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Abstract 
Bayesian network has been a successful tool in the decision 
support systems. In the changing world, the decision 
making demands adaptive Bayesian methods that are 
composed of Bayesian inferential and learning approaches. 
To achieve this goal, we propose a kind of grid-enabled 
Bayesian networks that intend to gridify Bayesian 
inferential and learning methods when the advanced grid 
computing techniques are integrated. Most of our effort is 
put into the discussion of grid-enabled learning methods 
and grid-enabled inferential methods as well as their 
challenging work on the integration. It is argued that grid-
enabled Bayesian networks are able to utilize all available 
resources to support the adaptive decision making in the 
changing world. 
 

Introduction   
Bayesian network has been one of the most important 
ingredients in decision support systems that cope with 
uncertain issues in practice. In recent years, the concept of 
Bayesian artificial intelligence (Korb & Nicholson 2003) 
has been promoted with the aim at furthering the 
understanding of the nature of intelligence as well as 
producing useful tools for addressing difficult intellectual 
tasks. Its product must be intelligent, adaptive and reliable, 
and has the same performance as, if not better than humans.  

To achieve this goal, one of the challenging works is to 
integrate Bayesian methods with computing technologies 
to build a grid-enabled Bayesian network. This work could 
be consummated with a marriage of Bayesian methods and 
computing technologies although both have long been 
studied in different disciplines. The Bayesian methods, 
including Bayesian reasoning and learning approaches, 
have been studied in the field of decision sciences for a 
long time. A lot of algorithms have been proposed, such as 
junction tree methods (Jensen et al. 1990) for Bayesian 
inference and block learning algorithms (Zeng & Poh 2004) 
for Bayesian learning. However, the huge computation 
cost of these algorithms is deferring their applications in 
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the real world. On the other hand, grid computing (Foster 
et al. 2002) has been becoming very popular and it 
connects multiple regional and national computational 
resources to create a universal source of computing power. 
This powerful technology facilitates the computationally 
expensive applications by making use of distributed 
resources. However, to fully take advantages of grid 
computing, it requires that the problems to be solved be 
gridified.  

An insightful investigation on these two issues will 
discover potential grid-enabled Bayesian network 
applications that are motivated for reducing the 
computation time.  Hence, an integration of Bayesian 
methods and grid computing technology will allow users to 
utilize enormous computation resources to address 
complex and intellectual tasks, and then promptly provide 
results to support decision making in the changing world. 
However, the challenging work on their integration 
requires more effort. The following sections will specify 
some advanced Bayesian methods with the linkage of grid 
computing. We will investigate two things: the motivation 
for integration and the challenges involved in integrating 
them. In the discussion of grid-enabled Bayesian learning 
methods, we will generalize the bock learning algorithm in 
our recent work (Zeng & Poh 2005) and present its main 
procedures in detailed. After that, we intend to gridify the 
block learning algorithm as well as to discussion this 
challenging work. In the grid-enable Bayesian inferential 
methods, we argue that the junction tree inference 
algorithm, considered in an essential way, easily involves 
in the integration with grid computing techniques. Some 
similar work on this topic is valued. 

This paper is organized as follows. In Section 2, we 
investigate grid-enabled Bayesian learning methods. As an 
important element associated with these methods, the 
block learning algorithm is generalized and discussed in 
detail as well as   the challenging work concerning its 
integration with grid. In Section 3, we discuss grid-enabled 
Bayesian inferential methods. Finally, in Section 4, we 
conclude the paper. 



Grid-Enabled Bayesian Learning Methods  
An adaptive algorithm for learning Bayesian networks is a 
pillar in building Bayesian tools. It may differ from other 
algorithms in some abilities: (1) It could be scaled up; (2) 
It could be configured for tasks; (3) It could embrace other 
algorithms. These outstanding features that may be on the 
way to adaptability are partly lost in the existing learning 
algorithms, such as the PC algorithm (Spirte et al. 2000) 
and the MMBN algorithm (Tsamardinos et al. 2003). 
Recently, the block learning algorithms (Zeng & Poh 2004) 
just demonstrates its good performance on learning large 
Bayesian networks from sparse data. Its generalization 
would hit the target of adaptability.   

Generalize the Block Learning Algorithm 
Specified on learning Bayesian network structures, the 
block learning algorithm adopts divide-and-conquer 
strategy to decompose a learning problem into several sub-
learning tasks. Its generalization includes some major 
procedures: (1) Generate Maximum Spanning Tree 
(GMST); (2) Identify Blocks (IB); (3) Identify Markov 
Blanket of Overlaps (IMB); (4) Learn Overlaps (LO); (5) 
Learn Blocks (LB); (6) Combine Learned Blocks (CB).  
Generate Maximum Spanning Tree (GMST).  In the 
GMST procedure shown in Figure 1, an MST is built after 
computing the mutual information between every pair of 
variables },,{ 1 nXX L=χ from a training data set 

},,{ 1 NxxD L= . This procedure provides an initial 
dependency structure with little computation cost. 
 
 
 
 
 
 
 
 
 
Figure 1: GMST Procedure 
 
Identify Blocks (IB). In the IB procedure shown in Figure 
2, a block is a kind of dense structure that includes nodes 
with strong dependency. The number of the shared nodes 

1ComNum and 2ComNum determines the criteria to merge 
these rough blocks. The finalized block becomes a basic 
leaning unit in a learning process. 
Identify Markov Blanket of Overlaps (IMB). In the IMB 
procedure shown in Figure 3, what we are interested in is 
the Markov blanket of overlaps, not the overlaps that link 
the related blocks. Here, a simple way is formulated. 
Learn Overlaps (LO). In the LO procedure shown in 
Figure 4, any learning algorithm ALG1 could be utilized to 
learn the Markov blanket of the overlaps. However, only 

the V-structures associated with the overlaps remain in the 
next procedure for these robust structures is possible to 
improve the learning reliability as well as spend up 
learning efficiency. 
 

 
Figure 2: IB Procedure 
 
 

 
Figure 3: IMB Procedure 
 
 

 
Figure 4: LO Procedure 
 

Procedure GMST 
Input: A data set },,{ 1 NxxD L=  
Output: MST M  
 
1. Load the data set D  
2. Build M  based on the mutual information 

Procedure IMB 
Input: Blocks iB  ( ri L1= ) 
Output: Overlaps ijO , Markov Blankets of Overlaps 

ijMB  
 
1. Identify ijO  between block iB  and jB ( ji ≠ ) 
2. Search all nodes within two lengths away from 
nodes in ijO  and pull them into ijMB  

Procedure LO 
Input: A data set },,{ 1 NxxD L=  and ijMB  

Output: V-Structure of ijO : VS( ijO ) 
 
1. Load the data set D  and learn ijMB using ALG1 

2. Identify the V-Structure of ijO  from the learned 

ijMB  

Procedure IB 
Input: A graph M  
Output: Blocks iB  
 
1. Initialize an individual block iB  ( ni L1= ) as one 
block center iS  with its family )( iSFam in M  
2. Merge block iB  and jB ( ji ≠ ) that have the same 
cardinality of connectivity and share the number of 
nodes larger than 1ComNum   
3. Search leaf nodes connected to those nodes in 

)( iSFam and enclose them into block iB  
4. Merge block iB  and jB ( ji ≠ ) that share the 
number of nodes larger than 2ComNum   
5. Finalize Blocks iB  ( ri L1= ) 



Learn Blocks (LB). The procedure LB shown in Figure 5 
is the core component in the block learning algorithm. In 
this procedure, the learning unit is not the whole network 
but the block obtained in the procedure IB so that the 
learning efficiency is increased absolutely. At the same 
time, the learning procedure LB could be configured with 
any learning algorithm ALG2. Furthermore, the benefit of 
robust structure in the overlaps is utilized while possible 
local errors are restricted in the block. These strategies are 
very helpful in the general learning task. 
 
 

 
Figure 5: IB Procedure 
 
Combine Learned Blocks (CB).  The final procedure CB 
is shown in Figure 6. The challenging work in this 
procedure is to ensure the final combined structure is a real 
Bayesian network of acyclic directed graph. Some strict 
combination methods could be found in (Jiang et al. 2005). 
Here, we borrow the fact that a partial order iλ  equals to 

jλ  ( iλ , jλ : a partial order for the variables in ijO  

identified in the blocks iB  and jB individually) ensures 

no directed cycles in ijB  composed of iB  and jB ( ji ≠ ). 
On another aspect, in the case that the reversal orders are 
obtained in iλ  and jλ  for the variables in ijO , we have to 

force them to follow one uniform order in the block iB  
that has a smaller size im , assuming ji mm < . The reason 
lies in the consideration of the confounding information in 
the statistical test: for the same cases or instances, the 
fewer the variables, the more reliably the dependencies 
among variables are tested. These strategies support the 
validity and effectivity of combination methods in this 
procedure. 

It seems that the above generalization parameterizes the 
block learning algorithm in our recent work (Zeng & Poh 
2004), like the introduction of 1ComNum and 

2ComNum in the IB and IMB procedures, ALG1 and 
ALG2 in the LO and LB procedures. Similarly, the 
complexity for this generalization algorithm could be 
analyzed as that in (Zeng & Poh 2004). 

Undoubtedly, the generalization of the block learning 
algorithm still keeps scalability to learn large Bayesian 

networks for it learns each block individually instead of 
learning the whole network simultaneously. At the same 
time, it can also learn blocks in which designers are  

 
Figure 6: CB Procedure 
 
interested. Hence, it is also an incremental learning 
algorithm. In the learning procedures, any type of learning 
algorithm, like the PC algorithm (Spirtes et al. 1993) and 
the GS algorithm (Margaritis & Thrun 1999), can be used 
to parameterize ALG1 or ALG2. In other words, the block 
learning algorithm could be considered as a kind of 
learning strategy rather than a type of learning algorithm. 

Integration with Grid  
Learning Bayesian network, especially learning a large one, 
is a time-consuming task that always frustrates 
practitioners in the relevant domain, like in the 
computation biology field.  Some work, like the parallel or 
distributed learning Bayesian network in (Xiang & Chu 
1999, Lam & Segre 2002), has facilitated the learning task 
a bit. With the emergence of advanced computing 
techniques, like grid computing, it is promising that the 
learning algorithm could share the existing computational 
advantages. 

It is evident that a learning task armed with this 
generalization for the block learning algorithms is easily to 
be gridified shown in Figure 7. In Figure 7, an oval with a 
solid line indicates a block obtained in the learning process; 
while an oval with a dotted line indicates an overlap 
linking the adjacent blocks in which the linkage nodes are 
denoted with solid circles. Obviously, the procedures for 
learning different overlaps or blocks can be done with 
distributed resources on the grid simultaneously as shown 
in Figure 7. In Figure 7, the machine-like symbols not only 
indicate the PC machines or workstations, but also indicate 
all the available resources on the grid. This framework can 
reduce a large amount of execution time if learning tasks 
are assigned to computing nodes and scheduled properly. 

Procedure LB 
Input: A data set },,{ 1 NxxD L= , iB  and VS( ijO )

Output: Learned iB ( ri L1= ) 
 
1. Load the data set D  and learn iB  using the ALG2 
with constraints VS( ijO ) 

2. Produce the learned iB ( ri L1= ) 

Procedure CB 
Input: Learned iB  and VS( ijO ) ( rji L1, = and 

ji ≠ ) 
Output: The whole Bayesian Networks B  
 
1. Identify iλ , jλ for the nodes in ijO between block 

iB and jB  

2. For the two blocks iB  and jB ( ji ≠ )  

    if ji λλ = , combine iB  and jB   

    else if ji mm < , combine iB  and jB  

    following iλ . 
3. Produce B  



Accordingly, the block learning algorithm could exerts 
most of its advantages when it is integrated with grid 
computing. However, much challenging work still remains 
to be addressed: (1) To assign and schedule the learning 
tasks to computing nodes properly, the computation cost 
and the communication cost of learning tasks must be 
known in advance. It requires a detailed analysis on the 
complexity of learning algorithms in grid experiments. (2) 

The criteria to obtain blocks have to be reconsidered 
according to computational resources on the grid, like the 
sections of 1ComNum and 2ComNum . It is not a fact that 
the larger the number of blocks, the more efficient the 
block learning algorithm. Hence, a parameterized block 
learning algorithm has to be tested.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 7: Block Learning Algorithm on the Grid

Grid-Enabled Bayesian Inferential Methods  
The major contribution of Bayesian network to decision 
support systems rests heavily on its accurate prediction 
through some effective inference methods. Tracing the 
development of inference algorithms for Bayesian 
networks, we find that these algorithms unconsciously 
embrace the thinking of adaptability. For instance, 
junction tree algorithms (Jensen et al. 1990) based on the 
message passing are a natural fit for parallel or distributed 
systems, like the work in (Madsen & Jensen 1999) and 
(D'iez & Mira 1994). In a fine-grain view, cliques in a 
junction tree are independent of each other and have their 
own local probabilities. After the message passing 
through these cliques, the junction tree algorithm 

produces precise propagation results. In a coarse-grain 
view, a junction tree consists of several branches 
composing of cliques that have strong dependency. Hence, 
each branch can be considered as one local probabilistic 
unit. Communications occur only in the joint cliques, 
which results in coherent inferences.  

In any case, junction tree algorithms can be gridified 
naturally by treating cliques or branches as computing 
nodes with accessible resources on the grid. For example, 
in Figure 7, an oval with a solid line could represent a 
clique obtained in a junction tree; while an oval with a 
dotted line may represent joint cliques. In this way, the 
propagation in local cliques occur sequentially or 
simultaneously concerning their partial orders generated 
in the junction tree so that it could make full use of the 
available computational recourses on the grid. This 
integration will make inference algorithms more practical, 
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especially reasoning in large Bayesian networks, because 
enormous computational resources are fully used to steer 
a time-consuming propagation. However, some problems 
arise when inference is performed in a grid computing 
environment, such as communication or computing nodes 
failure leading to non-global reasoning results. Hence, 
inference algorithms need to be improved and configured 
on the grid. This work requires collaboration between 
algorithms designers and software engineers.  

Recently, some progress has been achieved on new 
inference algorithms, called robust message passing 
algorithm (Paskin & Guestrin 2004). This advanced 
algorithm seems to have overcome a communication 
failure in a propagation process and provided very strong 
theoretical guarantees. Till now, most of this work has 
emphasized the algorithm formulation and theory 
discussion. To achieve practical adaptive systems, 
challenging work still exists. First, the algorithm has to be 
generalized and its performance should be verified in the 
follow-up tests. Second, some strategies must be 
proposed with the consideration on the grid reliability. 
For instance, how to handle an underway propagation 
when computing nodes involved in the computation are 
lost? What data related to the propagation should be kept? 
How to activate a new round of inference? Third, the 
algorithms should be able to adapt to grid environments, 
where the communication rate among computing nodes 
may be not high. In this grid environment, the 
communication cost is high especially when the large 
amount data need to be transferred. The high 
communication cost may be the bottleneck for the 
performance. To improve the performance, the grid-
enabled inferential algorithms should try to achieve a 
tradeoff between the size of cliques and the number of the 
cliques.  

Conclusion 
Grid-enabled Bayesian networks that are realized with 
grid-enabled learning methods and grid-enabled 
inferential methods are the integration of Bayesian 
methods with grid computing techniques. Grid-enabled 
learning methods are proposed based on the 
generalization of the block learning algorithm in our 
current work (Zeng & Poh 2005). This paper emphasizes 
the generalization of the block learning algorithm. We 
show this generalization still remains its scalability and 
further improves its adaptivity. Therefore, its integration 
with grid computing techniques is direct and effective. 
However, much challenging work requires more effort. 
As for the grid-enabled inferential methods, we uncover 
the essence of the junction tree inference algorithm and 
discuss its natural and possible integration with grid 
computing techniques. The latest work on this topic is 
also valued in this paper. 

In a summary, to solve a complicated intelligent task, 
much work on both Bayesian methods and computing 
technologies has followed some common advanced 
ideologies that are discovered from our insightful analysis. 
Their marriage will be able to produce a powerful 
capability to cope with some of the practical problems in 
the changing world. Utilizing all of available computation 
resource on the grid, grid-enabled Bayesian network will 
be able to speed up the computation involved in the 
reasoning and learning process. Hence, it will allow users 
to be fully prepared for any task in the changing world. 
Moreover, it will facilitate the building of intelligent and 
adaptive Bayesian tools. However, lots of arduous and 
creative works are required to address some challenges in 
their integration on the grid. 
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