Recompiling Utility Functions in a Changing World

Michael McGeachie
Computer Science and Al Lab, MIT
32 Vassar St. 32-250
Cambridge, MA 02139
mmcgeach@csail.mit.edu

Abstract

Our previous work considers a method for building a numeric
utility function out of qualitativeceteris paribuspreferences,

or preferences other things held equal. Dynamic domains em-
body changes in preferences. This can come in many forms.
The preferences themselves may change, the variables over
which preferences are expressed may change, or the forms
of utility independence that hold in the domain may change.
We consider the consequences for each type of change to our
system, and conclude that inherent ambiguities in our rep-
resentation allow for simpler handling of change than might
otherwise be the case.

set ofceteris paribugreferences (other things being equal)

and compiles a utility function. This approach has several
properties amenable to functioning in a dynamic domain.
Firstly, we allow some latitude in the way a user is able

to specify preferences. These preferences my well be in-
complete, may not refer to all variables in the domain, may
be conditional or unconditional, and may exhibit both util-

ity dependencies and utility independencies (McGeachie &
Doyle 2002). Secondly, we can add variables to the domain
without altering or invalidating the existing preferences. Re-
moving variables is also easy, however the existing prefer-

ences referencing those variables must be truncated, poten-
tially shifting their meaning.
Decision Support and Preference In the following section, we provide basic background re-

While classical decision theory can appear too limited or too 92rding the representation and semanticeeéris paribus
figorous to support decision-making in dynamic domains _pref_erences. Thls_ exegesis is a shorter version oft_h_at appear-
and under changing conditions, many decision-theoretic for- N9 in (McGeachie & Doyle 2004). Readers familiar with
malisms have great conceptual benefit. Researchers in artj- that source or the general theory ateris paribus might
ficial intelligence have made several formulations of quali- SKiP the following section.
tative decision theory (Wellman & Doyle 1991; Tan & Pearl .
1994; Boutilieret al. 1999), applicable in domains where ~Reépresentation of Preference
accurate probabilities and time consuming preference elici- Doyle and Wellman (Wellman & Doyle 1991) have observed
tation techniques are either unavailable or undesirable. Such that qualitative representations of preferences are a succinct
qualitative preference formulations allow decision makersto and reasonable approximation of at least one type of com-
make natural statements, representing user’s intuitions aboutmon human preferences. Doyle, Shoham, and Wellman
the decision space and easing the preference elicitation task.(Doyle, Shoham, & Wellman 1991) present a theoretical for-

Including qualitative preferences in decision support sys- mulation of human preferences of generalization in terms of
tems allows personalization. Decision support systems that ceteris paribuspreferencesi.e., all-else-equal preferences.
aim to help more than one decision maker need a way to rep- Ceteris paribusrelations express a preference over sets of
resent the differences between different users. The most di- possible worlds. We consider all possible worlds (or out-
rect method is to represent their preferencespiferences comes) to be describable by some (large) set of binary fea-
we mean the desires, tastes, and priorities that a person hasturesF'. Then eaclteteris paribusule specifies some fea-
and that furthermore differ from person to person, causing tures of outcomes, and a preference over them, while ignor-
two different people faced with the same decision to make ing the remaining features. The specified features are in-
different choices. stantiated to either true or false, while the ignored features
are “fixed,” or held constant. Aeteris paribugule might
be “we prefer programming tutors receiving an A in Soft-
ware Engineering to tutors not receiving an A, other things
being equal.” In this example, we can imagine a universe
of computer science tutors, each describable by some set of
binary featured’. Perhaps” = {Graduated, SoftwareEngi-
neeringA, ComputerSystems, Cambridgeresident, Will-
ing_to.work on_Tuesdays, ..}. The preferences expressed
above state that, for a particular computer science tutor, they

Ceteris ParibusPreferences in Dynamic
Domains

Our previous work includes a methodology for going from
preferences over a domain to making decisions in that do-
main (McGeachie & Doyle 2004). Our framework takes a

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

are more desirable if they received an A in the Software En-
gineering course, all other features being equal.

We employ a restricted logical language patterned af-
ter (Doyle, Shoham, & Wellman 1991) but using only the
standard logical operators (negation) andh (conjunction)
to construct finite sentences over a set of atosn's Each
atoma € A corresponds to a featurg € F', a space of
binary features describing possible worlds. We wifite)
for the feature corresponding to atemBY literals(.A) we
denote the atoms ofl and their negationdjterals(.A)
AU{=a | a € A}. A complete consistent set of literats
is amodel That is,m is a model iff exactly one of and—a
are inm, for all a € A. We useM for the set of all models
of L.

A model of £ assigns truth values to all atoms 6f and
therefore to all formula inC and all features ik’. We write
fi(m) for the truth value assigned to featufe by model
m. A modelsatisfiesa sentence of £ if the truth values
m assigns to the atoms pfmakep true. We writem = p
whenm satisfiegp. We define gropositionexpressed by a
sentence, by [p] = {m € M | m [p}.

A preference ordeis a complete preorder (reflexive and
transitive relation)- over M. Whenm 7 m’/, we say that
m is weakly preferredo m’. If m = m’ andm’ % m, we
write m = m’ and say thatn is strictly preferredto m/'. If
m -, m' andm’ = m, then we sayn is indifferentto m/,
writtenm ~ m/.

A statement of desire is an expressiorceferis paribus
preferences. We write > ¢ whenp is desired at least as
much asq. This is the statement thatis desired ovey
exactly when any model makingtrue andy false is weakly
preferred to any model makingfalse and; true, whenever
the two models assign the same truth values to all atoms
logically independent gf and ofq.

Feature Vectors

We define the “feature vector representation” relative to an
enumeration’ = (fi,..., fv) of F(C).

We define the languagé, (V) of feature vector rules in
terms of a languagé€ (V) of propositions over the ternary
alphabef” = {0, 1, x}.

A statement inC()) consists of a sequence f letters
drawn from the alphabét, so thatZ (V) consists of words of
length N overI'. For example, iV = (f1, f2, f3), we have
x10 € L(V). Given a statement € £(V) and a feature
f € F(C), we write f(p) for the value inl" assigned tg in
p. In particular, iff = V;, thenf(p) = p;.

A feature vector rule irC, (V) consists of a triple - ¢ in
whichp, ¢ € £(V) have matching: values. That isp >~ ¢
is in £,(V) just in casep; = x if and only if ¢; = * for
all 1 < ¢ < N. For example, if¥ = (f1, f2, f3), L:(V)
contains the expressiofl0 > x00 but not the expression
x10 > 0«0. We refer to the statement ifi(V) left of the
> symbol in a ruler as the left-hand side of, and denote

We disallow the operatorg, —, < in £. Logical sentences
using disjunction, implication, and equivalence can be translated
into (possibly larger) equivalent logical sentence£in

it LHS(r). We define right-hand sidBHS () analogously.
Thusp = LHS(p > q) andg = RHS(p > q).

We regard statements @f()) containing nox letters as
modelsof £(V), and write M(V) to denote the set of all
such models. We say a modelsatisfiess, writtenm = s,
just in casemn assigns the same truth value to each feature
as s does for each nom feature ins. Thatis,m [s iff
f(im) = f(s) foreachf € F(C) such thatf(s) # . For
example0011 satisfies bothk0x1 and00x:x.

We project models inV to models inM(V) by a map-

ping o :
Definition 0.1 (Model Projection) The translation «
M — M(V) is defined for eaclm € M andf € F(C) by
a(m) =m/,m" e M(V). Forall f; €V,
o fla(m))=1if fem
o f(a(m))=0if-fem

This projection induces an equivalence relation oh

and we write[m] to mean the set of models i mapped
to the same model iM (V) asm:

[m] = {m" € M| a(m') = a(m)} 1)

The translationy specifies thain andm’ must assign the
same truth values to features that appedt(ini), but that on
features not appearing therein, there is no restriction. When
the feature vector of (V) is the set of featureg, there is a
one-to-one correspondence of model£{y) andL.

We say that a pair of modelgn, m’) of £L(V) satisfies
aruler in £,(V), and write(m,m’') = r, if m satisfies
LHS(r), m’ satisfiesRHS(r), andm,m’ have the same
value for those features representediby r, that is,m; =
m}, for eachl < i < N such thatL HS(r); = *. For exam-
ple, (100,010) |= 10% = 01x, but(101,010) = 10% = 01x.

The meaningr] of a ruler in £,(V) is the set of all pref-
erence orders- over M such that for eachn, m’ € M, if
(a(m),a(m’)) E r, thenm = m’. The meaning of a set
R of rules consists of the set of preference orders consistent
with each rule in the set, that igz] = (", .z [7]. Thus arule
xx01 > *x10 represents four specific preferences

0001 > 0010
0101 > 0110
1001 > 1010
1101 > 1110

Note that this says nothing at all about the preference rela-
tionship betweere.g, 0101 and 1010.

The support featureof a statemenp in £(V), written
s(p), are exactly those featuresrthat are assigned value
either 0 or 1, which represent the least set of features needed
to determine if a model of (V) satisfiesp. The support
features of arule in £,(V), denoteds(r), are the features in
s(LHS(r)). The definition ofZ, (V) implies thats(LHS (1))
=s(RHS(r)).

We say that a pair of modelsn, m’) of £(V) satisfies
a ruler in £,(V), and write(m,m’) = r, if m satisfies
LHS(r), m’ satisfiesRHS(r), andm,m’ have the same
value for those features represented:kg r, that is,m;
m}, for eachl < ¢ < N such thatLHS(r); = *. For exam-
ple, (100,010) = 10% = 01x, but(101,010) j~= 10% > 01x.

The meaningdr] of a ruler in £(V) is the set of all pref- function that is a linear combination of subutility functions,
erence orders- over M such that for eacln, m’ € M, if each computed from model graphs of subsets of the feature
(a(m),a(m’)) | r, thenm = m'/. The meaning of a set space. In particular we considgeneralized additively inde-

R of rules consists of the set of preference orders consistent pendent utility functionswhich are functions of the form
with each rule in the set, that ig] = (", [7]. Thus arule

xx01 = *x10 represents four specific preferences u(m) = Z tiu;(m)
0001 > 0010 i
0101 > 0110 where each subutility function; is a function of only a sub-
1001 > 1010 set of the feature$'(C'), and the features used in subutility
1101 > 1110 functions cover the sdt(C). If the features used in subutil-

_) ity functions form a partition of’(C) then this is additive
Note that this says nothing at all about the preference rela- jlity decompositiorrather than aeneralizedadditive de-

tionship betweerg.g, 0101 and 1010. composition. In either case, the computation of utility for a
o . . feature inu; must beutility independentf features not in-
Building a Utility Function cluded in the domain of;;. This is the idea that a person’s

Writing ceteris paribuspreferences in a feature-vector for- Ppreferences for one feature are independent of the (fixed)
mation makes the relationship between the preference and values of another feature. See (Keeney & Raiffa 1976) for a
the preorder over outcomes more explicit. Each preference discussion of various kinds of utility independence and prop-
statement is shorthand for a specific group of preference re- erties thereof. In most cases assuming that the domains of
lationsm > m’ over outcomes. Thus, it is easy in principle ~ subutility functions partition the space greatly simplifies pre-
to enumerate the particular relations implied by each prefer- Sentation without changing results in a substantive manner.
ence statement. In previous work, we did this with what we Thus flndlng a suitable partltlon of the features into subu-
called amodel graph tility functions is an important task in the construction and
The model graph is a directed graph with (©)l nodes, design of a utility function.

representing models, and edges, representing preference. Keeney and Raifa (1976) give criteria for when two fea-
Each edge fromn tom’ indicates a directly-expressed pref- tures are utility independent. This is, broadly speaking,

erence form overm’. Thus, there exists an edgémn, m’) a powerful concept requiring significant constraints on the
if and only if (m, m’) |= r for some preference rule ex- utility function and the decision maker. We consider it more
pressed in the feature-vector representation. The graph is expedient to assume that each feature is utility independent
then constructed by considering each preferenead in- of each other feature and then look for evidence of utility
cluding edges indicated by dependence between features. This evidence is of a sim-
When the model graph is complete, we can determine if Ple form: a preference on one feature reverses itself yvhen
m is preferred tom’ by looking for a path fromm to m/ the value of another feature changes. For example, if the
and a path fromn/ to m. If the path fromm to m’ exists, weather is raining | may prefer carrying an umbrella with

we can conclude that: = m’ according to the expressed ~Me to leaving it at home. However, when the value of the
preferences. If the path from’ to m exists, we conclude weather changes | immediately reverse my preference on the
the opposite, thatn’ > m. If both pathes exist, then we Umbrella, and instead prefer to leave the umbrella at home
conclude thain is preferred to itself; which we consider to in good weather than to carry it with me (Boutilier 1994).
be an indication that the preferences themselves are incon- In this case the utility of carrying the umbrella depends on
sistent. the value of theveatherfeature. It is not necessary for the
Further, such a graph can be used to assign utility values converse to be true; the utility of the weather may be inde-
to models. For example, a functiar{m) that assigns to a Pendent of the presence of my umbrella.
nodem the integer value of the number of distinct nodes In the simplest case, such a preference reversal is easy to
reachable from pathes starting with, is a utility function detect in groups of feature-vector preference rules. A prefer-
consistent with the set of preferences used to construct the ence reversal on featuredmbrellg in response to a change
model graph. This is an intuitively salient result; it relies on in the value of feature Zain, would look like this:
the fact that whemn > m’ thenm/’ is reachable from a path 00 = 10
starting withm, and thusu(m) > u(m’) since every node 1 :01
reachable fromn’ is also reachable from, plus the node :
m' itself. We refer to such a function asgraphical Utility In this case the preference fombrellais 0 > 1 in the case
Function T,h|s function |so,rd|nal in the sense that neither o rqin=0 (shown in the first preference), and the preference
u(m) —u(m’) oru(m)/u(m’) have meaningful values; only for ymprellathen changes to £ 0 whenrain changes to 1

the ordering of the values efare important. (shown in the second preference). This preference reversal
i d d indicates thaumbrellais utility dependent omain. Using
Utility Independence this feature-vector representation, it is a simple manner to

For reasons of computational efficiency, it is desirable to perform string-parsing on pairs of preference rules to detect
have a utility function that is not computed directly from a this type of utility dependence between features. There may
graph defined on the entire feature space, but rather a utility still be utility dependencies that are not discovered via this

method, for example, those resulting from the transitive clo-

The algorithm outputs a utility function consistent with a

sure of many such preferences. However, this problem can Set of inputceteris paribuspreferences’.
be fixed at later stages of the utility construction algorithm. 1. Compute the set of relevant featueg’'), which is the

Subutility Functions and Local Inconsistency

Given a partition of the feature space into utility independent

subsets, the next task is to construct subultility functions for 3
each such subset of features. This proceeds in several steps.

First a set of “restricted” preferences is generated for each
subutility function. Then a graphical utility function is gen-
erated from these preferences for each subutility function.
Linear programming is then used to solve for the scaling pa-
rameters of the full additive decomposition utility function.

Each subutility function:; corresponds to a set of features 6.

S; such thats; is utility independent ofs;. Each preference
rule r is a statement over the featur$C'). A rule r can

be projected onto the features of each subutility function by
simply retaining the values for features.# and ignoring

or deleting the values for other features. In this way, we
can obtain a seR; of feature-vector preferences ovgr. If

the resulting preferences are acyclic®nthey can be used
to define a graphical utility function ove;, and this is then
used as the subutility functiar for featuresS;. If the graph

for each subutility function is acyclic, then we are free to set10.
11.

the scaling parametetg of the utility function to any value
greater than zero we desire, in particular, Thus, in the
totally acyclic case, we have a compiled a completed utility
functionu(m) = >, u;(m) where eachy; is a graphical
function as described above.

2.

5.

8.
9. Choose conflict-free rule sel C R; sets using solution

12.

support ofC.

ComputeC™* from C by converting a set of preferences
in languagec to a set of preferencegs* in the language
LV).

Compute a partitios’ = {57,55, ..., i} of F(C) into
utility-independent feature sets.

4. Construct projected rule se for eachS; by projecting

each ruler onto each se$;.

Construct the a model gragh (R;) for each set of rules
R; over the features;.

Compute a complete s&t of cyclesY;;, for each graph
G;(R;) such that each cyclg; is a set of rules fronR;.

7. Construct a satisfiability problef?(C*, S) from all cy-

clesY;, indicating which rules participate in which cy-
cles.

Find a solutior® to P(C*, S).

© of P(C*, S).
Construct cycle-free model grapii$(R;)

Define each subutility function; to be the graphical
subutility function based ot (R;).

Construct a system of linear inequalities relating the pa-
rameterg;, I(C*, S, R).

However, when the preferencés are cyclic we develop 13. Solvel(C*, S, R) for eacht; using linear programming.

a constraint satisfaction problem to break the cycles. We
choose some preference rulesiipand remove them, such
that the remaining rules are acyclic. The removed rules are
used as input to the linear programming problem in the next
step of the algorithm, described below. We use constraint
satisfaction solvers to determine which rules to remove in
this way. The first constraint is that no rule can be removed
from every subseR;. And the second and final constraint
is that each particular subsBt must be cycle-free. By gen-
erating a satisfaction problem in conjunctive normal form,
we can use a boolean satisfaction solver (SAT-Solver) to ar-
rive at a solution to the problem. Results in (McGeachie &
Doyle 2004) show that any solution to this problem, when it
such a solution exists, is correct. Using the solution to this
problem, we choose some preference rules fidpremove
them, and build cycle-free graphical utility functions out of
the remaining rules.

Preference rules that are removed in the previous step in

order to obtain cycle-free subutility functions are given con-
sideration in the linear programming step that determines
scaling parameters for the additive decomposition utility
function. Recall that our utility function is of the form
u(m) = >, tyu;(m), or a weighted sum of subutility func-

tions. The linear programming step assigns values to each

scaling parametes based on the preferences removed from
R;. For each such preferencewe add a linear inequality to
a set of inequalitieg for each value ofi;(m) — w;(m’) for

(@) If I(C*, S, R) has a solution, pick a solution, and use
the solution’s values for; andt; to construct and out-
put a utility functionu(m) = . t;u;(m).

(b) If I(C*, S, R) has no solution, construet to be the
graphical utility function based o&'(C*), and output

u.

Figure 1: Utility Construction Algorithm

all (m,m’) = r. The inequality contributed is of the form:
Zti(ui(m) —u;i(m’)) > 0.

In (McGeachie & Doyle 2004) we give more details about
this process, including arguments of correctness.

From the set of linear inequalitids we can solve for the
values oft; using linear programming. The solution gives us
the final form of the utility functionu(m) = >, tyu;(m).
We summarize the steps of the entiflity Function Con-
structionalgorithm in Figure 1.

Recompiling for Change
Performing preference elicitation and preference reasoning
in a dynamic environment presents a significant challenge to
our work. ldeally, we feel our system should adapt better to

changing or additional preferences. Adding preferences to removed from the utility function, otherwise it will need to
our formulation currently requires a recompile of our utility —have its graphical utility function reconstructed from a new
function, which can be computationally costly. Future work set of projected preference rul&s. In either case, we must
will investigate partial compilation methods and alternative consider if the old subutility functiom; contributed to the
representations with better incremental compilation proper- set of linear inequalities. If it did, then the set must be regen-
ties. erated and solved again, arriving at different values for the
However, our representation of preference is suited to two scaling parameters. If not, then we need not perform the
kinds of preference change: utility independence changes, SAT-solving step for cycle-breaking, nor the linear program-

and changes in the underlying feature space. ming step for scaling parameter setting. A subutility func-
N N tion contributes to the set of linear inequalities when either
Utility Independence, Utility Dependence a) itis itself cyclic or b) preference rules thaterlapwith u;

Our representation of preference, while utilizing utility in- ~are members of cycles on some other subutility functipn
dependence of features as a major computational expedient,Here we define a preference rueerlaps with a subutility
makes no semantic or syntactic commitment to utility in- functionu; when it has either letters 0 or 1 for any featyre
dependence. This allows our representation to reason effi- in the domain ofu;.

ciently with preferences that exhibit substantial utility inde- Similarly, we can add a new feature without performing
pendence and reason less efficiently with inherently more an entire recompile of the utility function if the new fea-
complicated, utility dependent preferences, as the particular ture does not contribute to the linear inequality step of the
domain and problem require. Furthermore, a user’s pref- equation. Suppose we have a new feajfre; added to our
erences may change in such a way that some features thatset of feature€’(C). We also assume that there are some
were utility independent become dependent, and vice versa. new preference statemertt$ that refer to the featurég, ;.

Our system allows this shift without requiring specialized If these new preferences are such that they do not overlap

semantics or syntax. with f,1; and participate in cycles on some other feature,
Suppose we have a s@tof ceteris paribuspreferences. and the graphical subutility function fgf,, is cycle-free,
Then suppose some preferences are added, teesulting then all previous graphical subutility functions can remain

in a setC’. Let S be the partition ofF'(C') associated with and we can skip the linear inequality step, using previous
the set of preferenceS. S has been computed by starting values for scaling parametefsand setting,,+1 = 1. If this
with a set of singleton sets (for each featyyethere is a set is not the case, we must check that the new feature is not

S; = {f:} € S) and then merging sef$ andS; when f; is utility dependent on any other feature, or some other feature
found to be utility dependent on featufg SinceC" is a su- utility dependent upon it. We must then perform the satis-
perset ofC, we know that the previous utility dependencies fiability step again, build new graphical subutility functions
are still valid. We need only check if preferences(if\C for each feature sef;, and generate and solve a new set of

result in new utility dependencies. This can be done by our linear inequalities. We will then have a new utility function
feature-vector parsing method described above. Once a newu(m) = Y, t;u;(m).

partition.S” is computed, we must consider if any of the fea-

ture setss € S’ are the same as feature sets in the original Altered Preferences

partition. If so, we break feature sets into two groups, new
and old. If the new feature sets are cycle-free, we can use the
previous graphical utility functions for each of the old fea-
ture sets. The new feature sets will have to use new grap
ical subutility functions. The linear inequality set must be
regenerated and solved again, providing new values of scal-
ing parameters for the utility function. If the new feature sets
have cycles, then the rest of the utility function construction
algorithm can be re-run: we create new subutility functions
for all feature sets, then resolve all cycles through constrain
satisfaction, and finally set scaling parameters through linear ince.

In general, preference changes are a source of instability for
our algorithm. If preferences change arbitrarily, then we
h- have to repeat the work already done to build a utility func-
tion, and build a new one largely unrelated to the previous
utility function. However, our criterion of changing pref-
erences participating in cycles on some subutility function
characterizes the cases where a complete recompile is not
necessary. For the following, we say that a preferencerrule

¢ _char)ges betweefi andC’ if itis either not inC or it is not

programming. Theorem 1(Cycle Agnosticism)For all preference rules:
)])] changing betweefi andC’, if r is such that it is a member
Adding and Deleting Domain Variables of no cycle on any subutility functiom; built from prefer-

In a changing domain, the domain model itself is subject to encesC' or any subutility function: built from preferences
change. We consider two instances of such change, first that C’, then building utility function/’ from C’ does not require
a feature of the domain would be deleted, and second that aredoing the cycle-breaking constraint step or the linear in-

feature of the domain would be added. equalities scaling parameter step.
Suppose we have a set of preferenCesver a set of fea- This theorem says that we are free to keep the subutil-
tures F(C'). Then consider what happens whénis re- ity functions and scaling parameter assignments of a utility

moved from the domain. We have a new set of features functionw for C when buildingu’ for C’, whenC”’ obeys
F(C)'. Letu; be the subutility function who's domain con- the proper conditions. This means that all that must be done
tainedf;. If u; contained no other features, thenwill be is the generation of graphical subutility functions for each

feature sefS; in the partitionS. In general, this avoids the

computationally inefficient parts of the algorithm; boolean
satisfiability is famously NP-Complete, and although solv-
ing a system of linear inequalities is in P, in the worst case
our system of linear inequalities can be of exponential size.

Conclusions

Our utility function construction algorithm requires more
work before it is ready to tackle rapidly changing prefer-
ences in unstable domains. In general, we must rebuild our
utility function when preferences change. However, we have
identified an important case of preference changes that do
not require complete rebuilds of our utility function. This
achieves one of our long-standing goals: to have methods
for identifying when partial recompilation is possible and
how to proceed in those cases.

References

Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. Proceedings of Uncertainty in Artificial
Intelligence 1999 (UAI-99)

Boutilier, C. 1994. Toward a logic for qualitative decision
theory. In Doyle, J.; Sandewall, E.; and Torasso, P., eds.,
KR94 San Francisco: Morgan Kaufmann.

Doyle, J.; Shoham, Y.; and Wellman, M. P. 1991. A logic
of relative desire (preliminary report). In Ras, Z., dg-
ceedings of the Sixth International Symposium on Method-
ologies for Intelligent Systemkecture Notes in Computer
Science, 16—-31. Berlin: Springer-Verlag.

Hansson, S. O. 1989. A new semantical approach to the
logic of preferenceErkenntnis31:1-42.

Keeney, R., and Raiffa, H. 197®ecisions with Multiple
Objectives: Preferences and Value Tradeofféew York:
Wiley and Sons.

McGeachie, M., and Doyle, J. 2002. Efficient utility func-
tions for ceteris paribus preferences. AAAI Eighteenth
National Conference on Atrtificial Intelligence

McGeachie, M., and Doyle, J. 2004. Utility functions for
ceteris paribus preferenceComputational Intelligence:
Special Issue on Preferenc28(2):158-217.

Tan, S.-W., and Pearl, J. 1994. Qualitative decision theory.
In AAAI94 Menlo Park, CA: AAAI Press.

Wellman, M., and Doyle, J. 1991. Preferential semantics
for goals. In Dean, T., and McKeown, K., edBroceed-
ings of the Ninth National Conference on Artificial Intelli-
gence 698—-703. Menlo Park, California: AAAI Press.

