
Calendar Assistants That Learn Preferences

Jean Oh and Stephen F. Smith
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA
{jeanoh,sfs}@cs.cmu.edu

Abstract

Calendar scheduling is a personal behavior and there are di-
verse factors on which the user’s decision depends. Whether
the user is initiating a new meeting or responding to a meet-
ing request she chooses an action with multiple objectives.
For instance, when trying to schedule a new meeting at a pre-
ferred time and location, the user may also want to minimize
change to her existing meetings, and she takes a scheduling
action that best compromises the overall objectives. Our goal
is to build an agent that can predict the best scheduling action
to take, where “best” is defined in terms of the user’s true
preference. We take a machine learning approach and focus
on the problem of learning the user’s preference, through ob-
servation of the user as she engages in meeting scheduling
episodes. We propose a hybrid preference learning frame-
work in which we first learn utility functions of simple in-
dividual preferences such as preferred time-of-day, and then
qualitatively evaluate complex scheduling options by learning
a classifier from pairwise preferences. We summarize proof
of principal experiments that illustrate both types of learning.

Introduction
There has been growing interest in creating software agents
that can assist users with daily routine tasks. Our particu-
lar focus in this context is automated calendar scheduling.
There exist several commercial software calendar programs
(e.g., Microsoft Outlook Exchange) that support some form
of basic meeting scheduling protocol. However, for the most
part these are bookkeeping systems, with some basic capa-
bilities for finding common free slots in shared calendars.
Except for very simple forms of start and end time pref-
erences, there is no ability to model and incorporate user
scheduling preferences. This is a fundamental limitation
since fine-grain customization is critical to the acceptance
of automated assistants in practical contexts.

In this paper, we consider the problem of incorporating
user scheduling preferences into a calendar scheduling pro-
gram. We take as our starting point the CMRadar system
(Modi et al. 2004), a distributed calendar scheduling system
wherein individual CMRadar agents assume responsibility
for managing different user’s calendars and negotiate with
other CMRadar agents to schedule meetings on their users’

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

behalf. Our specific focus is on acquiring the user prefer-
ences that should drive this meeting scheduling process. Fol-
lowing revealed preference theory (Samuelson 1948), our
general hypothesis is that this knowledge can be learned by
observing the user engage in a series of meeting scheduling
episodes with other meeting participants. We propose a hy-
brid preference learning framework for accomplishing this,
which at the lower level learns utility functions for individ-
ual simple preferences and the higher level learns a classifier
for integrating simple preferences to evaluate scheduling op-
tions.

The problem of modeling and learning user preferences
in calendar scheduling has received some previous attention.
One of the earliest efforts on learning user preferences in the
calendar scheduling problem was made by Tom Mitchell in
his Calendar Apprentice (CAP) (Dentet al. 1992)(Mitchell
et al. 1994). CAP used decision tree learning to suggest
specific values for the attributes of meeting. In contrast our
approach (and CMRadar’s basic representation) start from
specifications of simple user preferences as utility functions.
Sen et al. (Sen, Haynes, & Arora 1997) applied voting the-
ory to their distributed scheduling agent system, which tries
to compromise conflicting user preferences during the nego-
tiation process. In their work preferences are associated with
utility values similar to our approach, but the user is respon-
sible for specifying the quantitative data manually. PCalM
(Berry et al. 2004) is another system that learns an evalua-
tion function using large margin method and Naive Bayesian
approach with additional active learning strategy. However,
no experimental results have yet been reported in the litera-
ture.

Learning from pairwise preferences (our approach to
learning a classifier for evaluating scheduling options)
has been successfully used in document ranking (Cohen,
Schapire, & Singer 1998) and other domains (Gervasio, Iba,
& Langley 1999). In (Cohen, Schapire, & Singer 1998) the
utility of features is presumed to be well defined and given
to the learner, whereas we consider acquisition of utility as
part of the learning problem. We also take a more general
classifier approach, rather than limiting the ranking func-
tion to a linear combination of features. Finally, PLIANT
(Gervasioet al. 2005) is an adaptive learning system in
an open calendaring system that suggests candidate sched-
ules and learns preferences from the user’s selection. They

used a support vector machine (SVM) in learning from pair-
wise preferences in which they added pairwise preferences
as constraints to a quadratic optimization function.

In the next section, we attempt to frame the overall prob-
lem of learning user preferences for calendar scheduling,
and describe our hybrid preference learning framework. We
then summarize two proof-of-principle experiments. The
first focuses on learning static, time-of-day (TOD) pref-
erences and provides an example of the learning of util-
ity curves that takes place at the lower level of our hybrid
model. The second considers the higher level issue of in-
tegrating individual preferences to evaluate scheduling op-
tions, in this case learning a simple classifier for evaluating
different meeting bumping options. Finally, in the last sec-
tion, we summarize and identify areas of future research.

Problem and Approach
Calendar scheduling has several distinguishing characteris-
tics. First, it is incrementaland continuous. As opposed
to reaching for a set of definite final goal states, schedul-
ing is done in more or less a greedy fashion. When faced
with a meeting scheduling decision at a given point in time,
the user typically chooses the option that looks best in this
context. Time inconsistent preferences have been studied by
the economists (Strotz 1955) since mid ’50s in which so-
phisticated users speculate expected future utility in order to
choose an option that may turn out better in the future. Thus
it is possible to make decisions that may look less promising
by the measure of immediate utility value on the expectation
of future events (e.g., saving a favorite timeslot for an im-
portant tentative meeting that has not yet been scheduled).
For our purposes in this paper, however, we consider the or-
der of incoming meeting requests to be random and leave
this sort of look-ahead reasoning to future work. Specifi-
cally, we assume that calendar scheduling is carried out in
a greedy fashion, with the goal of making decisions that lo-
cally optimize preferences with respect to the current state
of the calendar.

A second distinguishing characteristic of calendar
scheduling is that it is a complex personal behavior. The
user makes scheduling decisions considering diverse factors.
Whether the user is initiating a new meeting or responding
to a meeting request she chooses an action with multiple ob-
jectives in mind. For instance, when trying to schedule a
new meeting at preferred times and locations, the user may
also want to minimize change to her existing meetings, and
she takes a scheduling action that best compromises these
objectives. The user also takes into consideration the so-
cial relation to other meeting attendees, e.g., she is willing
to sacrifice her own preference if it conflicts with a higher
ranked individual’s preference. To provide a basis for rea-
soning about such diverse factors, we assume that the cal-
endar scheduling agent has access to a set of simple prefer-
ences. A given preference has an associated utility function,
which describes its desirability in different circumstances.
At the lower level of our framework, the learning goal is to
acquire the user’s true utility values.

Of course to assess various meeting scheduling options in
a given decision context, it is necessary to integrate simple

eval
Actions:
Bump M@10am
Schedule M’

1
0
-1

1
0
-1

1
0
-1

utility

Generate
options

external features

TOD Attendee Type

10am

Meeting
M’

1

2

3
M

2

Figure 1: A model of evaluating scheduling options

preferences (and make tradeoffs where appropriate). To this
end, we assume that the user has agenericevaluation mech-
anism,eval, which is used to rank options in a consistent
way (Figure 1). Specifically , we assume thateval takes
all simple preferences relevant to deciding between a given
pair of options as input, as well as any external features that
might impact the decision at hand (e.g., an emergency or
severe weather conditions), and implements a relative rela-
tion, better than, which can be used to order these options.
Though we assume simple preferences are modeled as util-
ity functions, we make no special assumptions about overall
functional form (e.g., thateval is a weighted sum of the util-
ity values of relevant preferences). Instead, we take a more
general, classifier approach to specifyingeval. Determina-
tion of this classifier (or ranking function) is the learning
goal at the higher level of our framework.

As indicated earlier, we assume that knowledge relating
to user preference can be acquired by observing the user’s
scheduling actions over time. For instance, if the user pro-
poses a timeslot among multiple available timeslots we as-
sume that the proposed timeslot is preferred over other avail-
able timeslots. We define such preference over timeslots as
a Time-of-Day (TOD) preference. Using similar intuition
when the user cancels an existing meeting to accommodate
a new meeting it is implied that the new meeting has more
importance to the user than the existing one. We refer to
this preemption action asbumping, and a user’s predisposi-
tion toward bumping a given meeting as the user’s bumping
preference. Whereas a TOD preference can be represented
as astaticutility function involving a single attribute, times-
lot, the utility of a user’s bumping preference is composed
of multiple features, such as meeting attendees and meeting
types, and its composite utility can only be computeddy-
namicallyat runtime. As such, the learning of a TOD pref-
erence is a lower level problem of acquiring an appropriate
utility function while the learning of a bumping preference
requires formulation of an appropriate classifier.

In practice, we can get benefits from available domain
knowledge. Some of thisa priori information can come di-
rectly from the user or from central Knowledge Base (KB).

Although it is difficult to directly elicit complex preferences,
the user may be willing to provide a rough approximation
about some of her preferences, e.g., a typical morning or
afternoon person. Similarly, information in an organization
chart may be a useful a priori approximation of meeting at-
tendee importance. We can take any initially available infor-
mation as aprior knowledge and then update our model as
appropriate through a learning process.

We make specific assumptions about the types of in-
formation that can be observed during a meeting schedul-
ing episode and the organizational setting in which meet-
ing scheduling takes place. In particular, we assume that a
learning software agent has access to the following infor-
mation when observing the user schedule meetings: (1) the
user’s current calendar, (2) incoming and outgoing meet-
ing templates (Figure 2)(initiator, proposed time slots), (3)
user replies (accept or refuse), (4) confirmed meeting time
slots, and (5) bumped meeting templates (reschedule or can-
cel). We further assume that meeting scheduling takes place
within a hierarchical organization where users use a com-
mon negotiation strategy when scheduling meetings that fa-
vors the preferences of higher ranked individuals. To sup-
port learning of complex preferences, the learning agent also
generates a set of possible options that could have been al-
ternatives to any actual action taken by the user. Each alter-
native option is paired with the user’s option along with their
binary relative relationpreferredand collected as a training
example for the classifier.

As a first step toward realizing our hybrid preference
learning framework, we have conducted proof of principle
experiments at both levels, first considering the learning of
a utility curve reflecting a user’s static TOD preference, and
then considering the learning of a classifier that expresses
a simple bumping preference. These experiments are de-
scribed in the following sections.

Learning a Simple Preference
As just indicated, our approach of learning scheduling pref-
erences first decomposes complex decision criteria into a set
of simplepreferences whose utility function is isolated on
a single attribute. Time-of-day (TOD) preference is a sim-
ple preference in which the utility is defined as the user’s
preference over timeslots of a day horizon.

We take a statistical method in learning the utility of sim-
ple preferences. The agent’s observation provides poten-
tially noisy training examples to the learner since they are
in fact results from complex preferences which are unknown
to the agent. Thus, the key technique in our approach is to
mitigate noise by tailoring raw training data using a priori
domain knowledge. As a showcase example we describe
how we learn a utility function of a simple TOD preference
in the following subsections.

Basic Modeling Assumptions
A Template shown in Figure 2 is a meta language that
describes a meeting which is used as the communication
medium among the subcomponents within CMRadar. The
template is a stateless representation of a meeting at a fixed

(template
(meeting-id "MT5") (msg-id "MGS050131")
(timestamp "2005-1-31 [15:04 -0500]")
(initiator "sfs@cs.cmu.edu")
(duration 3600) (location “NSH1305”)
(time-slots

(time-slot
(earliest-start-time "2005-01-31 [15:00 -0500]")
(latest-finish-time "2005-01-31 [16:00 -0500]")
(start-time "2005-01-31 [15:00 -0500]")
(finish-time "2005-01-31 [16:00 -0500]")
(priority 0.8)
(status "confirmed")))

(attendants
(attendant (id "sfs@cs.cmu.edu") (level 1.0))
(attendant (id “mmv@cs.cmu.edu") (level 1.0)))

(purposes
(purpose (predefined-kind ":project-meeting")

(description “CMRADAR project meeting") (special-no te “nil"))))

Figure 2: An example of CMRadar Meeting Template

time point, thus the message types, e.g., whether it is an ini-
tial request or a reply to an existing request, are only implic-
itly defined. For purposes of this paper, we use the following
notation to distinctly refer to the specific types of messages
although they all share the same internal representation, i.e.
Template.

• We define a calendar to be a sequence of time slots of
equal duration over some horizon. LetCu be the calendar
of useru, andCu(t) refer to time slot (t) ofCu.

• A meeting requestReqi,A,T is initiated by an initiatori,
and designates a set of attendeesA and a set of one or
more proposed time slotsT .

• A reply or response to meeting requestr by useru is des-
ignatedRespu,r and specifies a value of eitheraccept or
refuse for each time slott ∈ T .

• A Scheduled MeetingMi,A,t similarly designates an Ini-
tiator i, a set of attendeesA and a specific time slott. For
all u ∈ A, Cu(t) = Mi,A,t.

• A staticuser meeting time preference model is expressed
as a utility curve over some sequence of time slots. Pref-
erence curve denoted byPrefu determines the relative
desirability of differentavailable time slots.

From the standpoint of the learning agent, the goal is to
observe useru in the process of scheduling meetings and
to acquireu’s preference curvePrefu. We assume that
the learner sees each meeting requestReqi,A,T involving
u, eachRespu,r involving u, and receives confirmation of
each scheduled meetingMi,A,t involvingu. The learner also
has access tou’s current calendar at all times. Finally, the
learner has knowledge of the ranks of all individuals in the
organization, and assumes that all individuals use a common
strategy for negotiating meeting times in which the prefer-
ences of higher ranked individuals are favored.

Our hypothesis is that under these assumptions, accumu-
lation of the above meeting information over some number
of user scheduling episodes is sufficient to enable the agent
to learn the user’s true meeting time preference. To test this
hypothesis we use a set of CMRadar scheduling agents to
simulate meeting scheduling under the above assumptions

and generate training data for the learning agent. We then
evaluate the ability of the learning agent to learn the true
preference model of a given CMRadar agent.

Learning TOD Preference
We take a statistical approach to learning a static TOD
preference curve for a given user from observed meeting
scheduling data. Conceptually, our approach views user’s
meeting scheduling actions and results asnoisyexamples of
the user’s underlying preference model (both positive and
negative). The key point of our approach concerns how to
weight these votes to minimize the noise.

In more detail, the following information is collected as
the user engages in meeting scheduling:

• InitPropCtu(t): accumulates TOD Time slots proposed
by the user when initiating a meeting. The potential ob-
scuring factor (or source of noise) in this data, however,
is the density ofCu; if the most preferred time slots are
already occupied, then less preferred time slots will nec-
essarily be proposed.

InitPropCtu(t) = InitPropCtu(t)+(1−DensityCu)

where

DensityCu =
OccupiedSlotsCu

TotalSlotsCu

.

In other words, the evidence for a given proposed TOD
time slot is discounted by the current density ofCu.

• RefusedCtu(t): accumulates TOD Time slots that are
available but refused by the user when responding to a
meeting request. In this case, the user’s response provides
active negative evidence for the time slot(s) in question.

RefusedCtu(t) = RefusedCtu(t) + 1.

• ConfirmedCtu(r, t): accumulates TOD Time slots of
confirmed time slots for meetings that are initiated byr.
In addition toDensityCu , here there is also a second
source of noise relating to the relative ranks of meeting at-
tendees in the organization. Taking into account the com-
mon negotiation protocol that favors higher ranked indi-
viduals, we assume that the user will tend to reveal more
truthful preferences when negotiating with lower ranked
individuals. To account for this, evidence relating to con-
firmed meeting times is differentiated by the rank of the
meeting initiator.

ConfirmedCtu(r, t) = ConfirmedCtu(r, t)

+(1−DensityCu).

Using the above computations, we collect “votes” for
each TOD time slot. We then use the weighted k-nearest
neighbor (kNN) algorithm (Fix & Hodges 1951) to consol-
idate this data and smooth the curve. The basic idea here is
to predict the utility value for a given TOD time slot usingk
similar data points in the training set. Here similarity is de-
fined as a combination of both distance between TOD time
slots and the distance between a meeting initiator’s rank and
the user’s rank in the organization.

In more detail, the learned user preference model is com-
puted according to the following four step procedure:

1. Integrate TOD time slot values in ConfirmedCtu -
Taking the user’s rankRu into account, weighted kNN is
applied to average the values accumulated for each TOD
time slot (i.e., each column in the matrix). The result
of this smoothing step is a flattened vector of Confirmed
meeting votes, designatedFlatConfirmedCtu.

2. Combine collected data- Compose final “votes” for each
TOD time slot as follows:

TSu = w1×InitPropCtu+w2×FlatConfirmedCtu

−w3 ×RefusedCtu

3. Smooth adjacent time slot data- Weighted kNN is ap-
plied again, this time to the consolidated TOD time slot
vector TSu. Following the assumption that the actual
(true) user preference will tend to be continuous, each
TOD time slot value is averaged with the values of the
k neighboring TOD time slots, discounted by TOD dis-
tance.

4. Normalize final values - Finally, the values inTSu are
normalized to the range[−1, 1] to produce the learned
preference utility curve.

Evaluation and Result
Our evaluation contrasts the performance of three prefer-
ence models:true model, learned model, andrandom
model where random model assigns random utility values
to time slots. Each model is applied to schedule a com-
mon (new) sequence of meetings, and in each case the
final resulting calendar is evaluated with respect to how
well it satisfies the true user preference model. More pre-
cisely, the quality of the resulting schedule is determined
as: Q =

∑
m∈Mtgsu

Prefu(TimeSlot(m))
|MTGSu| , whereMTGSu

is the set of meetings inCu andTimeSlot(m) is the time
slot in which meetingm is scheduled.

We used a set of CMRadar agents to simulate meeting
scheduling in a 4 person organization. We ran two sets of
experiments for relatively simple and complex utility mod-
els. In both simple and complex cases statistical significance
test showed that the learned model is significantly better than
the random model. Further, the confidence intervals showed
that the quality difference between the true model and the
learned model is less than 0.04 with 95% confidence level
in both cases, providing a very strong supporting evidence.
These two experiments provide initial evidence of the ability
to learn static user preference models for meeting schedul-
ing through observation. Further details may be found in
(Oh & Smith 2004)

Learning a Complex Preference
In the previous section we showed how a CMRadar agent
learns utility of a decomposed simple preference through an
example of TOD preference. In general many such heteroge-
neous preferences come into play when users make complex
decisions. We define acomplexpreference to be one whose
evaluation combines more than one simple preferences.

After learning individual simple preferences our next and
more practical task is to combine various kinds of simple

preferences together to yield an overall basis for compar-
ing scheduling options. For example, when the user has a
highly constrained schedule some amount of rescheduling is
unavoidable, and she trades off various simple preferences
when deciding which meeting should be bumped.

In combining lower level simple preferences we learn a
binary classifier from pairwise preferences. As a proof of
concept experiment of higher level learning in our hybrid ap-
proach we take the above mentioned bumping decision as an
example of complex preference evaluation. We simplify our
problem here by assuming that, given a set of existing meet-
ings, the user chooses the least important meeting to bump
in order to accommodate a more important meeting. We fur-
ther simplify our problem by considering only the features
that are defined in the meeting template (Figure 2).

Since our approach is passive learning given a user’s ac-
tion, the learning agent generates all alternative options, i.e.,
all available actions from the current state are applied and in
each case the results are then paired with the user’s choice.
Each pair of options and their relative relation are then con-
verted into a feature vectors. In the bumping case, the set of
alternative options corresponds to a set of pre-existing meet-
ings in the calendar and it is assumed that the bumped meet-
ing is less preferred than all the other existing meetings.

We assume that each feature is associated with a sim-
ple preference that can be learned similarly as TOD pref-
erence. In our prototype experiment we assume that the
utility functions for individual simple features have already
been learned and are available to the agent. The feature vec-
tors are translated into utility values prior to being fed to
the classifier. The agent then learns a binary classifier from
these accumulated training examples for purposes of rank-
ing scheduling options when responding to new meeting re-
quests.

In the experiment described below, a simulation was used
to generate a data set of starting schedules (each abstracted
simply as a set of meetings). We used a weighted sum of
the feature values to model the user’s true evaluation func-
tion in our simulation. It is important to note that, however,
our approach is not limited to any specific evaluation mech-
anism. Using this generated data set we learned a binary
classifier such that given two meeting templates it can deter-
mine which one of the given meetings is more important to
the user. Using this binary compare operator it is trivial to
compute the least important meeting.

Experimental settings
In this section we briefly describe how the data sets were
generated and how the experiment was carried out. To do
so, we introduce the following notation:

• A meetingMk is represented by a set of features that are
associated withMk, wherek is the meeting ID.

• Let fj denote thejth feature in the feature set. Letfk,j

denote the value of thefj of Mk. Suppose there arel
features that are relevant to determining the priority of the
meetings. Then we defineMk as{ fk,1, fk,2, ... ,fk,l }.

• The features are weighted by their importance, i.e. the
weight of a feature indicates how much the feature con-

tributes to the decision. Letwj denote the weight offj

feature.

• We virtually define a generic functioneval(Mk), which
is hidden to the agent. The user is assumed to make con-
sistent decisions according to this hidden model.

• Mx is more bumpable than My iff. eval(Mx) >
eval(My)

• When it is necessary to bump one of the existing meet-
ings, the user chooses the most bumpable meeting based
on the rationale described above.

A single bumping episode involves a setMex of m ex-
isting meetings in the calendar, and a single new meeting,
Mn. Suppose that one of the existing meetings is bumped,
and letMb denote the bumped meeting. This implies that
Mb > Mn andMb ≥ Mk for all Mk ∈ {Mex−Mb}. (Note
that the latter relation includes equality, thus introducing a
potential source of noise in the data.) Each pairwise com-
parison provides one classification example, e.g., given two
sets of features it produces a binary output,to bump or not
to bump.

We also add the converse samples to the training examples
as well, e.g.,Mn < Mb. Although it may look redundant, it
is in fact necessary to include these twin examples, since the
classifiers are not informed about the symmetry of the two
sets of features. In the case thatMn fails to bump any of the
existing meetings, meaning thatMn was the most bumpable
meeting, the training data is generated similarly.

The test phase also follows a similar process of data gen-
eration. Given a new meetingMn and a set of existing meet-
ings, Mex, we now use the trained classifiers in order to
compareMn and the meetings inMex. When there arem
alternatives, handling one bumping case requiresm classifi-
cations to determine the most bumpable meeting.

We fixed the size of test data set to 35 (corresponding
to 35 bumping episodes). Three evaluation measures were
computed: classification error rate, exact match rate, and ex-
act match plus partial match rate. The exact match means
that the agent’s decision was exactly same as the answer
(the user’s preferred decision). There are cases in which the
alternative options are in fact not much different from one
another; in such a case, if the agent picked a meeting that
did not exactly match with the user’s choice but was still
reasonable, the agent receives some partial credit (this is
the third performance measure). We define that the choice is
reasonable if the difference in probability of being bumped
of the two meetings using the true evaluation metric is less
than0.1.

Classifiers
A classifier takes a vector of feature values as input and pre-
dicts which class the given input belongs to. It is assumed
that there is a predefined set of classes for categorization. In
our general model, there are two such classes: preferred or
not preferred. In our simplified Bumping preference experi-
ment the question is rephrased asto bump or not to bump.

To determine the best performing classifier in our schedul-
ing domain we conducted our experiment with a number of

different schemes. This section briefly describes the classi-
fiers that we tested in the experiments.

• Naive Bayes (NB) Classifier: We used a Gaussian Bayes
classifier which assumes Gaussian distribution of data.
NB also assumes that all the features are independent
from one another. This naive assumption, however, be-
comes an advantage when dealing with a large number of
features.

• Joint Bayes (JB) Classifier: JB classifiers use covariance
matrix to eliminate the feature independence assumption
of NB. JB performance is in general very competitive de-
spite the simplicity of algorithm. The covariance hinders
its performance as the number of features grows.

• k-Nearest-Neighbor (kNN): kNN usesk similar data
points to predict the class of a new input. We use a simple
Euclidean distance to define similarity. In the case of a tie,
one more neighbor, the(k + 1)th nearest one, is added if
k is less than half the size of the training set. Otherwise,
thekth neighbor is dropped.

• Support Vector Machine (SVM): SVM is considered the
best available classifier in many domains and the idea
is quite different from other classifiers in the fact that it
uses only the data points near the class boundary. We
used SVM-KM Toolbox (Canu, Grandvalet, & Rako-
tomamonjy 2003). This implementation of the SVM clas-
sifier uses quadratic programming. There was no bound
on the Lagrangian multipliers, and lambda was 0.000001.
We did not investigate the effects of these parameters on
the SVM’s performance in our experiments.

• Decision Trees (DT): We used DT available in MAT Labs
toolbox. The default criterion for choosing a split used
in MAT Labs treefit function is Gini’s Diversity Index
(GDI), which is what we used here.

• Random Classifier: The random classifier determines the
class completely randomly. We included this model to use
it as a baseline.

Experimental Results
In our experiment we tested with both discrete and contin-
uous feature values. Discrete features represent binary fea-
tures whose value is directly mapped to the exact binary util-
ity values, e.g., 1 if the feature exists, 0 otherwise. We varied
the number of features from 1 to 10 in the case of continuous
features, and up to 30 for the discrete features.

Figure 3 shows the learning curves for the 6 classifiers
tested for the case of 5 continuous features. It shows that all
the classifiers start to converge after seeing about 10 bump-
ing examples. SVM and Joint Bayes performed the best, and
their error rates after convergence were below 0.1. Decision
Tree showed rather disappointing results, with an error rate
of around 0.2.

Overall, SVM outperformed all the other classifiers. The
Gaussian Bayes classifiers’ performances were quite close
to SVM with the continuous features. Whereas Nave Bayes
consistently performed relatively well, the Joint Bayes clas-
sifier’s performance is quickly degraded as the number of
features increased, especially with the discrete features.

Number of bumping examples

E
rror rate

Figure 3: Learning curves using various classifiers (5 con-
tinuous features)

Both JB and SVM classifiers’ performance reached above
.90 for the exact match rate, and above .95 with partial cred-
its, for up to 10 features. This means that after observing
10-15 bumping episodes the agent did exactly what the user
would do 90% of the time, and for half of the other times, it
still made reasonably good choices.

Conclusion and Future Work
Calendar scheduling is a complex decision making problem.
The user reasons about various mixtures of preferences that
are directly or indirectly related to the scheduling problem.
In this paper we proposed a hybrid approach of learning util-
ity functions of simple preferences and then learning a clas-
sifier to combine them at a higher level to evaluate complex
scheduling options.

We assume that the user makes decisions that produces
the best combined expected utility. We also assume that we
can learn the utility functions of individual factors that af-
fect the user’s decision by observing a series of scheduling
episodes. Our evaluation model then uses the learned util-
ity of all those factors to compare alternative options and
choose the best. To accomplish this, we proposed using a
classifier to perform as a compare operator.

As a proof of concept of our approach we have described
two separate experiments. First, we demonstrated an ap-
proach to learning the utility function that characterizes a
user’s simple TOD preference. In this initial experiment the
quality of the learned model was found to be as good as the
true model with quality difference less than 0.04 with 95%
confidence level. Second, we demonstrated the capability to
learn a binary compare operator for higher level evaluation
of bumping options. In our prototype experiment the agent
achieves over 90% accurate prediction rate after observing
only 10-15 bumping examples.

We are currently implementing a generalized preference
evaluation framework in our CMRadar scheduling agent to

accomplish more thorough evaluation of our approach. Our
current model flattens all the features into a vector on pur-
pose in order to suit various types of user’s ill-structured
preferences. We intend to also evaluate other possibilities
of recovering more structured preference models.

There are still many interesting future research issues
to think about. We aim to learn more sophisticated types
of preferences, e.g., how the user’s scheduling behavior
changes as it gets closer to certain events such as deadlines.
Also certain dynamic effects change the utility of TOD pref-
erence, e.g., whether the user prefers to schedule meetings
back to back (Back-to-Back preference). Similarly, pre-
ferred start or end times of a day may also be dynamically
adjusted by the meetings that are scheduled unusually early
or late, which changes the TOD utility of that specific day.

Consideration of room reservations for scheduled meet-
ings adds an extra dimension of complexity to our existing
calendar scheduling domain. Finally, it is also interesting
how external features such as emergency cases should be
incorporated into the user’s scheduling decision. Our op-
timization continues to be greedy since we do not speculate
about future meetings. But over time we may be able to learn
potential future meetings in consideration, e.g., implicit re-
curring meetings.

Acknowledgement
We would like to thank Simon Fung for helpful discussions
and his work on evaluation of SVM and Decision Trees.
This work was supported in part by the Department of De-
fense Advanced Research Projects Agency (DARPA) under
contract #NBCHC030029.

References
Berry, P.; Gervasio, M.; Uribe, T. E.; Myers, K.; and Nitz,
K. 2004. A Personalized Calendar Assistant.AAAI Spring
Symposium Series, March.

Canu, S.; Grandvalet, Y.; and Rakotomamonjy, A. 2003.
Svm and kernel methods matlab toolbox. Perception
Systmes et Information, INSA de Rouen, Rouen, France.

Cohen, W. W.; Schapire, R. E.; and Singer, Y. 1998. Learn-
ing to order things. In Jordan, M. I.; Kearns, M. J.; and
Solla, S. A., eds.,Advances in Neural Information Process-
ing Systems, volume 10. The MIT Press.

Dent, C. L.; Boticario, J.; McDermott, J. P.; Mitchell,
T. M.; and Zabowski, D. 1992. A Personal Learning Ap-
prentice. InProceedings of AAAI-92, 96–103.

Fix, E., and Hodges, J. L. 1951. Discriminatory Anal-
ysis: Nonparametric Discrimination: Consistency Proper-
ties. InTechnical Report Project 21-49-004, Report Num-
ber 4, USAF School of Aviation Medicine, Randolf Field,
Texas.

Gervasio, M. T.; Moffitt, M. D.; Pollack, M. E.; Taylor,
J. M.; and Uribe, T. E. 2005. Active preference learning
for personalized calendar scheduling assistance. InPro-
ceedings of the 2005 International Conference on Intelli-
gent User Interfaces.

Gervasio, M.; Iba, W.; and Langley, P. 1999. Learning user
evaluation functions for adaptive scheduling assistance. In
Proceedings of the Sixteenth International Conference on
Machine Learning, 152–161.
Mitchell, T. M.; Caruana, R.; Freitag, D.; McDermott, J. P.;
and Zabowski, D. 1994. Experience with a Learning Per-
sonal Assistant.Communications of the ACM80–91.
Modi, P. J.; Veloso, M.; Smith, S. F.; and Oh, J. 2004.
CMRadar: A Personal Assistant Agent for Calendar Man-
agement. In6th International Workshop on Agent-Oriented
Information Systems (AOIS), 134–148.
Oh, J., and Smith, S. F. 2004. Learning User Preferences
in Distributed Calendar Scheduling. InThe International
Series of Conferences on the Practice and Theory of Auto-
mated Timetabling, 35–49.
Samuelson, P. A. 1948. Consumption Theory in Terms of
Revealed Preference.Econometrica15:243–253.
Sen, S.; Haynes, T.; and Arora, N. 1997. Satisfying
user preferences while negotiating meetings.International
Journal of Human-Computer Studies47:407–427.
Strotz, R. H. 1955. Myopia and Inconsistency in Dy-
namic Utility Maximization. Review of Economic Studies
23:165–180.
Wasserman, L. A. 2004.Bayesian Inference. Springer.
chapter 11.

