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Abstract

To construct a perpetual self-aware cognitive agent that can
continuously operate with independence, an introspective
machine must be produced. To assemble such a agent, it is
necessary to perform a full integration of cognition (plan-
ning, understanding, and learning) and metacognition (con-
trol and monitoring of cognition) with intelligent behaviors.
The failure to do this completely is why similar more limited
efforts have not succeeded in the past. As a start toward this
goal, I performed an integration of an introspective multi-
strategy learning system with a nonlinear state-space plan-
ning agent using the wumpus world as environment. In this
integration I show how the resultant system I call INTRO
can generate its own goals. I use this system to discuss issues
of self-awareness by machine.

Introduction

Although by definition all AI systems can perform intelli-
gent activities, virtually none can understand why they do
what they do, nor how. Moreover without metacognition, a
system can do intelligent actions without knowing that it is
doing intelligent actions, let alone why. Many research
projects have sought to develop machines with some meta-
cognitive capacity, yet until recently no effort has attempted
to implement a complete, fully-integrated, meta-level archi-
tecture. The AI community currently recognizes that first-
order reasoning in isolation (e.g., puzzle problem-solving)
is insufficient, and therefore a full situated agent (i.e., an
adaptive problem-solver possessing perception of and
action within a complex environment) is necessary. Like-
wise, a second-order metacognitive theory must be compre-
hensive, if it is to be successful. Previous attempts,
including the research of Cox and Ram (1999a; Cox
1996b), Fox and Leake (1995; Fox, 1996), and Murdock
and Goel (2001; Murdock 2001), to build introspective
agents have been insufficient because of their limited extent
and scope. This paper examines a comprehensive approach
to the production of an agent that understands itself and the
world around it in a meaningful way. Rather than just a
machine specialized to operate within a complex physical
world, this machine must also be able to understand itself
within such a context.1

Figure 1 shows a decomposition of the relationships
between problem solving, comprehension and learning.
These reasoning processes share a number of intersecting
characteristics. As indicated by the intersection labeled A
on the lower left, learning can be thought of as a planning
task. Cox and Ram (1995) discuss this analogy at length.2

Cox and Ram (1999b) examines the similarity between
learning and story understanding as indicated by the inter-
section labeled B on the right in Figure 1. Here I discuss in
some detail issues related to the letter D intersection (letter
C is in the footnote).

Section D represents the intersection of planning and
comprehension, normally studied separately. Planning is
more than generating a sequence of actions that if executed
with transform some initial state into a given goal state.

1.But see also Minsky, Singh, and Sloman (2004).
2.Cox (1996b, pp. 294-299) discusses some of the intersections between
problem solving and comprehension represented in the letter C region in
the top-center of the figure. For example, a problem solver must be able to
monitor the execution of a solution to confirm that it achieves its goal. If
the comprehension process determines that the goal pursuit is not proceed-
ing as planned, then the planning failure must be addressed and the plan
changed.
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Instead planning is embedded in a larger plan management
process that must interleave planning, execution, and plan
understanding (Chien, Hill, Wang, Estlin, Fayyad and
Mortenson 1996; Pollack and Horty 1999). Furthermore all
AI systems accept goals as input or have an inherent back-
ground goal that drives system behavior; no system derives
its own explicit goals given an understanding (i.e., compre-
hension) of the environment other than through reactive
means.

The major objective of this paper is to show how a pre-
liminary system called INTRO can systematically create its
own goals by interpreting and explaining unusual events or
states of the world. The resulting goals seek to change the
world in order to lower the dissonance between what it
expects and the way the world is. The mechanism that it
uses for explanation is the same that its metareasoning
component uses when explaining a failure of base-level rea-
soning. The resulting goals in the latter case seek to change
its knowledge in order to reduce the chance of repeating the
reasoning failure. (i.e., a learning goal is to change the dis-
sonance between what it knows and what it should know).

INTRO

This section describes a preliminary implementation of an
INitial inTROspective cognitive-agent called INTRO that is
designed to exist continually in a given environment. It rep-
resents an example of life-long learning agent and a perpet-
ual agent that can generate explicit declarative goals that
provide deliberate intention and a focus for activities (see
Ram and Leake 1995 for a functional argumentation for the
role of explicit goals).

The agent itself has four major components (see Figure
2). INTRO has primitive perceptual and effector sub-
systems and has two more sophisticated cognitive sub-
systems. The latter two compose both the planning and
understanding components and consist of the Prodigy/
Agent and Meta-AQUA systems respectively.

Figure 2: INTRO architecture

The Wumpus World
A common agent environment (especially for pedagogical
purposes) exists publicly as the Wumpus World3 (Russell
and Norvig 2003). This environment contains an agent
whose goal is to find the gold while avoiding pits and the
wumpus creature. Unlike the Wumpus, the agent can per-
form actions to change the environment such as to turn,
move ahead, pickup, and shoot an arrow. Unlike a classical
planning domain, the environment is not fully observable,
but rather the agent perceives it through percepts. The per-
cepts consist of a 5-tuple that represents whether the Wum-
pus is nearby, the Wumpus screams, a pit is nearby, gold is
co-located, and whether an obstacle has been encountered.

For the purposes of this paper, the environment has been
limited to a four by one cell world (i.e., a length-4 corridor).
The agent as always starts in cell [1,1] at the western-most
end of the corridor. The Wumpus and the gold can be
placed in any of the remaining three cells. The example I
use here places the Wumpus and gold at the eastern-most
end of the corridor in every initial state (see Figure 3). In a
major change to the interpretation of the game, the Wum-
pus does not scream as it dies from an accurate arrow. The
Wumpus is rather benign in our example, because it will
not injure the agent. It screams instead, because it is hun-
gry. Furthermore the agent can choose the action to feed the
Wumpus. This will prevent screaming.

Normally the agent control program maps an input per-
cept to an output action choice given a current percept and
any knowledge it possesses. We have modified the agent
control code to accept as input a series of actions from
plans output by the Prodigy/Agent component of INTRO.
The simulator then presents a visualization of the events.
As the implementation currently stands, the output of the
simulator is not used. Ideally (as shown in the dashed arrow
of Figure 2) the output should be input into the perceptual
component.

The Perceptual Subsystem
The perceptual subsystem [sic] does not really present a
realistic perception or filtering of the world and its actions.
Instead the module in its present form acts as a translator
between the representation of Prodigy/Agent and Meta-
AQUA. Prodigy/Agent uses a STRIPS-like operator repre-

3. The code we modified is the Russell and Norvig program at the URL
aima.cs.berkeley.edu/code.html. See acknowledgments.

     |----|----|----|----|----|----|
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Figure 3: Initial Wumpus World state



sentation language whose BNF is provided in Carbonell,
Blythe, Etzioni, Gil, Joseph, Kahn, Knoblock, Minton,
Perez, Reilly, Veloso, and Wang (1992). Meta-AQUA uses
representations implemented as frames (Cox 1997). The
representation is based upon the XP-theory of Schank
(1986; Schank, Kass, and Riesbeck 1994) and includes con-
ceptual dependency primitives and memory organization
packets or MOPs (Schank 1982).

The problem of translation is one of mapping a flat
STRIPS operator to an arbitrarily deep, hierarchical, slot-
filler case event. For example the action SCREAM
(wumpus1 loc4 gold1 agent1) must translate into the
scream frame representation as illustrated in Figure 4.
Problems exist when the parameters do not match in terms
of both names and content and when they differ in relative
order. To resolve such problems, I wrote a mapping func-
tion for translation.

The function call (translate ‘SCREAM ‘(wumpus1 loc4
gold1 agent1) ‘(1 (3 2) 0 2)) resolves the mismatch in repre-
sentations between the planning operator and conceptual
interpretation frame. Thus the object wumpus1 maps to the
actor slot, agent1 maps to the object slot, the gold1
object is ignored, and loc4 is set to the co-domain of the
at-location frame in the to slot. This method also
assumes a linked correspondence between the two scream
symbols. They happen to be the same in this case, but in
general they may be completely different.

The Meta-AQUA System

Meta-AQUA (Cox 1996b; Cox and Ram 1999a; Lee and
Cox 2002) is an introspective multistrategy learning system
that improves its story understanding performance task
through a metacognitive analysis of reasoning failures.
Understanding the actions of a story and the reasons why
actors perform such actions is very similar to comprehend-
ing the actions and motivations of agents in an environ-
ment. So within the INTRO cognitive agent, Meta-AQUA
does perform this task. In both cases Meta-AQUA inputs
the events in a conceptual representation and builds an
internal model to reflect the causal connections between
them. In both cases an anomaly or otherwise interesting
event causes Meta-AQUA to generate an explanation of the
event. However, instead of using the explanation to modify
its knowledge, INTRO uses the explanation to generate a
goal to modify the environment.

As is shown in the example INTRO output of Figure 5,
Meta-AQUA inputs three forward movements by the Wum-
pus that are not interesting in any significant way. These
actions (displayed in the Prodigy/Agent plan window and
in the main INTRO activity window within the emacs Com-
mon Lisp buffer) are therefore skimmed and simply
inserted into the model of the wumpus world actions. How-
ever when the system encounters the scream action it is
processed differently, because sex, violence, and loud
noises are inherently interesting (Schank 1979).4 Notice

4.The system also finds all anomalies interesting as well as concepts about
which it has recently learned something.

that Meta-AQUA presents two special windows that display
internal representations of the cognitive processing. In the
“Goal Monitor” window, the system shows a goal to iden-
tify interesting events in the input. The scream input causes
Meta-AQUA to spawn a new goal to generate an explana-
tion for the scream. This goal is a knowledge goal or ques-
tion whose answer explains why the Wumpus performed

the action.5 The “Memory Monitor” window display a rep-
resentation of the memory retrieval and storage activities
along with the indexes and mental objects that occupy
memory.

5. In the main INTRO window, the goal is shown as the frame
ACTOR.1096. The actor frame represents the relation between the action
and the agent who did the action. That is it is the relation facet of the
actor slot whose value facet is the Wumpus. The explanation (i.e.,
answer to the question) is a representation of why the Wumpus “decided”
to perform the scream event.

(OPERATOR SCREAM
  (params <wumpus> <location1> <gold> <agent>)
  (preconds
   ((<wumpus> WUMPUS)

  (<location1> LOCATION)
  (<gold> GOLD)

   (<agent> AGENT))
   (and (at-wumpus <wumpus> <location1>)
        (at-agent <agent> <location1>)))
  (effects
   ()
   ((add (dropped <gold>))
    (del (quiet-wumpus <wumpus>))
    (del (holding-wumpus <wumpus> <gold>))
    (add (screaming-wumpus <wumpus>)))))

(define-frame SCREAM
  (isa (value (noisey-mop)))
  (actor (value (wumpus)))
  (object (value (animate-object)))
  (to (value (at-location
               (domain (value =object)))
               (co-domain (value loc-value))))
  (instrumental-scene
    (value (speak
     (actor (value =actor))
     (object (value (animal-noises)))
     )))
  (goal-scene
    (value
      (mtrans
        (actor (value =actor))
        (object (value (knowledge-state =ks

(domain (value =actor)))))
        (from (value (at-location

(domain (value =actor)))))
(to (value (at-location

(domain (value =object))))))))
  (main-result (value =ks))
  (scenes (value (=instrumental-scene
                  =goal-scene))))

Figure 4: Two representations for a SCREAM action
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As a result of this activity, the Meta-AQUA component
attempts to explain the scream. The background memory
contains a conceptual network, a case/script library, a set of
causal explanation patterns (XPs) and meta-explanation
patterns (Meta-XPs), and a suite of learning algorithms.
Using case-based reasoning (see Cox and Ram 1999a, for
the specific algorithm), Meta-AQUA retrieves a simple XP

of the form such that the antecedent (alpha) is
hunger and the consequent (beta) is screaming. That is the
wumpus screams, because it is hungry.

Now the system attempts to resolve the unpleasant situa-
tion. Usually Meta-AQUA will seek a change of its knowl-
edge to compensate for an apparent anomaly in a situation.
The assumption is that the observer is passive. INTRO
entertains instead that a goal can be spawned to resolve the
anomaly by planning and executing actions that remove the
antecedent of the XP. Once the antecedent is gone, the
screaming will cease. Thus the resulting goal is to remove
the hunger, and the goal is passed to the Prodigy/Agent
component.

Although this example is extremely simply and rather
contrived, more realistic and complex examples exist. In
general an XP has a set of antecedents called the XP
asserted nodes (Ram 1993). Each of them must be true for
the explains node (the event being explained) to hold. If any
are removed, then the causal structure will no longer hold.
In effect our simple Wumpus example can generalize.
Whether it scales well is another (future) issue however.
Using this mechanism Meta-AQUA has successfully pro-
cessed thousands of short randomly-generated stories (Cox
1996a).

The Prodigy/Agent System

Prodigy/Agent6 (Cox, Edwin, Balasubramanian, and Elahi
2001; Elahi and Cox, 2003) is an independent state-space
planning agent that uses a predefined communication proto-
col represented in KQML to accept planning requests and
to return a sequence of actions that achieve the planning
goals. It is built around the PRODIGY planning and learn-
ing architecture (Veloso, Carbonell, Perez, Borrajo, Fink,
and Blythe 1995). At its core is a nonlinear state-space
planner called Prodigy 4.0 (Carbonell, et al. 1992). It fol-
lows a means-ends analysis backward-chaining search pro-
cedure that reasons about both multiple goals and multiple
alternative operators from its domain theory.

Planners are traditionally given specific goals to achieve
by generating a sequence of actions that alters the physical
environment. Yet a perpetual agent should be able to gener-
ate its own goals. We as humans have expectations about
the world, how it should behave, and how we like it. When
we detect something anomalous that violates these expecta-
tions, we attempt to explain the situation. Given a satisfac-
tory explanation, we have an opportunity to learn
something new about the world. Similar situations should

6. See www.cs.wright.edu/~mcox/Prodigy-Agent for a public
versions of the implemented system, the user manual, and further details.

α β→

no longer appear to be anomalous for us in the future.
Given an unsatisfactory explanation, however, we may
determine that something needs to be done to make the situ-
ation more to our liking. The result is a self-determined
planning goal.

Now given the goal to remove the hunger state and the
initial state of the world by the Meta-AQUA module, Prod-
igy/Agent generates a new plan containing the action of
feeding the wumpus. When this plan is executed, no anom-
alous event occurs, because the reason for the unexpected
behavior is no longer present in the environment. That is in
response to an active environment, INTRO generates its
own goals to change the world.

Learning Goals or Achievement Goals

One of the most significant outstanding issues involved
with the research presented here relates to the differentia-
tion between the requirements associated with learning
goals and with achievement goals. When a system under-
stands that its knowledge is flawed, it needs to generate a
goal to change its own knowledge so that it is less likely to
repeat the reasoning error that uncovered the flaw. When
the world is “flawed,” a system needs to generate a goal to
achieve an alternative state of the world. The main issue is
detecting the conditions under which a system does the lat-
ter versus the former. How does INTRO know that its
knowledge of screaming is not the problem in the Wumpus
World scenario?

Currently the system is simply hard-coded to automati-
cally generate achievement goals and then to plan for them.
Future research remains to implement a decision process.
But consider that clues will exist in the context of the series
of events and the trace of the reasoning that accompanies
action and deliberation in the environment. Besides it is
“stretching our imagination” to entertain that somehow
modifying our definition of a screaming event will result in
the Wumpus not screaming in the future. Wishing that the
Wumpus is not loud does not make it so.

Moorman (1997; Moorman and Ram 1995) presents a
theory of reading for science fiction and other stories that
require willful suspension of (dis)belief. The theory pre-
sents a matrix of conceptual dimensions along which a
knowledge structure can be moved in order to analogize
between inputs. Thus to view a robot as a man is a smaller
shift in the matrix than is to view a robot somehow as an
space-time event. Understanding science fiction requires
such shifts, even though the reasoner may not believe that a
robot is truly a man (a living organism).

When understanding events and objects in any environ-
ment (fictional or not), judgements as to the reasonableness
of possibilities do exist in the natural world. Thus it is ratio-
nal to consider feeding the Wumpus, because an action
actually exists to achieve the goal; whereas the alternative
is too strange. A system might also make the decision to
generate an achievement goal over a learning goal based
upon its experience with general screaming events and the
relative certainty of such knowledge. Note that to do so, a



system must evaluate its own knowledge, experience, and
capability; it must use or create metaknowledge.

Serious problems exist with these speculations, however.
For example basing a decision upon the fact that the system
can execute a plan to feed the Wumpus requires that the
system reason about the likelihood of a plan before the plan
is computed. Likewise to reason about the potential learn-
ing goal (to change the concept of screaming) requires the
system to consider steps in a learning plan before the sys-
tem can perform the planning. In either case the solution is
not to be found with the tradition automated planning com-
munity nor with the knowledge representation community.
Rather metacognitive-like activity is tightly coupled with
the capability to determine the kind of goal worth pursuing.

Self-Awareness
A renewed interest exists (e.g., McCarthy and Chaudhri
2004; see also Cox, 2005) in machines that have a metacog-
nitive or introspective capacity, implement metareasoning,
incorporate metaknowledge, or are otherwise self-aware.
Yet little consensus exists in the AI community as to the
meaning and use of such mental terms, especially that of
self-awareness. But before considering what it might mean
for a machine to be self-aware, consider what it means to be
aware at all. A weak sense of the word does exists. For
example your supervisor may tell you that “I am aware of
your problem.” Here awareness appears to be less empa-
thetic that in the statement “I understand your problem.” In
the first sense awareness is simply a registration of some
state or event, ignoring for the moment consciousness.

Consider then what it means to be aware in the sense of
understanding the world. To understand it is not to simply
classify objects in the environment into disjunct categories.
Rather it is to interpret it with respect to the knowledge and
experience one (human or machine) currently has in mem-
ory. The case-based reasoning community suggests that it is
to find a piece of knowledge, schema, or case most relevant
to its conceptual meaning and to apply it to the current situ-
ation so that a new structure can be built that provides
causal linkages between what has already occurred and
what is likely to occur next; that is it provides causal expla-
nation and expectation (Kolodner 1993; Leake 1992; Ram
1993; Schank 1986; Schank, Kass, and Riesbeck 1994).
Understanding or awareness is not just perceiving the envi-
ronment. It is certainly not logical interpretation as a map-
ping from system symbols to corresponding objects,
relations and functions in the environment. Here I claim
that acute awareness of the world implies being able to
comprehend when the world is in need of change and, as a
result, being able to form a goal to change it.

Likewise, being self-aware is not just perceiving the self
in the environment, nor is it simply possessing information
about the self; rather it is self-interpretation (see also
Rosenthal 2000). It is understanding the self well enough to
generate a set of explicit learning goals that act as a target
for improving the knowledge used to make decisions in the
world. To equate self-awareness with conscious direct
experience is missing the point. Many non-conscious corre-

lates such as implicit memory are highly associated with
self-awareness and metacognition (Reder and Schunn
1996). Some (for example at the DAPRA Workshop on
Self-Aware Computer Systems, McCarthy and Chaudri,
2004) have suggested that self-aware systems are linked in
a special way with metacognition. But if we take a straight-
forward definition of metacognition as cognition about cog-
nition, then representing a trace of reasoning and reasoning
about the trace is sufficient. PRODIGY does represent the
rationale for its planning decisions and can reason about the
rationale when applying further planning (Veloso 1994).
Yet PRODIGY has no reference to itself other than the
annotations of justifications on its search tree nodes. Meta-
AQUA represents goals as relations between a volitional
agent (itself) and the state it desires. Yet it never actually
uses the symbol for itself in any of its processing at the
base- or meta-level. However to reason about the self with-
out an explicit representation of the self seems less than sat-
isfactory. Thus as currently implemented, INTRO is just
that, an introduction.
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