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Abstract

We describe a computational framework designed to
provide adaptive support for learning from problem
solving activities that make worked-out examples avail-
able. This framework targets several meta-cognitive
skills required to learn effectively in this type of instruc-
tional setting, including explanation-based-learning-of-
correctness and min-analogy. The generated interven-
tions are based on an assessment of a student’s knowl-
edge and meta-cognitive skills provided by the frame-
work’s student model, and thus are tailored to that stu-
dent’s needs.

Introduction
Many cognitive science studies have shown that students
rely on worked-out examples, especially in the early and in-
termediate phases of learning (e.g., (Anderson & Fincham
1994; Anderson, Fincham, & Douglas 1997; Atkinson et al.
2000; Chi et al. 1989; Reed, Dempster, & Ettinger 1985;
Reed 1987; Reed & Bolstad 1991; VanLehn 1996; 1998;
1999). In fact, examples facilitate the learning process
during problem-solving activities better than other instruc-
tional materials, such as general procedures (Reed & Bol-
stad 1991). The potential downside of using examples is that
many students do not possess the necessary analogical rea-
soning skills needed to use them effectively, resulting in di-
minished learning gains (e.g., (Chi et al. 1989; Chi & Van-
Lehn 1992; Novick 1988; 1995; Cooper & Sweller 1987;
Sweller & Cooper 1985; VanLehn, Jones, & Chi 1992;
VanLehn & Jones 1993; VanLehn 1998; 1999)). Some of
these skills are meta-cognitive in that they are not domain
dependent, and therefore are an important aspect of a stu-
dent’s ability to learn in general.

Since computers are becoming more commonplace in in-
structional settings, there is growing interest in developing
computational learning environments that improve various
aspects of the learning process. In the past, most of these
environments have focused on targeting cognitive traits,
and in particular, domain knowledge (e.g., (Anderson et al.
1995)). Lately, new emphasis has been placed on the ben-
efits of environments that also provide support for domain-
independent, meta-cognitive skills. For example, a number
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of computational tutors have been developed that support the
meta-cognitive skill of self-explanation, i.e., the process of
explaining and elaborating instructional material to oneself
(e.g., (Conati & VanLehn 2000; Mitrovic 2003)). However,
we are not aware of an adaptive learning environment of-
fering support for the types of meta-cognitive skills that are
required to learn effectively from problem-solving activities
when worked out examples are also available. In this paper,
we describe how support for these meta-cognitive aspects
can be realized through a computational framework, referred
to as the E-A (Example-Analogy) Coach. This framework
aims to maximize learning for different types of students by
encouraging those behaviors which are beneficial to learn-
ing, while discouraging those that are not.

We begin by describing how students use examples and
the related meta-cognitive skills needed to use them effec-
tively. Next, we present and discuss the overall E-A frame-
work. Finally, we describe how adaptive support for the rele-
vant meta-cognitive skills can be realized in this framework.

APS Phases & Related Meta-Cognitive Skills
The process of using worked-out examples during problem-
solving activities (also referred to as analogical problem
solving, APS) can be characterized by two main phases: 1)
retrieval of the example, and 2) application of the example
solution to the target problem (e.g., (VanLehn 1996)).

Retrieval Phase

The retrieval phase involves the selection of an example that
is similar to the target problem. This problem-example sim-
ilarity may be assessed by using the various kinds of fea-
tures that characterize the problem and example. Typically,
these features are grouped into two categories (e.g., (Chi,
Feltovich, & Glaser 1981; Novick 1988)): 1) superficial fea-
tures, i.e. features not part of the ideal domain knowledge
needed to solve the problem, such as the actions and objects
making up the problem specification and/or its solution, and
2) structural features, i.e. the domain principles needed to
generate the solution.

Research suggests that retrieval is a function of exper-
tise, where novice students, unlike experts, typically make
example selections on the basis of superficial similarity be-
tween the example and the problem (e.g., (Chi, Feltovich, &



A block resting on a plane pushes on it (commonsense
reasoning). This push is a physics force acting on the
plane (overly-general rule), causing the plane to push
back on the block (by Newton’s Third Law) - this push
is the normal force.

Figure 1: EBLC example

Glaser 1981; Novick 1988; Silver 1979; Schoenfeld & Her-
rmann 1982)). This has the potential to diminish what stu-
dents learn from the example in several ways. First, it may
result in selection errors, where the example is not appro-
priate (typically because its solution corresponds to a differ-
ent principle than the problem’s ) (e.g., (Chi, Feltovich, &
Glaser 1981; Novick 1988)). Second, examples exhibiting
certain types of superficial similarity do not encourage stu-
dents to use those meta-cognitive skills that benefit learning,
as we will discuss shortly.

Application Phase

The application phase involves applying the example solu-
tion (for example, by copying it). The learning outcomes
resulting from this phase are heavily influenced by a num-
ber of meta-cognitive skills, which can be classified among
two dimensions: 1) the preferred style of problem-solving in
the presence of examples (min/max analogy dimension) and
2) the reasoning mechanism of choice (the reasoning dimen-
sion).

Min/Max Analogy Dimension A relevant APS meta-
cognitive skill is min-analogy, which characterizes a stu-
dent’s preferred style problem solving when examples are
available (e.g., (VanLehn & Jones 1993; VanLehn 1998)).
Specifically, students who choose to solve problems on their
own, without the help of an example, are classified as min-
analogy students. These students tend to refer to examples
only to check their solutions, or when at an impasse. Max-
analogy students, on the other hand, prefer to replace regu-
lar problem-solving by coping from examples, even if they
have the knowledge required to generate the problem solu-
tion without the help of the example.

There are two ways in which min/max behaviors impact
what a student learns (VanLehn & Jones 1993; VanLehn
1998). Unlike max-analogy, min-analogy provides an op-
portunity for students to 1) uncover knowledge gaps (i.e.
through impasses encountered during problem solving), and
2) strengthen their knowledge through practice. Thus, min-
analogy is good for learning and max-analogy is not (Van-
Lehn & Jones 1993; VanLehn 1998).

Reasoning Dimension Once an example is selected, the
student may choose to think about its solution. This may be
motivated by several factors, including the desire to trans-
fer an example solution line requiring some adaptation to
make it suitable to the target problem, and/or the desire to
learn or confirm a rule embedded in the example solution
(e.g, (Chi et al. 1989; Reed, Dempster, & Ettinger 1985;
VanLehn, Jones, & Chi 1992; VanLehn 1999)). A rele-
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Figure 2: E-A Architecture

vant meta-cognitive skill which can accomplish both these
goals is explanation-based-learning-of-correctness (EBLC)
(Chi & VanLehn 1992; VanLehn, Jones, & Chi 1992;
VanLehn 1998).

EBLC is a form of self-explanation used by students
to overcome impasses when existing domain knowledge is
insufficient. This process involves using common sense
knowledge about properties and values (instead of princi-
pled domain knowledge), in conjunction with general rules,
to derive new rules. Fig. 1 shows an example (borrowed
from (VanLehn 1999)) of how EBLC can be used to derive
a rule about the existence of a normal force, needed to gen-
erate the solution to a physics problem of the type shown
in Fig. 3. Unfortunately, many students employ other pro-
cesses instead, which either do not result in learning, or re-
sult in shallow forms of knowledge (e.g., (Reed, Dempster,
& Ettinger 1985; VanLehn 1998; 1999)).

Adaptive Support for APS
The previous discussion highlighted meta-cognitive skills
relevant to APS activities. We will now describe an over-
all framework designed to provide support for these activi-
ties, and in particular, to encourage those behaviors which
are beneficial for learning while discouraging those that are
not. This support is realized in a computer tutor, referred
to as the E-A (Example-Analogy) Coach, which is embed-
ded in the Andes infrastructure (Conati & VanLehn 2000).
Andes is a tutoring system for Newtonian Physics, which is
also the target domain for the E-A Coach. Currently, An-
des does not provide support for the use of examples during
problem-solving activities, which is needed to ensure that
students learn effectively, as discussed in the previous sec-
tion. We are thus working on designing and implementing
a framework capable of providing this support computation-
ally, and now describe the structure of this support.

E-A Coach Architecture
We begin by describing the overall architecture of the E-
A Coach, shown in Fig. 2. The system contains two data
bases of problems: worked-out examples (example pool in
Fig. 2) and problems for the students to solve (problem



pool in Fig. 2). The solutions to these problems and ex-
amples are automatically generated by the solver, using the
problem specification and the rules found in the knowledge
base component. The E-A interface component allows stu-
dents to solve problems from the problem pool and to re-
fer to worked-out examples in the example pool. The stu-
dent model component provides an assessment of both a stu-
dent’s domain knowledge, and her meta-cognitive behaviors
related to a) min/max analogy and b) EBLC tendencies dur-
ing the application phase. This assessment is used to gen-
erate tailored interventions by the coach component, as well
as to update the student model. The coach component is
also responsible for selecting examples for students tailored
to their needs, based the student model’s assessment.

We will now describe how this framework can be used to
support APS in more detail. This description is organized
according to the two phases of APS, example retrieval and
application.

Support for Phase 1 of APS: Example Retrieval

One of the reasons students decide to look for an exam-
ple during problem solving activities is because they lack
some piece of knowledge needed to generate the solution
for the target problem. Unfortunately, as we pointed out
above, these knowledge gaps also cause students to expe-
rience difficulties selecting appropriate examples at a point
in the learning process when examples are the most use-
ful (e.g, (Chi, Feltovich, & Glaser 1981; Novick 1988;
Schoenfeld & Herrmann 1982; Silver 1979)). A solution
to this predicament is to have the framework’s Coach select
examples for students. This is a task very well-suited for an
adaptive learning environment, since it would not be realis-
tic to expect a teacher to perform tailored example selections
for each student.

To find an appropriate example, it is crucial that the sys-
tem can reason about the impact of the similarity between an
example and the target problem on a given student’s knowl-
edge and meta-cognitive skills. We therefore begin by de-
scribing this impact.

Impact of Similarity To help make the subsequent discus-
sion more concrete, we will refer to Fig. 3, which shows a
problem and a small example pool (in the interests of space,
only a portion of the solution for the problem and example
1 is shown) The example pool in this figure consists of ex-
amples which are structurally identical to the problem (i.e.
require the same knowledge to generate the solution). How-
ever, the example specifications are superficially different
from the problem and from each other, as are some of their
solution elements, demonstrating that even in this restricted
scenario, structurally identical examples can appear as su-
perficially different. We will now discuss the impact of each
type of similarity (structural, superficial).

Since structural features correspond to domain principles
needed to generate the solution, structural differences be-
tween a problem and example may impact the usefulness
of the example. This is particularly the case if a difference
corresponds to a student’s knowledge gap, since it means
that the student can not reconcile the difference. Thus,

Problem. A 5kg block is being pushed up
a ramp inclined 40 degrees, with an accel-
eration of 3m/s2. The force is applied to
the block at 40 degrees to the horizontal,
with a magnitude of 100N. Find the nor-
mal force on the block.

Solution (only first portion shown):
[1] We will apply Newton’s 2nd Law.
[2] First, we choose the block as the body.
[3] One force acting on the block is the normal force
[4] It is directed perpendicular to the ramp and

away from it.

Example 1. A workman pushes a 50 kg.
crate along the floor. He pushes it hard, with
a magnitude of 120 N, applied at an angle
of 25 degrees. The crate is accelerating at 6
m/s2. What is the normal force on the crate?

Solution (only first portion shown):
[1] We will apply Newton’s 2nd Law.
[2] First, we choose the crate as the body.
[3] One force acting on the crate is the normal force
[4] It is directed straight up.

Example 2. Jake pushes his sled up the
hill, which is inclined 15 degrees. The sled
weighs only 3 kg, and he pushes it with a
force of 50 N, applied at 15 degrees wrt the
horizontal. The sled is accelerating at 1.5
m/s2. What is the normal force on the sled?

Example 3. Bob has decided to replace his
refrigerator. He pushes his old one (which
has a mass of 50 kg) along the kitchen floor.
He’s giving it his all, pushing with a force of
75 N applied at an angle of 23 degrees. The
refrigerator is accelerating at 7 m/s2. What is
the normal force on the refrigerator?

Figure 3: Scenario Problem and Examples

systems that select examples for students aim to minimize
the structural differences between the problem and example
(e.g., (Weber 1996)).

Unlike the case with structural differences, the impact of
superficial differences between the target problem and an ex-
ample is less clear. There exists some research in the cogni-
tive science community demonstrating that superficial simi-
larity affects students’ ability to select appropriate examples
(e.g., (Bassok, Wu, & Olseth 1995; Chi, Feltovich, & Glaser
1981; Reed 1987)). However, what still remains unclear is
the overall impact of the various kinds of differences on the
relevant meta-cognitive processes, and thus learning, from
superficially different examples. In the process of explor-
ing this issue, we realized that we needed a finer-grained
classification of superficial similarity than what is presently
found in the literature. Thus, we have formulated our own,
based on comparing structurally identical solution elements,



and classifying any superficial differences as either trivial or
non-trivial:

- trivial differences correspond to elements that appear both
in the example’s specification and its solution, and have a
corresponding element in the problem specification

- non-trivial differences corresponds to elements that do
not appear in the example/problem specifications.

For illustrative purposes, we will classify two of the su-
perficial differences between the problem and example 1
shown in Fig. 3. One trivial difference between the two cor-
responds to the object chosen as the body in Step 2 of the
two solutions: block and crate problem and example solu-
tion elements respectively. This constant appears both in the
example’s specification and its solution, and can be mapped
to the corresponding constant in the problem specification
(i.e. block), thus satisfying the conditions required for a
trivial difference. Thus, one way that this difference can
be reconciled to generate a correct problem solution is by
replacing the example constant with the problem constant.
A non-trivial difference between this problem/example pair
corresponds to the direction of the normal force (Step 4,
Fig. 3) Unlike the trivial case, the elements corresponding
to this difference (i.e. in force directions) do not appear in
the problem and example specifications, and so the student
can not reconcile the difference by substituting example and
problem elements.

Given this classification, the question that still needs to
be addressed concerns the impact of these two kinds of su-
perficial similarity on students’ meta-cognitive skills and
thus learning. There is some indication that students gen-
erally do not have difficulty reconciling trivial differences,
but do not necessarily learn from doing so (Reed, Dempster,
& Ettinger 1985; VanLehn 1998). One possible explana-
tion for this finding is that problems and examples sharing
only trivial superficial differences allow students to fall back
on more shallow, syntactic processes to generate the answer
(e.g., such as transformational analogy (VanLehn 1998)). In
other words, these differences do not force students to use
those meta-cognitive skills which are beneficial to learning.
Thus, superficial similarity has the potential to impact stu-
dents who lack these skills, and have low knowledge corre-
sponding to the transferred elements. For these types of stu-
dents, example 2 from the example pool presented in Fig. 3
would therefore be a poor choice, since unlike examples 1
and 3, the only differences between it and the problem are
superficially-trivial ones. Although there is no direct evi-
dence with regards to the impact of non-trivial differences,
our hypothesis is that these do have the potential to encour-
age EBLC and min-analogy, since these are the only pro-
cesses that will reconcile the superficial difference between
the problem and the example, thus allowing the student to
correctly continue problem-solving (assuming that the stu-
dent is given correctness feedback). Of course, a potential
limitation of imposing these kinds of differences is that some
students may not be capable of reconciling them. For these
students, more direct support may be required.

E-A Example Selection To summarize the above discus-
sion, we propose that a number of factors should play a role
when the system selects an example for a student, includ-
ing: 1) similarity, both superficial (including a consideration
of trivial and non-trivial differences) and structural, 2) stu-
dent knowledge and 3) student meta-cognitive skills. We are
working on combining these factors in a principled manner,
that will allow the system to select the most appropriate ex-
ample for a given student.

Support for Phase 2 of APS: Application

The first stage of providing support for APS is through
the selection of an appropriate example. Once an exam-
ple is provided, however, further support may be necessary
to encourage students to use the appropriate meta-cognitive
skills, including min-analogy and EBLC. Since not all stu-
dents have the same meta-cognitive skills, it is vital that E-A
Coach rely on the student model’s assessment of each stu-
dent so that these interventions can be tailored to a partic-
ular student’s needs. Below, we discuss how such tailored
support for min-analogy and EBLC can be provided.

Support / Assessment of Min/Max Analogy In order to
discourage max-analogy, the E-A Coach needs to provide in-
terventions targeting students who have an overall tendency
to transfer (i.e. copy) from examples. The simplest form
that these interventions could take is text-based hints, but we
are also investigating other possibilities, including exploring
ways in which interface design affects students’ tendency to
transfer from examples.

As we pointed out above, these interventions should be
tailored to an individual student’s needs, and thus be based
on the E-A model’s assessment of the corresponding skills.
We will begin by discussing how the student model could
obtain information needed to assess min/max analogy and
then discuss how this information can be used by the model
to generate an assessment of a particular student’s skills.

To assess min/max analogy, the model needs information
about copying behaviors. There are two obvious sources
of such information: visual attention and similarity. The
simplest approach for using these sources of information in-
volves having the model assume that whenever an example
is open, and student input corresponds to elements found
in the example solution, the student is copying. The down-
side of this approach is that the model may over-estimate
some students’ max-analogy tendency, since an open exam-
ple does not guarantee a student is transferring from it. To
improve accuracy, the student model needs information re-
garding visual attention to allow it to deduce if and where the
student is looking at the example. One way to accomplish
this is to make the interface more restrictive. For instance,
we could adopt the SE-Coach interface design (Conati &
VanLehn 2000). With this design, example solutions are
covered (and can be uncovered by moving the mouse over
them), which allows the system to track which line the stu-
dent is looking at. This information can be used in conjunc-
tion with subsequent student input to the problem solution
to identify transferred elements. A third alternative involves
using eye-tracking technology, which provides the most ac-
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curate information regarding visual attention. For an initial
prototype of our system, we are investigating the trade-offs
between the first two options by exploring the loss of accu-
racy that occurs if the model does not have direct informa-
tion about students’ visual attention.

To generate its assessment of a student’s tendency for
min/max analogy, the E-A student model relies on the Andes
approach, which 1) uses the Solver to automatically generate
a solution graph from the problem specification, which con-
sists of all the steps and corresponding knowledge needed to
solve the problem, as well as paths between these steps, 2)
converts this solution graph into a Bayesian network, and 3)
uses the network in real-time to perform knowledge assess-
ment (Conati et al. 1997). In particular, each time a student
enters a solution to a problem, the student model uses this
input as evidence to update its belief in that student’s knowl-
edge. Notice that this model assesses student knowledge,
which is also useful in the E-A framework. To see why this
is so, consider the fact that an assessment of knowledge is
needed to fully assess the impact of a particular copy. This
is because one of the major downsides of max-analogy is
that it allows students to keep their knowledge gaps intact
(VanLehn 1998) (when steps corresponding to these gaps are
copied). Given an accurate assessment of both knowledge
and min/max analogy tendency allows the system to inter-
vene at appropriate times. The Andes student model, how-
ever, does not account for transfer from examples, needed
in the E-A framework to generate an accurate assessment of
knowledge and min/max analogy. Thus, to make it appropri-
ate for assessing APS activities we are working on extending
this model.

These extensions involve supplementing the Bayesian
network representing the model with additional nodes repre-
senting the various states which need to be assessed, as well
as links representing relations between these nodes. For in-
stance, to assess copying behaviors in the absence of direct
evidence, the model can take a number of factors into ac-
count, including student knowledge, the similarity between
the problem and the example and the student’s tendency for
max-analogy. Fig. 4 shows the high-level relations between
these factors and the possibility of a copy. Incorporating
these factors allows the model to predict, for example, that
a student with a tendency for max-analogy is more likely to
copy than a student with a min-analogy tendency, and that
the former is more likely to copy steps corresponding to triv-
ial differences than steps sharing other kinds of similarity.
Knowledge plays a role because this configuration encodes

the assumption that students are more likely to copy steps
that they do not have the knowledge to generate.

Support / Assessment of EBLC When students reach
an impasse during problem solving and decide to refer to
an example, they have a choice: copy from the example
and maintain the knowledge gap that caused the impasse,
or reason via EBLC, fill the gap, and use the newly ac-
quired knowledge from the EBLC process to continue prob-
lem solving. Unfortunately, there is some indication that
not all students possess the meta-cognitive skills needed
to reason effectively (Chi & VanLehn 1992). Thus, it is
important that the system provide support to students who
have a low tendency for EBLC and who are at an im-
passe in their problem solving. This feedback, delivered
by the E-A Coach component, could take a number of
forms, including 1) text-based hints and 2) specially de-
signed tools for those students who require the additional
scaffolding, as in (e.g., (Bunt, Conati, & Muldner 2004;
Conati & VanLehn 2000)). These tools could be mirrored
on the design of the SE-Coach (Conati & VanLehn 2000),
which allows students to self-explain solution steps via pro-
vided dialog boxes by re-deriving the rule which generated
the solution step. However, these tools need to be extended
to incorporate support for the common-sense reasoning re-
quired by EBLC.

To allow the Coach to tailor these interventions to a
student’s behaviors, as is the case with encouraging min-
analogy, it needs to rely on the student model’s assessment.
Designing a model capable of assessing EBLC presents a
number of challenges. The first concerns the question of
which student actions the model should use as evidence of
EBLC. The above mentioned interface tools are one source
of evidence, since they force students to explicitly demon-
strate that EBLC took place. It would be too restrictive,
however, to always force students to use these tools, espe-
cially since some students have an inherent tendency for
EBLC (Chi & VanLehn 1992). Unfortunately, in the ab-
sence of tool usage, the model has very little information
about which type of reasoning (if any) the student is engag-
ing in when referring to and transferring from an example.
One factor that could provide some indication of EBLC is in-
formation regarding a student’s overall tendency for EBLC,
as suggested in (Bunt, Conati, & Muldner 2004). An ad-
ditional factor that the model could take into account is the
superficial similarity between the problem and the example,
since as we proposed previously, certain kinds of similarity,
including non-trivial superficial differences, may encourage
EBLC.

Given this information, the next question to be addressed
is how the model should use it to perform its assessment of
EBLC. We are planning to further extend the student model
discussed in the previous section to also account for EBLC
actions, which will allow it to generate an assessment of this
meta-cognitive skill. We also intend to have the model use
its appraisal of EBLC to influence its assessment of student
knowledge of the corresponding concept, thus modeling stu-
dent learning as a consequence of the interaction.



Summary
We have described a general framework aimed at encourag-
ing those meta-cognitive skills which are beneficial to learn-
ing during APS activities. This framework relies on a model
of relevant student meta-cognitive behaviors, and uses the
assessment generated by this model to tailor interventions to
individual student’s needs. We are working on completing
the design and implementation of this framework, and plan
to validate it with evaluations upon doing so.
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