
Deliberation Scheduling for Planning in Real-Time

David J. Musliner
Honeywell Laboratories

david.musliner@honeywell.com

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Kurt D. Krebsbach
Lawrence University

kurt.krebsbach@lawrence.edu

GOAL

START

ENTIRE PLAN SPACE

INDIVIDUAL PHASE PLANS

Figure 1: MASA-CIRCA agents sequence through mul-
tiple timed controllers over the course of multiple plan
phases.

Introduction
We are developing the Multi-Agent Self-Adaptive
Cooperative Intelligent Real-Time Control Architec-
ture (MASA-CIRCA) to address high-stakes, mission-
critical, hazardous domains. (Musliner, Durfee, & Shin
1995; Musliner et al. 1999). MASA-CIRCA is a
domain-independent architecture for intelligent, self-
adaptive autonomous control systems that can be ap-
plied to hard real-time, mission-critical applications.
MASA-CIRCA includes a Controller Synthesis Mod-
ule (CSM) that can automatically synthesize reactive
controllers for environments that include timed discrete
dynamics. In order to best tailor its behavior to the
current context, MASA-CIRCA will sequence through
a number of different controllers, one for each phase of
the mission (see Figure 1).
This controller synthesis process can occur both of-

fline, before the system begins operating in the environ-
ment, and online, during execution of phase controllers.
Online controller synthesis is used to adapt to changing
circumstances and to continually improve the quality of
controllers for current and future mission phases. The

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

controller synthesis process operates under the control
of MASA-CIRCA’s Adaptive Mission Planner (AMP).
In general, the MASA-CIRCA agent is overconstrained
in the sense that it cannot produce optimal plans for
all phases in time to be of use. The issue is particu-
larly acute because the controller synthesis problem is
intractable in the worst case.

Because of this bounded rationality, the AMP must
actively manage the CSM’s inference. There is no point
in developing an optimal controller if that controller is
fielded long after it is no longer needed. This infer-
ence management problem is the problem of delibera-
tion scheduling, and has been the center of much of our
recent work on MASA-CIRCA. We take an approxi-
mate decision-theoretic approach to the MASA-CIRCA
deliberation scheduling problem: decision-theoretic, be-
cause we attempt to optimally allocate the CSM’s rea-
soning time; approximate because full formulations of
the problem are intractable and some formulations in-
volve an infinite regress.
We are exploring the issues of real-time intelligent

control in the context of managing the autonomous con-
trols of a self-adaptive unmanned aerial vehicle (UAV).
The adaptation may be necessary for a variety of rea-
sons – because the mission is changed in-flight, because
some aircraft equipment fails or is damaged, because
the weather does not cooperate, or perhaps because its
original mission plans were formed quickly and were
never optimized. For this reason, this controller syn-
thesis can occur both offline, before the system begins
operating in the environment, and online, during execu-
tion of phase plans. Online controller synthesis is used
to adapt to changing circumstances and to continually
improve the quality of controllers for current and future
mission phases.

In previous papers, we have framed the problem
of deliberation scheduling for MASA-CIRCA. We de-
scribed how MASA-CIRCA can modify problems it is
trying to solve to adjust planning time by trading off
plan quality (Musliner 2000). In a later paper (Gold-
man, Musliner, & Krebsbach 2001), we described how
to manage the tradeoff process, i.e., how to decide
what part of a mission control plan we should attempt
to improve at each point of time. We presented a



Runtime Coordination

Module
Synthesis
Controller

Feedback Data

Subgoals,
Problem Configurations

Other AMPs

Role Negotiation

Other RTSs

Adaptive
Mission
Planner

Real
Time

Subsystem

Feedback Data
Reactive Plans

The World

Figure 2: The CIRCA architecture.

Markov Decision Process (MDP) model of the delib-
eration scheduling problem. Since the MDP is very
difficult to solve, we also presented greedy (myopic)
approximations to the optimal solution. In those ex-
periments we showed that a discounted myopic approx-
imation technique provided good performance with very
limited computational costs. We also compared the per-
formance of the discounted greedy approximation with
other strawman agents that attempt to manage delib-
eration using easy-to-compute heuristics.
In this paper we describe how we have integrated

deliberation scheduling into the MASA-CIRCA AMP.
We present results on the performance of several agents
in an example scenario from the UAV domain. Once
again, we compare the greedy approximation technique
with other strawman agents. This paper shows how the
qualitatively different behaviors of different deliberation
managers affects mission performance.

Background
The MASA-CIRCA Architecture
We work on deliberation scheduling in the context of
CIRCA, the Cooperative Intelligent Real-Time Control
Architecture. As illustrated in Figure 2, CIRCA com-
bines on-line AI planning and formal verification meth-
ods that generate customized plans (controllers) with
real-time reactive execution of those plans. CIRCA was
designed to control autonomous systems operating in
dynamic and hazardous domains where real-time per-
formance is crucial. For example, when controlling an
Unmanned Aerial Vehicle the system may face a wide
variety of hazardous situations (e.g., enemy threats such
as surface-to-air missiles, equipment failures) that re-
quire responses before environmentally-imposed dead-
lines (e.g., the arrival of an incoming missile). Further-

more, the full spectrum of these threats may exceed
the system’s ability to monitor and respond, so that
it must focus its attention on only the most likely or
most hazardous in different situations. In that case,
the system must provide mission-specific control plans
(linking active sensing to responses) that may change
as the mission progresses.
For example, a UAV may have to focus its threat

detection and sensor processing hardware on differ-
ent tasks throughout a mission, shifting from defensive
threat detection during an ingress to surveillance and
target recognition during the reconnaissance or attack
phase. While pre-mission planning may be used to cre-
ate customized controllers for the anticipated mission
profile, on-the-fly planning may also be required when
the mission changes or unexpected situations arise (e.g.,
unexpected enemy activity or equipment failures).
CIRCA’s Controller Synthesis Module (CSM) is de-

signed to construct such customized control plans using
a combination of heuristic state space search and for-
mal verification.The CSM takes in a problem descrip-
tion that specifies the anticipated initial situation, goals
(desired state characteristics), threats (uncontrollable
environmental transitions) and possible actions (con-
trollable transitions). The transition models include
timing characteristics that specify how fast the various
transitions can occur. Using this information, the CSM
searches for an assignment of controllable actions to
each anticipated reachable state, such that the result-
ing state space is closed and drives the system towards
its goals while avoiding specified forms of failure. The
CSM uses formal verification techniques to check its
plans and ensure that failures are not reachable (Gold-
man, Musliner, & Pelican 2002).
For the purposes of this paper, the key point here

is that the CSM is a very complex planning system
whose runtime is highly variable, since it solves sev-
eral intractable problems in the process of generating
new plans. Thus building new plans on-the-fly (or even
during limited pre-mission planning time) can be a chal-
lenging task, and requires active control by the higher
layer of CIRCA, the Adaptive Mission Planner (AMP).
The CIRCA Adaptive Mission Planner (AMP) is

responsible for the highest-level control of a CIRCA
agent (Musliner, Durfee, & Shin 1995; Musliner et al.
1999), determining and modifying the agent’s respon-
sibilities (threats to handle, mission goals to achieve),
controlling the agent’s reasoning (what plans to con-
struct), and managing the agent’s deliberation re-
sources (i.e., how best to use computation time to im-
prove the overall mission plan). More specifically, the
AMP manages the agent’s responsibilities by negotiat-
ing with other agents via contract bidding. It controls
the agent’s reasoning both by modifying problem con-
figurations for the CSM, and by invoking (or halting)
the CSM when appropriate. Finally, the AMP man-
ages the agent’s deliberation resources by scheduling
the CSM to improve certain plans in a manner that
yields the highest utility for the mission plan as a whole.



Problem Structure

A team of MASA-CIRCA agents will be given missions
that are divided up into phases. The phases correspond
to modes or time intervals that share a set of common
goals, threats, and dynamics. For example, our mili-
tary UAV scenarios include missions that have phases
such as ingress, attack, and egress. The ingress phase is
distinguished from the attack phase both by the charac-
teristics of the flight path (e.g., a nap-of-earth stealthy
approach vs. a popup maneuver very near a target)
and by the expected threats (e.g., the types of missile
threats present at different altitudes) and goals (e.g.,
reaching the target zone vs. deploying a weapon).

The team must arrange to have agents take responsi-
bility for different goals and threats, depending on their
available capabilities and resources (e.g., ECM equip-
ment and weapons loadout). These goals and threats
vary from one phase to the next. In fact, the mission is
typically split into phases specifically to decompose the
overall mission into manageable chunks aligned with a
common set of threats, or a common goal which, when
achieved, signals the end of that phase. The team of
agents will allocate tasks among itself by a bidding pro-
cess, with agents having different endowments depend-
ing on how appropriate they are to handle a given task.

For each mission phase, each MASA-CIRCA agent
must have a plan (or controller) that is custom-designed
to make the best possible effort to achieve the goals and
defeat the threats associated with the phase. These
controllers may be generated before or during mission
execution, depending on the circumstances. The Con-
troller Synthesis Module (CSM), described elsewhere, is
capable of automatically building these controllers, but
this controller synthesis can be a complex and time-
consuming process.

The complexity (and hence duration) of the synthesis
process can be controlled by varying the problem config-
uration that is passed to the CSM. The problem config-
uration describes the characteristics of the desired con-
troller for a particular mission phase (Musliner 2001).
The problem configuration contains information about
the initial state of the world, goals to achieve, threats
that are present, state transitions that can happen due
to the world, and actions available to the agent to af-
fect the world. By varying these details, the AMP can
make a planning problem fall anywhere in a complexity
spectrum from very simple to infeasible. For example,
consider an agent that must fly over a particular seg-
ment of airspace in which we expect there to be two
surface to air missile (SAM) sites. We might give the
CSM a problem configuration with the goal of reach-
ing the waypoint at the end of the flight segment, and
the two goals of suppressing the two SAM sites. Al-
ternatively, if that was too difficult, we could instruct
the CSM to reach the final waypoint while simply using
passive countermeasures to evade the SAMs.

Predictive Deliberation Management

One of the primary responsibilities of the AMP is to
determine which mission phase the CSM is trying to
build a controller for at any moment, and how hard it
should work to do so, by modifying the phase problem
configurations. This is what we mean by the AMP’s
deliberation management function. In each phase, the
more threats that can be handled, and the more goals
that can be achieved, the higher the probability that
the team will achieve its goals and survive the mis-
sion. Thus, the problem can be cast as follows: Given
a set of planning phases, quality measures of the cur-
rent plan for each phase, a set of tradeoff methods (i.e.,
improvement operators) applicable in each phase, and
some amount of time to try to improve one or more
of the current plans, how should the AMP allocate the
next segment of time to improve the overall expected
utility of the mission plan as a whole? Note that while
we discuss these two aspects of the problem separately,
the two aspects interact, and the decisions are made
together.

To effectively decide what deliberation should hap-
pen now, the AMP must consider the potential deliber-
ation schedule into the future. For example, the AMP
might consider starting a lower-priority CSM task ear-
lier if there is a shorter window of opportunity in which
to execute that task, or the expected execution time is
longer. In this case, the AMP would also need to con-
sider whether it expects that this will still leave time to
execute the higher-priority task later. As we will see,
more efficient, but incomplete approaches to the prob-
lem can suffer from local maxima, and miss solutions
that require this type of further lookahead and more
complex analysis.

The second part of the problem is to select what im-
provement to apply to the selected phase. which of sev-
eral improvement operators to apply to the phase it has
selected. The AMP may improve a phase’s controller
by replanning to generate a new controller that handles
more threats or more goals. Through experiments, we
have developed a model of the performance of the CSM
when given varying number of threats and goals to han-
dle. For various numbers of threats and goals, we have
developed cumulative probability functions that record
the probability of successfully completing a CSM run
as time increases. We use this to determine the pay-
off the agent will receive for committing time to var-
ious CSM actions. Note that since MASA-CIRCA is
a hard real-time system, the CSM cannot simply add
more threat- and goal-handling to improve the plan.
MASA-CIRCA’s RTS ability to react to multiple events
is limited by the available processing power, and all re-
actions must be guaranteed to run to completion within
their deadlines. So it is quite possible that the system
cannot handle all threats and goals, and must sacrifice
some to cover others.



Combinational Configurations

As discussed earlier, the AMP is responsible for down-
loading one problem configuration at a time for the
CSM to work on. This configuration embodies a plan-
ning problem, i.e., an initial state, threats, goals, ac-
tions at the agent’s disposal, etc. The AMP will enu-
merate and consider combinations of different goals and
threats. For instance, a stand-alone agent faced with a
phase with threats T1 and T2 and goal G1, will consider
synthesis for the combinations G1, T1, T2, G1+T1,
G1+T2, T1+T2, and G1+T1+T2. When considering
improvements to an existing plan, of course, the AMP
should never consider plans that handle fewer features
than the existing one. For example, the AMP will not
consider the singleton set T1 if the system has already
built a controller that handles T1+G1.
In a multi-agent team context, deliberation manage-

ment interacts with contracting. Consider a case where
the agent described above was part of a team and had
won contracts to handle T1, T2, and G1. In that case,
if the AMP were later to find, based on planning, that
it could only handle T1+T2 or T1+G1, it should re-
nege on its contract for either G1 or T2. In that case
the contract would again become available for bids and
another agent would take it over and handle it.

Beyond the MDP Model

In previous work, we studied a Markov Decision Process
(MDP) model for MASA-CIRCA deliberation schedul-
ing (Goldman, Musliner, & Krebsbach 2001). This
model posed the problem of deliberation scheduling as
one of choosing, for each point in time, a plan improve-
ment operator to apply to the set of phase plans. The
MDP made a number of simplifying assumptions, and
was not actually integrated the MASA-CIRCA archi-
tecture. However, the MDP model provided an oppor-
tunity to evaluate a number of computationally inex-
pensive approximation methods for solving the deliber-
ation scheduling problem. Because the MDP was sim-
ple, we were able to evaluate those approximationmeth-
ods against the “gold standard” offered by dynamic pro-
gramming algorithms for MDPs. Our early experiments
indicated that a myopic (greedy) approximation to the
optimal solution provided a good tradeoff of quality of
results against computation time. We further showed
that applying time-discounting to the myopic algorithm
helped avoid some suboptimal choices in the test do-
mains.
While the MDP model provides a useful experimen-

tation platform for comparing deliberation scheduling
algorithms in moderately complex domains, it omits
several key characteristics of the problem faced by
CIRCA’s AMP. For example, while the abstract MDP
model did represent plan modification operators (calls
to the CSM) that were expected take more than one
time quantum, the operators were modeled as always
using a fixed amount of time. In contrast, the real
CSM may return earlier than expected if it finds a

plan or determines that it cannot find one. Also, the
MDP model did not represent the goal-achieving qual-
ity of the plans: the MDP model concerned itself only
with threat-handling and assumed that the agent would
achieve goals as long as it wasn’t destroyed. No plan
improvement operators could increase or decrease the
agent’s probability of goal achievement, except indi-
rectly by affecting its survival probability. In contrast,
the real agent can build plans that are better or worse
at goal achievement, and may need to trade off goal
achievement against survival. The agents may even
choose to ignore some goals; thus the real agent may
survive a phase where a goal is present and yet acquire
no reward.
While we could have added these characteristics to

the MDP model, this would have increased the com-
plexity of optimal solving to the point where meaningful
experimentation would have been prohibitively expen-
sive. Furthermore, the MDP model was only intended
as a preliminary investigation into low-cost delibera-
tion scheduling strategies that could operate effectively
in our more challenging, more dynamic simulated UAV
environment.
Thus we moved into building the myopic strategies

investigated in the MDP model into the real AMP code,
to support experimentation and evaluation with the real
CSM and real online challenges. In the following sec-
tion, we describe the AMP’s design features that sup-
port deliberation scheduling and the extensions made
to the strategies already discussed.

Deliberation Scheduling in the Adaptive
Mission Planner

Our AMP prototype executes a fairly simple outer
loop based on a “task” metaphor. Every major func-
tion that the AMP can perform is encapsulated in a task
object. For example, one of the main tasks the AMP
manages is telling the CSM what controller synthesis
problems to work on. Controller synthesis problems
are represented by “problem configuration” objects that
contain all of the CSM API calls to describe the prob-
lem to the CSM. For each problem configuration that
has not yet been solved by the CSM, the AMP main-
tains a task object which, if executed, will send the API
commands to the CSM and wait for a solution in return.
Similarly, the functions to support inter-agent negotia-
tion are encapsulated in task objects. When the CSM
produces an executable plan (controller) in response to
a particular problem configuration, a new task is cre-
ated to indicate that the new plan can be downloaded
to the executive (RTS).
Tasks have associated priorities that are used to order

their execution. On each cycle through the AMP outer
loop, one of the highest-priority tasks is selected for
execution and all waiting incoming messages are pro-
cessed. If no tasks are waiting to execute, the AMP
blocks (periodically flashing a heartbeat signal) until it



Ingress Attack Egress

Ir-threat .4
Radar-threat .5
Radar-threat2 .5

Ir-threat .4
Radar-threat .5
Radar-threat2 .5

Ir-threat .4
Radar-threat .5
Radar-threat2 .5

Takeoff
20u 4u 4u 4u

Destroy-target: 200u Destroy-target: 200u

30s 120s 120s 120s

Figure 3: Each phase of the mission involves different
threats and goals.

gets an incoming message, which will trigger formation
of a new task.
Task priorities can be static or computed dynami-

cally, with different computation methods depending
on the class of the task object. For example, the class
of tasks for downloading new plans to the RTS have
static priorities set quite high, so that the AMP will
almost always prioritize downloading new plans.
To implement deliberation scheduling that deter-

mines which problem configuration task should be ad-
dressed next by the CSM, the planning tasks can be
configured to use a dynamic priority function that de-
pends on many different factors. For example, we can
implement deliberation scheduling based on expected
utility by having the system automatically incorporate
information about the expected time to finish the task,
the expected benefits of the task (e.g., the improvement
in expected controller quality [and hence mission suc-
cess] that will result if the CSM builds a new controller
for a particular phase), and the time at which the task
solution is required (e.g., when the aircraft will enter
the mission phase for which this controller is intended).

Performance Results

Overview

In this section we describe experimental results that
illustrate how the different deliberation scheduling al-
gorithms implemented in the AMP can result in widely
varying performance. In this experiment, we fly three
simulated aircraft controlled by MASA-CIRCA agents
through the same mission scenario. The three aircraft
fly essentially the same route through an environment
containing several threats and goals1. The three agents
differ only in their use of different deliberation schedul-
ing algorithms; the point of the scenario is to show that
more intelligent deliberation scheduling algorithms can
lead to dramatically improved performance results.
Figure 3 provides an overview of the mission, illus-

trating the sets of threats and goals present in each
phase. The mission begins with a simple takeoff phase
in which the aircraft face no threats, and only have the
goal to reach the ingress phase, which is valued at 20
units of reward (utils). From then on, progressing to
the subsequent phases earns the aircraft 4 utils on each

1Their planned paths are identical, but their actual flown
routes may differ due to variations in the use of evasive
maneuvers.

phase transition. An aircraft may fail to progress to the
next phase either by being destroyed by a missile threat
or by not flying along its planned path (e.g., continu-
ously performing evasive maneuvers).
The phases have different expected durations, corre-

sponding to how long the aircraft take to fly each leg
of the flight plan. In the figure, the expected durations
are shown in seconds within the phase circle. To make
this a compact demonstration, we have made some of
these phases shorter than real combat missions (e.g.,
ingress might typically take more than two minutes).
In three of the phases, the aircraft are expected to

face three kinds of missile threats, with varying degrees
of hazard. For example, the IR-missile threat is ex-
pected to be 40% lethal, meaning that if the aircraft
does not build a plan that anticipates and reacts to this
threat, then the threat will destroy the aircraft 40% of
the time it tries to execute this mission. Fortunately,
this environment is considerably more lethal than real-
world combat flying.
In the attack and egress phases, the aircraft also have

goals to destroy two targets, valued at 200 utils each. If
the CSM is able to build a plan that includes the actions
to destroy the target, then the aircraft will accrue this
value if it survives long enough to execute the associated
fire-missile reactions. Building a plan that only destroys
the targets is quite easy. However, building a plan that
both defends against the different threats and destroys
the targets is more time consuming. Building a plan
that handles all the threats and goals is not feasible in
the available mission time. As a result, the AMP must
carefully control which planning problem it works on at
any time.
Note that Figure 3 describes the scenario as it is de-

scribed to the MASA-CIRCA agents for their planning
purposes. This description includes goals that are defi-
nitely present, and threats that may be encountered. In
the actual scenario that we flew the simulated aircraft
against, the aircraft do not encounter all of the potential
threats. They actually only encounter radar-threat2
type threats in both the ingress and attack phases.
Also, to apply time pressure to the planning process,

the CIRCA agents are told they must begin flying the
mission as soon as they have a baseline (simple) plan
for the first phase, Takeoff. Since building the takeoff
plan takes well under one second, they essentially begin
executing the mission as soon as the mission description
arrives. All of the planning for later phases is performed
literally “on the fly.”
The simplest aircraft, Agent S, uses a “shortest prob-

lem first” algorithm to decide which planning problem
to work on next. A more complex aircraft, Agent U ,
uses a greedy deliberation scheduling algorithm with-
out discounting (highest incremental marginal utility
first). The most intelligent aircraft, Agent DU , uses
a discounted greedy approach (highest discounted in-
cremental marginal utility first). The demonstration
shows how the more intelligent deliberation scheduling
algorithms allow the latter aircraft to accomplish more



0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (seconds)

PLANNING FOR EGRESS

EGRESS/DESTROY-TARGET
EGRESS/RADAR-THREAT2

EGRESS/RADAR-THREAT
EGRESS/IR-THREAT

ATTACK/RADAR-THREAT2
ATTACK/RADAR-THREAT

ATTACK/IR-THREAT
INGRESS/RADAR-THREAT2

INGRESS/RADAR-THREAT
INGRESS/IR-THREAT

ATTACK/DESTROY-TARGET

PLANNING FOR ATTACK

EgressAttackIngressTakeoff

PLANNING FOR INGRESS
PLANNING FOR TAKEOFF

Figure 4: Gantt chart of threat and goal coverage for
Agent S throughout the mission, along with graph of
expected future utility corresponding to plan coverage.
Note that the agent does not have plans to destroy
the targets during the appropriate phases, and thus ac-
quires few utils.

of their goals and defeat more of their threats, thus
maximizing mission utility for the entire team.

Analysis of Agent S
Agent S sorts all of its possible deliberation tasks based
on the expected amount of time to complete each task,
preferring the shortest. Recall that a deliberation task
is a request to the CSM to plan for a new problem
configuration. In general, the more complex the config-
uration is (i.e., the more goals and threats), the longer
the expected planning time.
Figure 4 illustrates which threats and goals are han-

dled by the mission plans that Agent S developed over
the course of the entire team mission. Along the verti-
cal axis, the rows correspond to the various threats and
goals in each mission phase. Time in flight is shown
by the horizontal axis. Dark bars in each row indicate
the time period during which the aircraft has a plan
that handles the row’s respective threat or goal. As the
CSM completes its reasoning for a particular problem
configuration for a particular mission phase, as selected
by the deliberation scheduling algorithm, the new plan
is downloaded to the RTS and the configuration of dark
bars changes.
For example, the first row indicates that Agent S

immediately constructs a plan to handle the IR-threat
for the ingress phase, but quickly supplants that cur-
rent plan with a plan to handle the ingress radar threat
instead, as shown on the second line. In an ideal situa-

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (quanta)

Shortest
Utility

Discounted Utility

Figure 5: Each agent’s expected payoff over the course
of the mission.

tion, when each mission phase begins the aircraft would
already have a plan covering all threats and goals in the
phase, and that plan would persist unchanged through-
out the phase. Charted as in Figure 4, this would look
something like a white staircase descending to the right,
with dark bars above.
A key characteristic of Agent S’s performance is that,

lacking any better way to compare two plans, the agent
uses its preference for shorter-planning-time as an esti-
mate of plan utility or quality. As a result, whenever
the CSM returns a successful plan, Agent S assumes
that it is better than any previously-generated plan for
that mission phase and discards old plans, installing
the new one. In fact, all of the agents use this same
behavior, since the deliberation scheduling algorithm is
expected to select for planning only those problem con-
figurations that may lead to an improvement in overall
mission performance.
However, this leads to rather erratic behavior for

Agent S, mostly because there can be ties in estimated
planning time for configurations with the same number
of threats or goals. For example, as can be seen in all
three phases for Agent S in Figure 4, Agent S covers
two threats (or one threat and one goal) for a length
of time, then switches to cover two others later in the
mission. While the other agents may similarly change
which threats and goals they handle, they do so based
on expected utility measures only. Agent S’s impover-
ished estimate of plan utility (just expected planning
time) causes it to waste time generating plans that are
not necessarily better than those it already has. The
bottom four rows of the figure illustrate which mission
phase the CSM was planning for at any time.
Figure 5 illustrates the expected future utility that

each agent has as the mission progresses. This chart
is somewhat complicated by the fact that it only in-
cludes future utility, so that as the aircraft completes
phases and earns utils, its expected future utility ac-
tually drops. However, comparison between the agents



0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (seconds)

Destroyed

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

ATTACK/DESTROY-TARGET
EGRESS/IR-THREAT

EGRESS/RADAR-THREAT
EGRESS/RADAR-THREAT2

EGRESS/DESTROY-TARGET

Attack

PLANNING FOR TAKEOFF
PLANNING FOR INGRESS
PLANNING FOR ATTACK
PLANNING FOR EGRESS

Takeoff Ingress

Figure 6: Gantt chart of threat and goal coverage for
Agent U throughout the mission, along with graph of
expected future utility corresponding to plan coverage.
Note that the agent is not prepared to defeat radar-
threat2 in the attack phase, and it is destroyed.

on this chart still shows what we hoped: Agent U and
Agent DU significantly outperform Agent S in both ex-
pected future utility and, as described later, in acquired
utility (corresponding to actual mission performance).
As shown in Figure 5, Agent S’s strategy allows it

to successfully defend itself against the radar-guided
missile (radar-threat2) that may attack it in the
ingress phase. When another radar missile (also
radar-threat2) attacks it in the attack phase, it is
also prepared to defeat it, as its current plan handles
both radar-threat and radar-threat2 threats. How-
ever, it does not handle the goal of destroying the tar-
get, and thus loses significant potential reward by not
achieving the main mission goal. This failure to achieve
full mission success is largely due to the fact that Agent
S’s heuristic is not utility-based, and thus does not dis-
tinguish between reward and survival, sometimes re-
placing valid, more valuable goal-achieving plans (e.g.,
radar-threat2 + destroy-target), with non-goal-
achieving plans that it considered slightly more complex
based on its cost-estimation function.

Analysis of Agent Agent U

Rather than computing a deliberation scheduling pol-
icy that indicates what CSM planning actions should be
taken in any possible future state to maximize expected
utility, Agent U myopically looks one state ahead along
all of its immediate action choices and selects the ac-
tion that results in the mission plan with the highest

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (seconds)

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

ATTACK/DESTROY-TARGET
EGRESS/IR-THREAT

EGRESS/RADAR-THREAT
EGRESS/RADAR-THREAT2

EGRESS/DESTROY-TARGET

Egress

PLANNING FOR TAKEOFF
PLANNING FOR INGRESS
PLANNING FOR ATTACK
PLANNING FOR EGRESS

Takeoff Ingress Attack

Figure 7: Gantt chart of threat and goal coverage for
Agent DU throughout the mission, along with graph
of expected future utility corresponding to plan cover-
age. Note that the agent has plans to accomplish the
destroy-target goals by the time the respective phases
occur.

expected utility. Agent U does not compute a complete
policy; instead, it computes the policy lazily, determin-
ing the action choice for each state only when queried.
The threat and goal coverage history for Agent U is

shown in Figure 6. Like Agent S, Agent U is able to
successfully defend itself against the radar-guided mis-
sile (radar-threat2) attacking it in the ingress phase.
However, when another radar missile attacks it in the
attack phase, it is not prepared to defeat it, and it is
killed. It has not done the planning for radar-threat2
in the attack phase because it is making decisions with
limited lookahead, and it has trouble assessing the rela-
tive merit of addressing near-term vs. far-term risks.
This problem is exactly what discounting is meant
to address. Although there was ample time available
to plan for both the attack-phase radar threat and
the egress-phase destroy-target goal, Agent U is “dis-
tracted” by the possibility of destroying a high-value
target in the next mission phase, and busily tries to
build high-quality plans for that future phase instead
of for the current attack phase. As a result, it fails to
develop a good defensive plan, and is destroyed by a
radar-guided missile.

Analysis of Agent Agent DU

Finally, Figure 7 illustrates the threat and goal coverage
profile for Agent DU .
Agent DU builds plans that handles all of the threats

that actually occur, and achieves its goals, achieving



the maximum possible mission utility. It does not
make the simple mistakes that the uninformed Agent S
does, because its deliberation scheduling strategy cor-
rectly trades off threat-handling and goal-achievement
by computing incremental marginal utility. In addition,
its discounting of later utility encourages it to defer
planning for which it has more time, helping it to avoid
making the greedy mistakes that Agent U is prone to.

Conclusion

As described above, a preliminary version of the new
AMP design incorporating several forms of delibera-
tion scheduling is now operational. The system can be
easily configured to use different deliberation schedul-
ing algorithms by assigning different priority computa-
tion methods to classes of tasks. The demonstration
scenario we described shows how the more intelligent
deliberation scheduling algorithms allow Agent DU to
accomplish more of its goals and survive longer.
One key future direction revolves around integrating

our approaches to deliberation scheduling and multi-
agent negotiated coordination. As noted above, over-
constrained agents in teams should be able to move
smoothly between tradeoff strategies in which they use
on-line negotiation to re-allocate roles and responsibil-
ities (threats and goles) or locally choose to build par-
tial, incomplete plans that do not satisfy all of their re-
sponsibilities. We plan to use our unified deliberation
scheduling scheme to allow this transparent integration
of negotiation and local problem solving. Negotiation
will be just one more optional task that the AMP can
choose among when it is considering what deliberation
task is most appropriate next. This will require perfor-
mance profiles describing the expected performance of
negotiation strategies, as well as time-bounded negoti-
ation behavior.

Acknowledgments

This material is based upon work supported by
DARPA/ITO and the Air Force Research Laboratory
under Contract No. F30602-00-C-0017. An earlier ver-
sion of this paper appeared as (Musliner, Goldman, &
Krebsbach 2003).

References

Goldman, R. P.; Musliner, D. J.; and Krebsbach, K. D.
2001. Managing online self-adaptation in real-time en-
vironments. In Proc. Second International Workshop
on Self Adaptive Software.

Goldman, R. P.; Musliner, D. J.; and Pelican, M. J.
2002. Exploiting implicit representations in timed au-
tomaton verification for controller synthesis. In Tom-
lin, C. J., and Greenstreet, M. R., eds., Hybrid Sys-
tems: Computation and Control (HSCC 2002), num-
ber 2289 in LNCS. 225–238.

Musliner, D. J.; Goldman, R. P.; Pelican, M. J.; and
Krebsbach, K. D. 1999. Self-adaptive software for

hard real-time environments. IEEE Intelligent Sys-
tems 14(4):23–29.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83–127.

Musliner, D. J.; Goldman, R. P.; and Krebsbach, K. D.
2003. Deliberation scheduling strategies for adaptive
mission planning in real-time environments. In Proc.
Third International Workshop on Self Adaptive Soft-
ware.

Musliner, D. J. 2000. Imposing real-time constraints
on self-adaptive controller synthesis. In Proc. Int’l
Workshop on Self-Adaptive Software.

Musliner, D. J. 2001. Imposing real-time constraints
on self-adaptive controller synthesis. In Self-Adaptive
Software, number 1936 in Lecture Notes in Computer
Science.


