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Abstract

An autonomous agent that explores and acts in a
rich world needs knowledge to act effectively. This
agent can use knowledge that is availabl€om-
monsense Knowledge Bas@SKBs), when the
agent designer cannot encode all the information
the agent might need. CSKBs include general-
purpose information about the everyday world in a
formal language, but this information is not always
correct, relevant, or useful for the agent’s purpose.

In this paper we present an approach to retriev-
ing commonsense knowledge for autonomous de-
cision making. We consider agents whose for-
mal language is different from that of the CSKB,
and can use multiple CSKBs of various expressiv-
ity and coverage. We present a complete retrieval
framework with algorithms for mapping languages
and selection of knowledge. We report on prelim-
inary experimental results of these algorithms for
the ConceptNet CSKB.
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and for question answering. The first typically uses the con-
cept hierarchy information that is embedded in the CSKB,
while the second uses axioms of the CSKB that are tuned
carefully for the specific topic and queries together with a
theorem prover. In contrast, decision making requires knowl-
edge that is versatile and can aid in answering questions like
“what will action a do in my situation?” or “how do | get
closer to X?”. The two challenges posed by such applica-
tions are selecting knowledge that is correct, relevant, and
useful for the current task, and then using this knowledge.
We cannot expect fine tuning of axioms or manual selection
for an agent that is expected to explore an unknown territory.
Furthermore, our agent has to be able to select and use knowl-
edge that is not complete or accurate.

In this paper we present an approach to retrieving com-
monsense knowledge for autonomous decision making, and
a complete retrieval framework with several algorithms for
mapping languages and selection of knowledge. We consider
agents whose formal language is different from that of the
CSKB, and can use multiple CSKBs of various expressiv-
ity and coverage. Our algorithms translate an agent’s knowl-
edge base (AKB) to the language of a CSKB, even when the
CSKB is sparse. We show how an agent may use the AKB
and knowledge from a CSKB to choose actions.

There is growing interest in using knowledge about the world 1 e usage of knowledge by our agent gives rise to two

to aid autonomous decision making, el@acchus and Ka-

banza, 2000; Doherty and Kvarnitn, 2001. This knowl-

types of queries that we can ask from a CSKB. Theseeare
gion queries, which find relevant concepts and axioms given

edge is crafted carefully by a knowledge engineer to fit the? S€t Of concepts that the agent considesve, andpath
domain and goal. However, autonomous agents that explof@/€ries, which find relevant concepts and axioms given the
and acts in rich world cannot receive all their information CUrrent situation and a goal description. The corresponding
from the agent designer because he does not know the targ@f€ries are processed using a graph that we associate with the
environment in design time or the environment is too com-CSKB, and using methods from information retriel@iton

plex. In these cases this agent can use knowledge that is avaf'd Buckley, 198Band automated reasoning. We report on
able inCommonsense Knowledge Bag@SKBs). preliminary experimental results of these algorithms for the

Typically, CSKBs comprise of ontologies and hierarchical ©0NcePtNet CSKB. . . .
concept information together with many thousands of axioms 1 NiS IS workin progress, and some details are omitted with
that bring these concept together. Examples include Cy@nlY little experimental evaluation.

[Lenat, 1995, SUMO [Niles and Pease, 20Qjithe HPKB .. .

project at SR[Cohenet al., 1998, the HPKB projectat Stan- 2 Knowledge and Decision Making

ford’s KSL [Fikes and Farquhar, 19B€onceptNelSinghet  Our running example is that of an agent playing an adven-
al., 2004, and WordNetMiller, 1995]. ture gamdAmir and Doyle, 2002 This problem isolates the

The challenges posed by decision making are not adeommonsense reasoning problem from external challenges
dressed by current CSKB research. Research on CSKBs hiike vision and motor control. Far from the arrows and breezy
focused so far on applications for natural language processingjts of the wumpus world, these adventure games are intended
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Figure 1: A high-level perspective of the retrieval system

to be abstractions of real-world scenarios. The agent is dgropositional features in the domain.

signed to track its world in a compact belief state, use com- Thus, our decision maker is faced with the choice of a ac-
monsense to reason about the semantics of its knowledgton policy A such that executingd in the current state
learn the effects of actions through observation, and use itsroduces the goal state Methods that address this prob-
knowledge to progress toward some goal. Importantly, théem to some degree include planning under partial observabil-
agent is required to learn the action model, which is unknowrity [Bertoli and Pistore, 20Q4and reinforcement learning in

initially *. partially observable domairi&€ven-Daret al., 2004. They
) maintain a belief state and compute a plan or a policy for a
2.1 Problem Setting given problem domain and goal.

We assume that there is a single agent in the partially ob. :
servable world, with knowledge%bou?the currentpstate gf thez'2 Using Knowlnge ) )
world (and its effects of actions) that is represented by a sethere are four ways in which we wish to use knowledge: (1)
of logical sentences. We also assume that the agent can ogontrol knowledge for planning and search, (2) information
serve its environment using its sensors and act upon it. Thabout the way actions change the world (eliminate some of
world conforms to the assumptions of the basic Situation Calthe uncertainty about the transition model), (3) better guid-
culus[McCarthy and Hayes, 1969; Reiter, 200the Markov ~ &nce to exploration on f[he way to th_e goal (using information
property holds, actions have explicit preconditions and effect§ain), and (4) better guidance to acting on the way to the goal
and are deterministic, and there is a set of unique names afusing projection paths). .
ioms. Simple adventure games already have these properties,Control knowledge for planning (e.dBacchus and Ka-
so they are not too restrictive, and they allow us to represerf@nza, 2000; Doherty and Kvarristn, 200) can be repre-
actions using a well-understood language. sented as a restriction strategy on the choices that the agent
The agent is given a goal that is achievable from any staté@n make. For example, one can state that if our agent is
via a finite sequence of executable actions. (In many adver@ced by a locked door, then it should not try to unlock the
ture games, a state satisfying the goal is not specified initiallf!00r with @ bannana (this may jam the door). o
but must bediscoveredhrough exploration (e.g., by reading Information about actions’ effects and preconditions can
a note), but we ignore this case here.) Thus, in such envi€lP in making our planning problem more feasible, and may
ronments the agent can perform some default exploratory béllow us to reach islands in our search space. For example,
havior until a goal is reached. However, this exploration isif We know that unlocking the door with the correct key will
infeasible because it may take time that is linear (or worse) ifl@ve the effect that the door is unlocked, then we will try this
the number of states in our system, which i€}(2") for n ~ action before others, to find if the key that we have is the right
one, and possibly get into the room on the other side of the
This paper does not concern learning action models or maindooOr.
taining a compact belief state; the focus is on knowledge retrieval Knowledge about the way our actions change (or do not
only. change) the world, and knowledge about the way they are



likely or unlikelyto change the world is important for explo- nodes iff there is an axiom that mentions both of those terms.
ration. Information gaiiMitchell, 1997 is a measure thatis The astute reader will note that the algorithms as presented
typically used to perform this exploration. It is particularly retrieve concepts rather than axioms. These concepts are are
attractive in adventure and exploration games because theimgtended to be used along with the supplied query concepts as
one can use the information gain measure with hill climbingendpoints of a path along which all axioms are retrieved.

to reach the goal (the goal is achieved exactly when we dis-

cover an action that achieves it). 3.1 Mapping Agent Language to CSKB Language

Finally, a chain of plausible, high-level concept landmarkstq reason with commonsense knowledge, a mapping must be

or actions (€.9., a chain of concegts confnecbtinrg] alhou_se Witthade from the symbols in the agent’s language to those in the
a grocery store) can serve as guidance for both planning andsk g The mostimportant thing to realize when constructing
reinforcement learning. Planning techniques can use sucl, mapping is that it won't be exact, because no formal on-

chains to ﬁuide a roughhforv;/ard prlla” search with a subsequeg|qy exists that can represent all the information in English
process that corrects the plan where needed (@ugh,Bern-  ,ds (even when these words occur in isolation). Worse, it

hard Nebel, 200). Reinforcement learning can use SUChig ot clear that such a formalization is even possible. With

information to re-shape the reward structure by transferringy+ imjtation in mind, we propose the baseline system seen
some of the final reward (of reaching the goal) to various po;, Figure 2.

sitions in the state spa¢hig et al., 1999.

2.3 Representation of Agent’s Knowledge and PROCEDURE MapSymbols(AK B ordNetK B,CSK B
Interaction Model AK B Agent's KB (in FOL), WordNetK B WordNet KB

In this paper we assume a logical representation for actiondOntology and English wordsy,;'SK B Commonsense KB
(e.g., in the situation calculus), having met the preconditions(in FOL)

for doing so with the previous section’s restrictions. As men{ 1. SetMapping «— 0
tioned above, the action model is initially unknown. How-

ever, we assume that the game environment provide the age nt2‘ Loop for every constant symbal in AK B:

with a list of relevant actions. (a) Search fors, in WordNet, putting the resulting
We use the intuition that actiom(Z) is relevant if it is ex- set of synsets igenses

ecutable (with a non-nil effect) in some statehat is reach- (b) If senses = (), then setM apping <+ MappingU

able from the initial state. Such a list of relevant actions is {(s4q,nil)}. Else:

usually available to a human agent in an adventure game, gi- i. Setsyn — argmazsesenses P(s|AK B)

ther through a help system or through feedback that notifies ii. Sets. to be a CSKB concept (predicate, fumc-

the player of an unrecognized action. The rest of the action tion, or constant) symbol corresponding|to

model is initially hidden from the agent. syn’s WordNet ID.

_ Ide_ally, an agent should be able to receive all o_bserva- iii. If s, is non-nil, then setMapping «—
tions in natural language, as h_umans do_, but converting natu- Mapping U {(sa, s.)}. Otherwise, loop until
ral language sentences to logical ones is tantamount to a sp- syn = TOP:
lution to the general knowledge extraction problem. Thus '
we assume that observations contain only a limited natural
language component, and we associate this natural language
component with a set of logical sentences that represent the , X
obseprvations of the agent. %Ne use the text that ispassociated to syn’s WordNet ID, then seMapping «—
with nonlogical symbols in our First-Order Logical language Mapping U {(sq, sc) }, and break

L as semantic information that allows us to connkatith 3. ReturnM apping

the language of any CSKB.

A. Setsyn — hypernym(syn), syn's near-
est hypernym in WordNet
B. If CSK B has a concept, corresponding

] Figure 2: Algorithm for mapping agent’s symbols to CSKB
3 System Overview symbols

Figure 1 shows how the commonsense retrieval system aug-

ments an agent’s knowledge base with relevant commonsenseMapSymbols maps every constant symbol in the AKB to
axioms. The upper and lower halves of the diagram reprea matching entry in WordNet, based on a textual match only.
sent the two broad tasks being performed. The first task is tf performs word sense disambiguation based only on bag-
create a mapping from symbols in the AKB to those in theof-words co-occurrence data, which could be obtained from
CSKB. The second task is to use a subset of the AKB (nowa WordNet sense-tagged corpus. Then it attempts to find a
mapped to the language of the CSKB) as a query with whichmatching concept in the CSKB, requiring an existing map-
to find useful axioms in the CSKB. To determine relevance aping from CSKB symbols to WordNet synsets. If a match
generally as possible given the unstructured nature of someannot be found in the CSKB, the next nearest hyponym in
CSKBs, relevance is only calculated based on distance in WordNet is checked for a match, and so on until the most
graph representation of the CSKB. Every CSKB has groundgpecific match available is found.

terms and axioms over those terms, so a simple graph repre- For symbols other than constants, there may be more di-
sentation has a node for each term and an edge between tweensions to match than simple textual similarity. In CYC,



for instance, functions and predicates take typed arguments, Conceptually, spreading activation starts with a set of
and functions themselves have types. Types and arity repodes with someactivation weightand proceeds to acti-
resent syntactic restrictions that must be checked before arate neighboring nodes recursively over a series of time
agent symbol can be mapped to a CSKB symbol. To MaRteps. The activation weight” of a nodei at time ¢ is

functions and predicates using MapSymbols, we can perfor (t—1) Lo . )
unification, recursively matching terms textually or - if ther?(zj wija; ), wherej varies over the neighbors afand

terms are functions - through unification. W is the edge weight fromito i. f(.) is usqally a decay func- .
tion that has the effect of decreasing activation as distance in-
3.2 Retrieval Tasks creases from the activation sources. Activation weights are

. ranked after a halting condition is reached, based either on
We want our knowledge retrieval system to work well on eachime or nearness to some asymptotic distribution. Spread-
of the CSKBs, but their differences make this goal difficultjng activation is only a general procedure, but the “leaky
to achieve. To minimize the effects of these differences, weapacitor” model used in has been analyzed parametrically
create a simplified but uniform representation for CSKBS. in "and can be used on our network with little modification.
The retrieval system is not an algorithm for deciding which RegionQuery(G, S), then, is a straightforward application

axioms are relevant but a system for facilitating the applicaof the leaky capacitor model, parameterized for a rich, con-
tion of such algorithms on different types of CSKBs. Our nected network.

aim is to be able to retrieve useful information from any of
them, but their differences make that a difficult task. To mini-
mize the effects of these differences, we simplify the CSKBs
converting them to a weighted graph. The simple procedur
is given in Figure 3. The following sections descrilegion
qgueriesandpath queries, the two retrieval options allowed in
the framework.

gath Query

This type of search is intended only to find paths between two
concepts (or sets of concepts). They might represent two re-
gions of the belief state that the agent wants to connect (a key
and a locked door, for instance), or one of them might repre-
sent the goal, or part of the goal. Since it is assumed that the
retrieving agent is trying to find the shortest path to its goal,
a goal-directed search returns axioms lying on the shortest
€ paths between the supplied concept sets. The algorithm is
given in Figure 4.

PROCEDURE RetrieveFromGraph(CSKB, T, q)
CSK B, Commonsense KB (in FOLJ C CSK B, arele-
vant subset of the agent’s KB, mapped16§ K B concepts
T C CSK B, a set of concepts appearing in the goal stat
mapped taC'SK B conceptsy € {region, path}, the type
of query
1. SetA « (), the set of retrieved axioms.
2. Construct a weighted grap&;, from CSK B, with a PROCEDURE PathQuery(¢8, T)
node for every concept and an edge between two nodesG, a weighted graph$, the set of source node¥, the sel
iff the corresponding concepts are mentioned in [any | of destination nodes

axioms together. The weight on each edge correspond$ 1 Remove all edges between nodesin
to the number of axioms it represents.

3. SetS’ « the nodes irG corresponding t&'

2. Create a new node,

, . ) 3. For each edg@, ) wherep € S, create an edgg, q)
4. SetT” « the nodes irG corresponding t@” of equal weight and remové, q). if (s,q) already
5. if  queryype = region then A — exists, add to its weight the weight g4, q).

RegionQuery(G, S") . Remove all nodes ifi.
6. elsed «— PathQuery(G,S',T") . Repeat this procedure f@t, to produce a node
7. Return4 . Assign a score of 0 to each node in the graph.

Figure 3: Algorithm for retrieving relevant commonsense ax{ /- Find thek shortest paths betwesrandt, wherek is a
ioms parameter.

8. foreach pathy; (i =1, ..., k)
(a) for each node; onp; (notincludings andt)

~N O o1 b~

Region Query

. .. . . i _ 1
This type of search is intended to help the retriever find out I nj.scoret = oammy
more about its current knowledge. The intent is for an agent 9. Return thex (another parameter) nodes with the high-
to select a small number of concepts from its KB, and the est scores

result should be the set of axioms in the “contextual region’
of the given concepts. This region is identified using spreadrigure 4: Algorithm for returning nodes on paths between
ing activation, a technique that has been used successfully o regions

similar applications in which some seed was used to retrieve

a collection of related items from a graph .



4 Discovering Interesting Actionsin lem definition refines the results we want. Now it is suffi-
ConceptNet cient only to retrieve those actions semantically related to a
) ) ) context. Any more information would be useless because we
We have been able to implement a simple version of the "®have no way of knowing how to reason with it. So we add an
trieval system on ConceptNet first because of that CSKB'ira step to the end of the procedure: select the intersection
simple graph structure and ready availability. This version apyt the concepts retrieved by GetContext and the universe of
proximates spreading activation RegionQuery with Con-  getions.
ceptNe(;[s ?ergetdconteﬂ f”r?Ct'O”' J his ;unctr:onbmeasureﬁ The original system to retrieve data from ConceptNet used
wo nho gs ref ate n(ra]ss ast ehnumAer of paths detwegnt le%h the nonlogical symbols from the AKB as arguments to the
weighted to favor shorter paths. As mentioned previouslysqicontext function. That approach is fine for small KBs, but
all axioms on the paths between query concepts and retrievegd, 5 long-running agent, only a small subset of the symbols
CO\?\?ﬁptS. arﬁ re@uLned. Fie oo Thi __will define its present context. We restrict the set of symbols
N at Is the right amount of information? This qLI’_ef]t'O” sent to the context query to be only those appearing in the
as not been answered. Any upper bound is established byyonrs current location.” Clearly this only allows objects to
performance concerns: inference is ultimately exponential iyq \,sed in the query.
the size of the underlying knowledge base, so too much in- Procedure GetRelevantAction, presented in Figure 5, takes

formation will be useless to any agent. The ideal result of g, v knowledge base as input and returns a ranked list
retrieval is one fact or statement: the one that will determine

an agent's next correct action. But the generality that makeOf interesting actions. It is a specialization of Procedure Re-
X ‘ ; ; ieveFromGraph from Figure 3.

common sense useful will generally necessitate returning a

broader scope of facts than simply the correct next actio

Keeping in mind the hard limits posed by exponential time,| PROCEDURE GetRelevantAction(AK,B8SK B)

this retrieval system must be able to operate on a precise conécf)(l_l;’ Agent's KB (in FOL),C'SK B Commonsense KB (in

text.

1. LetC «— null

2. For every nonlogical symbal in AKB for which
there is a relatioObject At Location(s, 1) wherel is

4.1 Concept Expansion

The benefit of having a ranked contextual neighborhood is th
same as in any ranked result set: the ability to select the mos the agent's current location, addo C'
relevant subset of results. In the examples used while buildin ' i

and testing this system, usually only the top five or ten results 3- ReturnGetContext(C,CSKB) N A, whereA is the
have actual real-world relevance to the supplied context. A universe of actions

with any ranking heuristic, there were some anomalies - in-__ i i

stances of irrelevant concepts appearing much higher in th&igure S: Getting relevant actions from a commonsense KB
ranking than would be reasonably expected.

The most relevant concepts in the list, in no particular or- The algorithm does not make use of common sense markup
der, are "unlock door”, "open lock”, and "lock”. Some other from the previous algorithm that mapped the agent language
concepts’ positions at the top of the list could be argued, buto common sense.
it is unlikely anyone would argue that "metal” should even
appear in the top ten. Its appearance here is a likely indicat
that this contextual neighborhood is somewhat sparse, meafi- Related Work
ing there are relatively few relations involving doors, keys, Background knowledge is increasingly important for deci-
and locks. sion making. Work on reinforcement learnifigaelbling et

Results like this demonstrate the need for normalization imal., 1996; Andre and Russell, 2000; Ng and Russell, 2000;
relevance scoring. Intuitively, if one concept is of broad gen-Ng et al., 1999 uses background knowledge to structure
eral interest and the database contains many relations refefe state space, update the reward function, and approxi-
ring to it, that concept will be ranked highly in many queries. mate the value function. Also, work on planning uses back-

If normalization had been used in the "door, "key” example,ground knowledge to guide the search for a flaevesqueet

it is unlikely that "metal” would have ranked so highly. But al., 1997; Bacchus and Kabanza, 2000; Doherty and Kvarn-

whether normalization will improve ranking in the general strom, 2001. Finally, there has been some work on discov-

case is a question best answered empirically. To perform suckving knowledge to aid planning , and also about using non-

atest, there will need to be a set of test cases, each a pair comonotonic reasoning to speed up reasofiGigsberg, 1991

sisting of a query (given as a set of concepts) and a desireidowever, no work known to us has approached the problem

result (either a set of relevant results, or a perfect ranking)ef retrieving the right knowledge for a specific task.

Any test set will be dependent on the nature of the agent us- The topic of matching symbols between KBs has attracted

ing the system. much attention in recent years. There has been some suc-
.. . cesses in the case of matching database schemas that have

4.2 Additionsto the ConceptNet Retrieval System common underlying instances and langud®an, 2002;

The earlier system was retrieving all concepts and relation®oanet al., 2003, and some investigation was made in the

in ConceptNet related to the given context. Our current probease of more general Al knowledge bases . However, work on

@D

1N (@]




merging KBs and matching ontologies between KBs remaingKaelblinget al., 1996 Leslie Pack Kaelbling, Michael L.

manually driver{Noy et al., 2001.
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