form

u(m) =
∑

i

tiui(m)

where each subutility functionui is a function of only a sub-
set of the featuresF (C), and the features used in subutility
functions cover the setF (C). If the features used in subutil-
ity functions form a partition ofF (C) then this is aadditive
utility decompositionrather than ageneralizedadditive de-
composition. In either case, the computation of utility for a
feature inui must beutility independentof features not in-
cluded in the domain ofui. This is the idea that a person’s
preferences for one feature are independent of the (fixed)
values of another feature. See (Keeney & Raiffa 1976) for a
discussion of various kinds of utility independence and prop-
erties thereof. In most cases assuming that the domains of
subutility functions partition the space greatly simplifies pre-
sentation without changing results in a substantive manner.
Thus finding a suitable partition of the features into subu-
tility functions is an important task in the construction and
design of a utility function.

Keeney and Raifa (1976) give criteria for when two fea-
tures are utility independent. This is, broadly speaking,
a powerful concept requiring significant constraints on the
utility function and the decision maker. We consider it more
expedient to assume that each feature is utility independent
of each other feature and then look for evidence of utility
dependence between features. This evidence is of a sim-
ple form: a preference on one feature reverses itself when
the value of another feature changes. For example, if the
weather is raining I may prefer carrying an umbrella with
me to leaving it at home. However, when the value of the
weather changes I immediately reverse my preference on the
umbrella, and instead prefer to leave the umbrella at home
in good weather than to carry it with me (Boutilier 1994).
In this case the utility of carrying the umbrella depends on
the value of theweatherfeature. It is not necessary for the
converse to be true; the utility of the weather may be inde-
pendent of the presence of my umbrella.

In the simplest case, such a preference reversal is easy to
detect in groups of feature-vector preference rules. A prefer-
ence reversal on feature 1,umbrella, in response to a change
in the value of feature 2,rain, would look like this:

00 Â 10
11 Â 01.

In this case the preference forumbrellais 0Â 1 in the case
of rain = 0 (shown in the first preference), and the preference
for umbrellathen changes to 1Â 0 whenrain changes to 1
(shown in the second preference). This preference reversal
indicates thatumbrella is utility dependent onrain. Using
this feature-vector representation, it is a simple manner to
perform string-parsing on pairs of preference rules to detect
this type of utility dependence between features. There may
still be utility dependencies that are not discovered via this



method, for example, those resulting from the transitive clo-
sure of many such preferences. However, this problem can
be fixed at later stages of the utility construction algorithm.

Subutility Functions and Local Inconsistency

Given a partition of the feature space into utility independent
subsets, the next task is to construct subutility functions for
each such subset of features. This proceeds in several steps.
First a set of “restricted” preferences is generated for each
subutility function. Then a graphical utility function is gen-
erated from these preferences for each subutility function.
Linear programming is then used to solve for the scaling pa-
rameters of the full additive decomposition utility function.

Each subutility functionui corresponds to a set of features
Si such thatSi is utility independent ofSi. Each preference
rule r is a statement over the featuresF (C). A rule r can
be projected onto the features of each subutility function by
simply retaining the values for features inSi and ignoring
or deleting the values for other features. In this way, we
can obtain a setRi of feature-vector preferences overSi. If
the resulting preferences are acyclic onSi, they can be used
to define a graphical utility function overSi, and this is then
used as the subutility functionui for featuresSi. If the graph
for each subutility function is acyclic, then we are free to set
the scaling parametersti of the utility function to any value
greater than zero we desire, in particular,1. Thus, in the
totally acyclic case, we have a compiled a completed utility
function u(m) =

∑
i ui(m) where eachui is a graphical

function as described above.
However, when the preferencesRi are cyclic we develop

a constraint satisfaction problem to break the cycles. We
choose some preference rules inRi and remove them, such
that the remaining rules are acyclic. The removed rules are
used as input to the linear programming problem in the next
step of the algorithm, described below. We use constraint
satisfaction solvers to determine which rules to remove in
this way. The first constraint is that no rule can be removed
from every subsetRi. And the second and final constraint
is that each particular subsetRi must be cycle-free. By gen-
erating a satisfaction problem in conjunctive normal form,
we can use a boolean satisfaction solver (SAT-Solver) to ar-
rive at a solution to the problem. Results in (McGeachie &
Doyle 2004) show that any solution to this problem, when it
such a solution exists, is correct. Using the solution to this
problem, we choose some preference rules fromRi, remove
them, and build cycle-free graphical utility functions out of
the remaining rules.

Preference rules that are removed in the previous step in
order to obtain cycle-free subutility functions are given con-
sideration in the linear programming step that determines
scaling parameters for the additive decomposition utility
function. Recall that our utility function is of the form
u(m) =

∑
i tiui(m), or a weighted sum of subutility func-

tions. The linear programming step assigns values to each
scaling parameterti based on the preferences removed from
Ri. For each such preferencer, we add a linear inequality to
a set of inequalitiesI for each value ofui(m)− ui(m′) for

The algorithm outputs a utility functionu consistent with a
set of inputceteris paribuspreferencesC.

1. Compute the set of relevant featuresF (C), which is the
support ofC.

2. ComputeC∗ from C by converting a set of preferencesC
in languageL to a set of preferencesC∗ in the language
L(V).

3. Compute a partitionS′ = {S′1, S′2, ..., S′Q} of F (C) into
utility-independent feature sets.

4. Construct projected rule setsRi for eachSi by projecting
each ruler onto each setSi.

5. Construct the a model graphGi(Ri) for each set of rules
Ri over the featuresSi.

6. Compute a complete setYi of cyclesYik for each graph
Gi(Ri) such that each cycleYik is a set of rules fromRi.

7. Construct a satisfiability problemP (C∗, S) from all cy-
clesYik, indicating which rules participate in which cy-
cles.

8. Find a solutionΘ to P (C∗, S).

9. Choose conflict-free rule setsRi ⊆ Ri sets using solution
Θ of P (C∗, S).

10. Construct cycle-free model graphsG′i(Ri)
11. Define each subutility functionui to be the graphical

subutility function based onG′i(Ri).
12. Construct a system of linear inequalities relating the pa-

rametersti, I(C∗, S, R).

13. SolveI(C∗, S,R) for eachti using linear programming.

(a) If I(C∗, S, R) has a solution, pick a solution, and use
the solution’s values forui andti to construct and out-
put a utility functionu(m) =

∑
i tiui(m).

(b) If I(C∗, S,R) has no solution, constructu to be the
graphical utility function based onG(C∗), and output
u.

Figure 1: Utility Construction Algorithm

all (m, m′) |= r. The inequality contributed is of the form:
∑

i

ti(ui(m)− ui(m′)) > 0.

In (McGeachie & Doyle 2004) we give more details about
this process, including arguments of correctness.

From the set of linear inequalitiesI, we can solve for the
values ofti using linear programming. The solution gives us
the final form of the utility function,u(m) =

∑
i tiui(m).

We summarize the steps of the entireUtility Function Con-
structionalgorithm in Figure 1.

Recompiling for Change
Performing preference elicitation and preference reasoning
in a dynamic environment presents a significant challenge to
our work. Ideally, we feel our system should adapt better to



changing or additional preferences. Adding preferences to
our formulation currently requires a recompile of our utility
function, which can be computationally costly. Future work
will investigate partial compilation methods and alternative
representations with better incremental compilation proper-
ties.

However, our representation of preference is suited to two
kinds of preference change: utility independence changes,
and changes in the underlying feature space.

Utility Independence, Utility Dependence
Our representation of preference, while utilizing utility in-
dependence of features as a major computational expedient,
makes no semantic or syntactic commitment to utility in-
dependence. This allows our representation to reason effi-
ciently with preferences that exhibit substantial utility inde-
pendence and reason less efficiently with inherently more
complicated, utility dependent preferences, as the particular
domain and problem require. Furthermore, a user’s pref-
erences may change in such a way that some features that
were utility independent become dependent, and vice versa.
Our system allows this shift without requiring specialized
semantics or syntax.

Suppose we have a setC of ceteris paribuspreferences.
Then suppose some preferences are added toC, resulting
in a setC ′. Let S be the partition ofF (C) associated with
the set of preferencesC. S has been computed by starting
with a set of singleton sets (for each featurefi, there is a set
Si = {fi} ∈ S) and then merging setsSi andSj whenfi is
found to be utility dependent on featurefj . SinceC ′ is a su-
perset ofC, we know that the previous utility dependencies
are still valid. We need only check if preferences inC ′\C
result in new utility dependencies. This can be done by our
feature-vector parsing method described above. Once a new
partitionS′ is computed, we must consider if any of the fea-
ture setss ∈ S′ are the same as feature sets in the original
partition. If so, we break feature sets into two groups, new
and old. If the new feature sets are cycle-free, we can use the
previous graphical utility functions for each of the old fea-
ture sets. The new feature sets will have to use new graph-
ical subutility functions. The linear inequality set must be
regenerated and solved again, providing new values of scal-
ing parameters for the utility function. If the new feature sets
have cycles, then the rest of the utility function construction
algorithm can be re-run: we create new subutility functions
for all feature sets, then resolve all cycles through constraint
satisfaction, and finally set scaling parameters through linear
programming.

Adding and Deleting Domain Variables
In a changing domain, the domain model itself is subject to
change. We consider two instances of such change, first that
a feature of the domain would be deleted, and second that a
feature of the domain would be added.

Suppose we have a set of preferencesC over a set of fea-
turesF (C). Then consider what happens whenfi is re-
moved from the domain. We have a new set of features
F (C)′. Let ui be the subutility function who’s domain con-
tainedfi. If ui contained no other features, thenui will be

removed from the utility function, otherwise it will need to
have its graphical utility function reconstructed from a new
set of projected preference rulesR′i. In either case, we must
consider if the old subutility functionui contributed to the
set of linear inequalities. If it did, then the set must be regen-
erated and solved again, arriving at different values for the
scaling parametersti. If not, then we need not perform the
SAT-solving step for cycle-breaking, nor the linear program-
ming step for scaling parameter setting. A subutility func-
tion contributes to the set of linear inequalities when either
a) it is itself cyclic or b) preference rules thatoverlapwith ui

are members of cycles on some other subutility functionuj .
Here we define a preference ruleoverlaps with a subutility
functionuj when it has either letters 0 or 1 for any featuref
in the domain ofuj .

Similarly, we can add a new feature without performing
an entire recompile of the utility function if the new fea-
ture does not contribute to the linear inequality step of the
equation. Suppose we have a new featurefn+1 added to our
set of featuresF (C). We also assume that there are some
new preference statementsC ′ that refer to the featurefn+1.
If these new preferences are such that they do not overlap
with fn+1 and participate in cycles on some other feature,
and the graphical subutility function forfn+1 is cycle-free,
then all previous graphical subutility functions can remain
and we can skip the linear inequality step, using previous
values for scaling parametersti and settingtn+1 = 1. If this
is not the case, we must check that the new feature is not
utility dependent on any other feature, or some other feature
utility dependent upon it. We must then perform the satis-
fiability step again, build new graphical subutility functions
for each feature setSi, and generate and solve a new set of
linear inequalities. We will then have a new utility function
u(m) =

∑
i tiui(m).

Altered Preferences

In general, preference changes are a source of instability for
our algorithm. If preferences change arbitrarily, then we
have to repeat the work already done to build a utility func-
tion, and build a new one largely unrelated to the previous
utility function. However, our criterion of changing pref-
erences participating in cycles on some subutility function
characterizes the cases where a complete recompile is not
necessary. For the following, we say that a preference ruler
changes betweenC andC ′ if it is either not inC or it is not
in C ′.

Theorem 1(Cycle Agnosticism)For all preference rulesr
changing betweenC andC ′, if r is such that it is a member
of no cycle on any subutility functionui built from prefer-
encesC or any subutility functionu′i built from preferences
C ′, then building utility functionu′ fromC ′ does not require
redoing the cycle-breaking constraint step or the linear in-
equalities scaling parameter step.

This theorem says that we are free to keep the subutil-
ity functions and scaling parameter assignments of a utility
function u for C when buildingu′ for C ′, whenC ′ obeys
the proper conditions. This means that all that must be done
is the generation of graphical subutility functions for each



feature setSi in the partitionS. In general, this avoids the
computationally inefficient parts of the algorithm; boolean
satisfiability is famously NP-Complete, and although solv-
ing a system of linear inequalities is in P, in the worst case
our system of linear inequalities can be of exponential size.

Conclusions
Our utility function construction algorithm requires more
work before it is ready to tackle rapidly changing prefer-
ences in unstable domains. In general, we must rebuild our
utility function when preferences change. However, we have
identified an important case of preference changes that do
not require complete rebuilds of our utility function. This
achieves one of our long-standing goals: to have methods
for identifying when partial recompilation is possible and
how to proceed in those cases.

References
Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. InProceedings of Uncertainty in Artificial
Intelligence 1999 (UAI-99).
Boutilier, C. 1994. Toward a logic for qualitative decision
theory. In Doyle, J.; Sandewall, E.; and Torasso, P., eds.,
KR94. San Francisco: Morgan Kaufmann.
Doyle, J.; Shoham, Y.; and Wellman, M. P. 1991. A logic
of relative desire (preliminary report). In Ras, Z., ed.,Pro-
ceedings of the Sixth International Symposium on Method-
ologies for Intelligent Systems, Lecture Notes in Computer
Science, 16–31. Berlin: Springer-Verlag.
Hansson, S. O. 1989. A new semantical approach to the
logic of preference.Erkenntnis31:1–42.
Keeney, R., and Raiffa, H. 1976.Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. New York:
Wiley and Sons.
McGeachie, M., and Doyle, J. 2002. Efficient utility func-
tions for ceteris paribus preferences. InAAAI Eighteenth
National Conference on Artificial Intelligence.
McGeachie, M., and Doyle, J. 2004. Utility functions for
ceteris paribus preferences.Computational Intelligence:
Special Issue on Preferences20(2):158–217.
Tan, S.-W., and Pearl, J. 1994. Qualitative decision theory.
In AAAI94. Menlo Park, CA: AAAI Press.
Wellman, M., and Doyle, J. 1991. Preferential semantics
for goals. In Dean, T., and McKeown, K., eds.,Proceed-
ings of the Ninth National Conference on Artificial Intelli-
gence, 698–703. Menlo Park, California: AAAI Press.


