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Abstract

Research projects have begun focusing on deploying personal
assistant agents to coordinate users in such diverse environ-
ments as offices, distributed manufacturing or design centers,
and in support of first responders for emergencies. In such en-
vironments, distributed constraint optimization (DCOP) has
emerged as a key technology for multiple collaborative as-
sistants to coordinate with each other. Unfortunately, while
previous work in DCOP only focuses on coordination in ser-
vice of optimizing a single global team objective, personal
assistants often require satisfying additional individual user-
specified criteria. This paper provides a novel DCOP algo-
rithm that enables personal assistants to engage in such multi-
criteria coordination while maintaining the privacy of their
additional criteria. It uses n-ary NOGOODS implemented as
private variables to achieve this. In addition, we’ve developed
an algorithm that reveals only the individual criteria of a link
and can speed up performance for certain problem structures.
The key idea in this algorithm is that interleaving the crite-
ria searches — rather than sequentially attempting to satisfy
the criteria — improves efficiency by mutually constraining
the distributed search for solutions. These ideas are realized
in the form ofprivate-g and public-g Multi-criteria ADOPT,
built on top of ADOPT, one of the most efficient DCOP al-
gorithms. We present our detailed algorithm, as well as some
experimental results in personal assistant domains.

Introduction
Research projects have begun focusing on deploying per-
sonal assistant agents to coordinate users in such diverse
environments as offices, distributed manufacturing or de-
sign centers, and in support of first responders for emer-
gencies(Scerriet al. 2002; Maheswaranet al. 2004;
SRI 2004). These personal assistant agents must often nego-
tiate among each other in a collaborative fashion on behalf
of their users, to coordinate their schedules, coordinate al-
locations of tasks and delivery of key results to each other,
to jointly plan for future activities, etc. Distributed Con-
straint Optimization (DCOP) has emerged as a promising
technology to enable such collaborative conflict resolutions.
A DCOP includes a set of variables, where a subset of the
variables is assigned to an agent who has control of the
values of this subset. In the context of personal assistant
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agents, we can equip each agent with an efficient DCOP
algorithms(Modiet al. 2003; Maheswaranet al. 2004;
Yokoo et al. 1998), and the agents can then coordinate their
choice of values so that a global objective function is opti-
mized.

One central challenge in such coordinations among per-
sonal assistants however is that users may not be satisfied
with a single global objective function to capture the util-
ity of the group of users. For instance, users may wish to
coordinate their schedules so that they optimize their per-
formance on a set of tasks, but each user may impose ad-
ditional requirements on his/her own schedule — one user
may prefer that his/her own schedule have tasks be closely
packed together, while another may prefer that the tasks be
scheduled far apart from each other. Users may also have
preferences over slack times awarded to them in case of
failures, based on their own assessment of their capabili-
ties or the possibility of failures due to environmental fac-
tors. However, current DCOP algorithms insist on a single
global utility function, which does not allow multiple crite-
ria to be taken into account during negotiations. While in
simple cases it is feasible to combine the multiple criteria
into a single global criteria, in complex cases, such an inte-
gration into a single criteria may be difficult and may lead to
undesirable results.

In this paper we make some initial progress on the prob-
lem of multi-criteria DCOP. While there exist single-agent
techniques for multi-criteria optimization, e.g., Constrained
Markov Decision Processes (CMDPs) (Altman 1999), lit-
tle work has focused on distributed multi-criteria constraint
optimization. This paper provides two novel DCOP al-
gorithms that enable personal assistants to engage in such
multi-criteria coordination. Our goal is to allow for two ob-
jective functions: (i) a cost function which must be globally
minimized and (ii) individual objectives at each agent which
must be held below a pre-specified threshold. The first algo-
rithm that we present employs n-ary NOGOODS to achieve
this. A key advantage of this techinique is that it can keep the
individual constraint functions for each link private and so
we named it private-g Multi-Criteria Adopt. One drawback
of this technique is that it can extensively search solutions
that obviously violate a variable’s private constraint before
abandoning them. In order to speed up execution we de-
veloped a second algorithm, public-g Multi-Criteria Adopt,



that would not explore search space that violated a variable’s
individual constraint. The primary challenge is in deciding
where in the partial solution space to search for a better as-
signment of values to variables. Since improvement in one
measure does not necessarily correlate with an improvement
in the other, there are two potential directions of search that
must be balanced. To meet this challenge, we interleave the
criteria searches — rather than sequentially attempting to
satisfy the criteria — and this improves efficiency. In partic-
ular, each agent attempts to satisfy its local objective thresh-
old and minimize the global cost given this threshold. Thus,
we restrict the exploration of the search for a globally opti-
mal solution to only those values that respect these prespeci-
fied individual thresholds. Agents may search through these
individual thresholds to obtain better global solutions. Si-
multaneously, if the actual cost of the global solution given
current thresholds is seen to be higher than other potentially
lower cost solutions, then the agents will abandon adjusting
their local thresholds and opportunistically jump to a new
part of the search space. Thus, global information can also
enable agents to limit local searches.

These ideas are realized in the form ofprivate-g and
public-g Multi-Criteria ADOPT, built on top of ADOPT, one
of the most efficient DCOP algorithms (Modiet al. 2003).
However, the techniques we describe could be applied to
other DCOP algorithms. We have implemented private-g
and public-g Multi-criteria ADOPT and we present results
from the implementations.

Background: DCOP and Adopt
We focus on the use of DCOPs for negotiations among per-
sonal assistant agents, and in this section, we first present
an overview of DCOP. Second, since we build up on
ADOPT(Modi et al. 2003), a highly efficient DCOP algo-
rithm (indeed, the most efficient DCOP algorithm that does
not allow any centralization of value assignments), we also
provide a brief overview of ADOPT. A Distributed Con-
straint Optimization Problem (DCOP) consists of n variables
V = {x1, x2, . . . , xn} which are assigned to a set of agents.
A variable’s value is controlled by the agent to which it is
assigned and variablexi can take on any value from the dis-
crete finite domainDi. The goal is to choose values for
the variables such that an objective function is minimized or
maximized. The objective function is an aggregation, usu-
ally the sum, over a set of constraints and associated cost
functions. The cost functions are defined asfij : Di×Dj →
N ∪ ∞. The objective is to find A, an assignment, (=A*)
s.t. F(A) is minimized:F (A) =

∑
xi, xj ∈ V fij(di, dj),

wherexi ← di, xj ← dj ∈ A
Taking as an example the constraint graph shown in

Figure 1a,F ((task1, 8am), (task2, 11am), (task3, 12pm),
(task4, 2pm)) = 4 and F ((task1, 9am), (task2, 11am),
(task3, 1pm), (task4, 2pm)) = 0. In this example A*
would be (task1, 9am), (task2, 11am), (task3, 1pm),
(task4, 2pm).

The original Adopt algorithm starts by organizing agents
into a Depth-First Search (DFS) tree in which constraints
are allowed between an agent and any of its ancestors or
descendents, but not between variables in separate sub-trees.

Figure 1: a) constraint graph b) MC-Adopt message passing

Communication in Adopt takes the form of three basic
messages: VALUE, THRESHOLD and COST. Assignments
of values to variables are conveyed in VALUE messages that
are sent to neighbor nodes, i.e. nodes sharing a constraint
with the sender, lower in the DFS tree. When the algorithm
first starts, all nodes take on a random value and send out
appropriate VALUE messages to get the flow of computa-
tion started. A THRESHOLD message is sent from parents
to children and contains a backtrack threshold which is ini-
tially set to zero. The backtrack threshold indicates the max-
imum cost the child can accrue before suspending its line of
search for another. A third type of message, the COST mes-
sage, is sent from children to parents to indicate the cost of
the sub-tree rooted at the child. These three forms of com-
munication are shown in Figure 1 which is adapted from the
diagram in (Modiet al. 2003). The pseudo-code for these
message sending and receiving procedures is shown in the
non-lettered lines (1) - (52) of Figure 2 and Figure 4.

Since communication in Adopt is asynchronous messages
have a context attached to them, which is to say a list of the
variable assignments in existence at the time that the mes-
sage was sent, to allow the recipient to tell if the information
is still relevant.

A sub-tree explores a line of search until the lower bound
on cost accumulated at its root, which is defined as the lower
bound cost of the sub-trees rooted at its children plus the
cost of its constraints with its ancestors, surpasses the thresh-
old assigned to it. When a node’s lower bound surpasses its
threshold, it will attempt to change its value to one that has
a lower bound cost still under the threshold (all unexplored
assignments begin with a lower bound of zero). If this is
not possible an agent summarily raises its threshold and re-
ports this to its parent. The parent then has to rebalance the
thresholds of its other children. Similarly, an upper bound
on cost is maintained and if a child discovers its threshold is
greater than its upper bound it will unilaterally decrease its
threshold.

The root’s upper and lower bounds represent the upper
and lower bounds on the global problem, so when they meet
each other the optimal solution has been found and the al-
gorithm terminates. This has been proven to be sound and
complete. For more details see (Modiet al. 2003).



Problem Definition: Personal Assistants with
Multiple Criteria

As illustrated in the previous section, current DCOP for-
mulation and algorithms designed to solve problems within
the formulation focus on a single objective function to mini-
mize the cost function in a distributed manner. As illustrated
in (Maheswaran et al 04), single-objective optimization can
model problems such as optimizing allocation of tasks to
multiple users, so that the user team obtains maximum util-
ity from task performance. The result may be a schedule
where for example a useruser1may be required to do a task
TASK1 at 8 AM in the morning, and another task TASK2 at
4 PM in the evening; whereas another useruser2may be re-
quired to take on TASK1 at 9 AM (as soon as user1 finishes),
and then a second task TASK2 at 10 AM (as soon as TASK1
finishes). However, users may prefer a schedule that in ad-
dition to optimizing the team performance, also addresses
individual preferences. For instance, in the above scneario,
users may prefer a schedule that either does not pack tasks
together across users or within a single user’s schedule by
leaving more individual slack time — user2 may prefer at
least half an hour between the end of one task and the start of
the next task. Other preferences may include packing tasks
closely together, e.g., user1 may prefer a schedule that does
not schedule tasks only at the start and the end of the day
(leaving a 7-8 hour gap in the middle of the day).

We define the multicriteria distributed optimization prob-
lem, building on the original DCOP, to address the above
requirement. A Multi-Criteria Distributed Constraint Opti-
mization Problem adds a second cost functiongij : Di ×
Dj → N ∪∞ that is to be held below a threshold T.

A first pass multi-criteria DCOP defines g on the same
inputs as f: Find A (= A*) s.t. F(A) is minimized:F (A) =∑

xi,xj∈V fij(di, dj), wherexi ← di, xj ← dj ∈ A and
gij(di, dj) ≤ T

This turns out to be trivially solvable by constructing:

f ′
ij(di, dj) = {∞ ifgij(di, dj) > T}

= {fij(di, dj) otherwise}

A more complex multi-criteria DCOP defines g on a vari-
able or more formally on the aggregation of the constraints
impinging upon a particular variable: Find A (= A*) s.t.
F(A) is minimized: F (A) =

∑
xi,xj∈V fij(di, dj), where

xi ← di, xj ← dj ∈ A
and ∀xa ∈ V

∑
xb∈V gab(da, db) ≤ T where xa ←

da, xb ← db ∈ A
This is the problem that is tackled in this paper by pre-

senting a modified version of the DCOP solving algorithm
Adopt. Our motivation for choosing to tackle this formu-
lation was its ability to handle multicriteria problems of in-
terest, e.g. in the task scheduling domain the team wants
to maximize the number and utility of tasks scheduled while
maintaining a minimum amount of flexibility per agent. This
gives each agent the flexibility to recover from unforeseen
delays without adversely affecting the rest of the team.

Multi-Criteria Adopt
Basic Idea

N-ary NOGOODSThe key difficulty in our more complex
multi-criteria DCOP problem is that the g-constraint is de-
fined on a set of binary constraints, which can be expressed
as an n-ary constraint. Since the second criteria must be sat-
isfied, not optimized, we employ a techinique from DisCSP
(Yokoo et al. 1998), namely NOGOODs. The algorithm
searches for an optimal solution for f and when an assign-
ment violates the g-constraint of a variable, a NOGOOD
is added. Since the NOGOOD is enforced by the agent
controlling the variable with the g-constraint, the constraint
function is kept private.

Private-g Multi-Criteria Adopt Algorithm

In order to allow Adopt to handle multiple criteria, a pre-
processing step was added as well as a mechanism for han-
dling n-ary NOGOODs. The preprocessing modifies the tree
structure and creates variables that will enforce the the n-ary
NOGOODS. The n-ary NOGOOD variables each represent
the g-constraint of a single variable and are owned by the
owner of the variable they represent.

The preprocessing step modifies the tree structure to force
all variables in a particular g-constraint to be in the same
subtree (lines 0f-g in figure 2). It also creates an n-ary NO-
GOOD variable to enforce the constraint. The n-ary NO-
GOOD variables need to be placed lower in the tree struc-
ture than any of the variables in the g-constraint it enforces
(lines 0a-e). The n-ary NOGOOD variables will thus only
receive VALUE messages and will use these to determine
whether the current assignment will violate the g-constraint
being represented. If the constraint is violated, an infinite
cost will be passed up, forcing the variables to try a differ-
ent assignment, otherwise a 0 cost will be passed up (lines
52a-e).

In all other respects the algorithm behaves the same as the
original Adopt algorithm.

Correctness of private-g

To prove correctness and completeness of private-g Multi-
Criteria Adopt we need to prove 3 theorems: 1) LB and UB
are correct, 2) Mulit-Criteria Adopt terminates, 3) the final
threshold at a node is its cost. The proofs of the latter two
items are identical to the originals in (Modiet al. 2003) and
so they have been omitted. The proof that LB and UB are
correct is an adaptation of the corresponding one in (Modi
et al. 2003).

Property 1 ∀xi ∈ V,
OPT (xi, CurrentContext) def
mind∈Di

δ(d) +
∑

xl∈Children OPT (xl, CurrentContext∪
(xi, d))

if
∑

xj ,xk∈Neighbors gjk(dj , dk) ≤ g constraint
∞ otherwise

Proposition 1 ∀xi ∈ V, LB ≤
OPT (xi, CurrentContext) ≤ UB



Preprocessing
(0a) forall xi with a g-constraint
(0b) x′i is a new n-ary variable
(0c) x′i linked toxi

(0d) forall xk ∈ Neighbours(xi)
(0e) x′i linked toxi

(0f) forall xl ∈ Neighbours(xi) not linked toxk

and not equal toxk

(0g) xk linked toxl

(0h) buildTree( x1 . . . xn)
(0i) forall x′i
(0j) parent(x′i)← lowest priority Neighbour ofx′i

Initialize
(1) threshold← 0; CurrentContext← {}
(2) forall d ∈ Di, xl ∈ Children do
(3) lb(d, xl)← 0; t(d, xl)← 0
(4) ub(d, xl)← Inf ; context(d, xl)← {}; enddo
(5) di ← d that minimizesLB(d)
(6) backTrack

when received (THRESHOLD , t, context)
(7) if context compatible withCurrentContext:
(8) threshold← t
(9) maintainThresholdInvariant
(10) backTrack ; endif

when received (TERMINATE , context)
(11) record TERMINATE received from parent
(12) CurrentContext← context
(13) backTrack

when received (VALUE , (xj ,dj))
(14) if TERMINATE not received from parent:
(15) add (xj ,dj) to CurrentContext
(16) forall d ∈ Di, xl ∈ Children do
(17) if context(d, xl) incompatible withCurrentContext:
(18) lb(d, xl)← 0; t(d, xl)← 0
(19) ub(d, xl)← Inf ; context(d, xl)← {}; endif; enddo
(20) maintainThresholdInvariant
(21) backTrack ; endif

when received (COST, xk, context, lb, ub)
(22) d← value ofxi in context
(23) remove (xi,d) from context
(24) if TERMINATE not received from parent:
(25) forall (xj ,dj) ∈ context andxj is not my neighbordo
(26) add (xj ,dj) to CurrentContext;enddo
(27) forall d′ ∈ Di, xl ∈ Children do
(28) if context(d′, xl) incompatible withCurrentContext:
(29) lb(d′, xl)← 0; t(d′, xl)← 0
(30) ub(d′, xl)← Inf ; context(d′, xl)← {};

endif;enddo;endif
(31) if context compatible withCurrentContext:
(32) lb(d, xk)← lb
(33) ub(d, xk)← ub
(34) context(d, xk)← context
(35) maintainChildThresholdInvariant
(36) maintainThresholdInvariant ; endif
(37) backTrack

procedure backTrack
(37a) if xi not an n-ary variable
(38) if threshold == UB:
(39) di ← d that minimizesUB(d)
(40) else ifLB(di) > threshold:
(41) di ← d that minimizesLB(d)endif
(42) SEND (VALUE , (xi, di))
(43) to each lower priority neighborxj

(44) maintainAllocationInvariant
(45) if threshold == UB:
(46) if TERMINATE received from parent
(47) orxi is root:
(48) SEND (TERMINATE ,
(49) CurrentContext ∪ {(xi, di)})
(50) to each child
(51) Terminate execution;endif;endif
(52) SEND (COST, xi, CurrentContext, LB, UB)

to parent
(52a) else
(52b) if

∑
xk∈Neighbours(xi)

g(xi, xk) > gConstraint(xi)

(52c) SEND (COST, xi, CurrentContext,∞,∞)
(52d) else
(52e) SEND (COST, xi, CurrentContext, 0, 0)

Figure 2: Private-g Pseudo-code

Proof: by induction on variable priorities.
Base Case:xi is a leaf. This means thatxi is either an n-

ary variable, or a variable not involved in any g-constraints.
The latter case is the same as a leaf in the original Adopt
algorithm. In the former case,LB andUB are defined to
be 0 if the constraint is not violated and∞ if it is. Thus
LB ≤ OPT (xi, CurrentContext) ≤ UB for leaves.

Inductive Hypothesis:∀xi ∈ V of depth k or greater,
LB ≤ OPT (xi, CurrentContext) ≤ UB

Inductive Step:xi is a variable of depth k - 1. Since
all children xl have depth k or greater,lb(d, xl) ≤
OPT (xl, CurrentContext ∪ (xi, di)) ≤ ub(d, xl). Sub-
stituting into the definition of LB and UB we get:

LB = mind∈Di
δ(d) +

∑
xl∈Children lb(d, xl) ≤

mind∈Di
δ(d)+

∑
xl∈Children OPT (xl, CurrentContext∪

(xi, d)) ≤
UB = mind∈Di

δ(d) +
∑

xl∈Children ub(d, xl)
and if x′

is g constraint is unsatisfied then one of its chil-
dren will report thelb(d, xl) = ∞ = ub(d, xl) from x′

is
n-ary node.�

Speeding Up Multi-Criteria Adopt
Two drawbacks to the private-g approach to multi-criteria
Adopt are its exploration of obviously unsatisfying assign-
ments and the fact that its preprocessing introduces more
chain-structure into the DFS tree, increasing the tree depth.
Both of these cause the algorithm to run more slowly. If
the g-function of an individual link were to be made pub-
lic to the nodes connected to that link the runtime could



be improved. We choose to only explicitly (i.e. in non-
amalgamated form) reveal the g-function information of a
single link to those vertices connected to it, which is the
same level of privacy loss tolerated for the f-function. With
this additional information we can develop an algorithm
(public-g) that will improve performance for tree-structured
problems. However, graph-structured problems cannot be
optimally solved without revealing additional information.
An example of the problem applying public-g to a graph can
be seen in Figure 3. A g-constraint of 1 is imposed onx0

while x1 andx2 have a g-constraint of 2. Ifx0 wants to
decide how much g to allocate to its link withx1 and its
link with x2 it considers the tables on each of these links.
Assuming that all variables initially choose to take on 0,x1

will report (after removal of double counts) that given a g of
0 or greater it will report an accumulated cost of 0. Based
on the fact thatx1 has currently taken on 0,x2 will report to
x0 that given a g of 0, it can report an accumulated cost of
4 (summing from both links) and given a g of 1 or more it
can report a cost of 3. As a result,x0 would assign a g of 0
to x1 and a g of 1 tox2. This would lead to the following
assignment:d0 ← 0 d1 ← 0 d2 ← 0. However, the opti-
mal split is in fact forx0 to assign a g of 1 tox1 and 0 to
x2 allowing for the following assignment:d0 ← 0 d1 ← 1
d2 ← 1. The former assignment results in a total cost of 3,
whereas the optimal results in a total cost of 2. The reason
thatx0 cannot discover the optimal split is that the function
on the link betweenx1 andx2 is hidden to it. Without hav-
ing this information explicitly revealed,x0 cannot compute
the optimal split. Since this kind of cycle cannot occur in
trees, the public-g algorithm can be applied to trees but not
to more general graphs.

Figure 3: An example of public-g’s failure on non-tree struc-
tures

Basic Idea
Interleaved SearchThe key difficulty in multi-criteria opti-
mization is that improvement in one measure does not nec-
essarily correspond with improvement in the other. This
means that there are two directions in which an opportunis-
tic search can proceed, so how does the algorithm choose
which one to pursue? We tackle this problem by creating a

threshold to force descendent nodes to only consider assign-
ments that will not violate the g constraint of their ancestors.
This is done by passing them each a personalized threshold
specifying how large a g cost they can pass up to their an-
cestor. If a suitable division of g cannot be found then the
algorithm will not try to optimize f since no solution would
satisfy the g constraint. Thus we are using the g function to
prune the search space in f of the algorithm.

Public-g Multi-Criteria Adopt Algorithm
In order to modify Adopt to more efficiently solve multi-
criteria problems we applied the idea of thresholding to the
g function. There are now two thresholds to be considered at
each node. The first is the one that guides the search for an
optimal f and has been described above. The second one is
the g-threshold which specifies the maximum g cost allowed
to be reported by a child to its ancestor. This requires a
modification to the VALUE message to send g-thresholds
and the creation of a new message, the G-COST message,
for responding.

VALUE messages now have two additional fields: g-
threshold and g-query (lines 15a,19e-19f in Figure 4). The
parent sends all children a g-query with its full g-constraint
value minus the g used on its links with its own ancestors
(line 4e,19f) in order to collect information on how to best
split the remaining g-threshold among its children. The par-
ent then calculates the optimal split of its g among its chil-
dren and fills in the g-threshold field with this value (lines
53-60). The g-threshold indicates that the agent receiving
the message may take on no value whose g is greater than
the g-threshold.

A G-COST message is sent from a child to the ancestor
that sent it a g-query containing a table indicating for each
potential g-threshold between 0 and the value in the g-query
what the lowest f cost it could report would be (lines 61-67).
This takes into account that values may have been eliminated
from its domain because there is no way for it to divide its
g-threshold among its children and satisfy them all (lines 53-
60). Whenever a value is eliminated from a node’s domain it
sends a new G-COST message to its parent if it can no longer
meet its g-threshold. Note that the removal of an element
from the domain can only cause the f cost for that domain
to increase because the reported f cost is supposed to be the
minimum that maintains g below the potential g-threshold.
This new G-COST message causes the parent to re-evaluate
the best distribution of the g-thresholds (lines 37f-37k).

Since G-COST messages get reported up all ancestor
links it is important to prevent double counting from affect-
ing the split. Thus, each agent sends its name up to its parent
in the G-COST message, if it has links with other ances-
tor nodes (lines 4f-4g) and it also passes along any variable
names that it recieves in G-COST messages from its chil-
dren (37b). When a variable receives a subtree list from its
child xk, it checks whether it is linked to any of the variables
xl in the list and if so stores thatxl is in the subtree ofxk

(line 37b) and so when calculating the optimal split it sub-
tracts the f’s reported byxl from those reported byxk, thus
eliminating the double counting (line 70).

Since n-ary NOGOODS are not required for the execution



of public-g, the preprocessing steps are no longer required,
which helps to create additional speedup because prepro-
cessing tends to create more chain-like trees, which accord-
ing to Maheswaran et al (2004) causes the Adopt algorithm
to run more slowly.

Correctness of public-g
Due to asynchrony in Adopt’s execution it may happen that
a nodexi must change its previous G-COST table to reflect
changes in its domain. However, when the current contexts
of the nodes in a subtree rooted atxi are fixed, a condi-
tion which Jay Modi proved eventually occurs (Modiet al.
2003), the G-COST table can no longer change and so the
division of g-Threshold at termination is guaranteed to be
optimal.

Proposition 2 If CurrentContext is fixed for nodexi and
all of the nodes in the subtree rooted atxi thenxi will not
change its G-COST table at any point in the future.

Proof. G-COST entry isf(di) such thatdi ∈ Di and
∀ otherdj ∈ Dif(di) ≤ f(dj) andg(di) ≤ gThreshold
Otherwise the entry is∞. Nodexi will change an entry in
its G-COST table iffDi ← Di − di Di ← Di − di iff there
does not exist a g-Threshold distributiong1 . . . gk such that
∀xl ∈ children(xi)xl reports an f-cost<∞.

Base Case:xi is a leaf. Sincexi has no children it triv-
ially has a g-Threshold distribution that satisfies all its chil-
dren. Therefore its domainDi is unchanging and this im-
plies it will never change its G-COST table.

Inductive Hypothesis: If xi is a node at depth k in the
DFS tree and if CurrentContext is fixed forxi and all of its
descendents thenxi will never change its G-COST table.

We need to show that if the inductive hypothesis is true
for all xi of depth≥ k, it is true for allxj of depth k - 1.

Since all descendents ofxj have a depth≥ k, then they
will never change their G-COST tables by the inductive hy-
pothesis. This implies that no further values can be elimi-
nated from the domain ofxj . Therefore, the domain ofxj is
fixed, andxj will never change its G-COST table.�

A node will try to find the optimal distribution of G-
Threshold that causes all of its children to report f costs of
less than∞. If no such distribution exists then there is no
solution to the multi-criteria DCOP with the ancestor node
at its current value and so it will eliminate that value from
its domain. However, if a distribution does exist then the
node will select the distribution that minimizes the f costs
reported by its children.

Experimental Results
Figure 5 demonstrates the effect of a varying g-constraint
on the f-cost of the solution obtained with the private-g al-
gorithm. The g-constraint was applied to each variable in
the problem and the graph represents 10 runs of both tree
and graph structured networks (5 of each). The looser the
g-constraint, the lower the f-cost of the final solution. The
case where the g-constraint is 40 is analagous to a cingle cri-
terion optimization since the largest g-value on a single link
was 10 and the greatest link density was 4.

Initialize
(1) threshold← 0; CurrentContext← {}
(2) forall d ∈ Di, xl ∈ Children do
(3) lb(d, xl)← 0; t(d, xl)← 0
(4) ub(d, xl)← Inf ; context(d, xl)← {}; enddo
(4a) forall xl ∈ Children do
(4b) gThresh(xl)← 0
(4c) gContext(xl)← {}
(4d) gReportedBy(xl)← null; enddo
(4e) availableG← T −

∑
xi∈Ancestors maxG(xi)

(4f) if xi has a non-parent ancestor link
(4g) subtree← xi; endif
(5) di ← d that minimizesLB(d)
(6) backTrack

when received (THRESHOLD , t, context)
See figure 2

when received (TERMINATE , context)
See figure 2

when received (VALUE , (xj ,dj ,gquery,gthresh))
(14) if TERMINATE not received from parent:
(15a) add (xj ,dj ,gthresh) to CurrentContext
(16) forall d ∈ Di, xl ∈ Children do
(17) if context(d, xl) incompatible withCurrentContext:
(18) lb(d, xl)← 0; t(d, xl)← 0
(19) ub(d, xl)← Inf ; context(d, xl)← {}; endif; enddo
(19a) forall xl ∈ Children do
(19b) if gContext(xl) incompatible withCurrentContext:
(19c) gThresh(xl)← 0;
(19d) gContext(xl)← {}; endif; enddo
(19e) gTbl(xj)← calcTbl (gquery)
(19f) availableG← T −

∑
xi∈Ancestors maxG(xi)

(20) maintainThresholdInvariant
(21) backTrack ; endif

when received (COST, xk, context, lb, ub)
See figure 2

when received (G-COST, xk, context, tbl, sub)
(37a) d← value ofxi in context
(37b) mergesub into subtree
(37c) forall xl ∈ children do
(37d) if xl ∈ sub
(37e) gReportedBy(xl)← xk; endif; enddo
(37f) if TERMINATE not received from parent:
(37g) if context compatible withCurrentContext:
(37h) gInfo(xk)← tbl
(37i) gContext(xk)← context
(37j) calcOptimalSplit ; endif; endif;
(37k) backTrack



procedure backTrack
(38) if threshold == UB:
(39a) di ← d that minimizesUB(d) and satisfiesgMax
(40) else ifLB(di) > threshold:
(41a) di ← d that minimizesLB(d) and satisfiesgMax;endif
(42a) SEND (VALUE , (xi, di, availableG, gThresh(xj)))
(43) to each lower priority neighborxj

(44) maintainAllocationInvariant
(45) if threshold == UB:
(46) if TERMINATE received from parent
(47a) orxi is root and∀xl ∈ childrengReplied(xl) is true:
(48) SEND (TERMINATE ,
(49) CurrentContext ∪ {(xi, di)})
(50) to each child
(51) Terminate execution;endif;endif
(52) SEND (COST, xi, CurrentContext, LB, UB)

to parent
(52a) SEND (G-COST, xi, CurrentContext, gTbl(xk), {})

to all ancestorsxk except parent
(52b) SEND (G-COST, xi, CurrentContext, gTbl(parent), subtree)

to parent

procedure calcOptimalSplit
(53) remove double counts
(54) fbest ← infty
(55) for g0 ← 0 toavailableG

...
(56) for gk−1 ← 0 toavailableG− gk−2 − . . .− g0

(57) gk ← availableG− gk−1 − . . .− g0

(58) if gInfo(x0)[g0] + . . . + gInfo(xk)[gk] < fbest

(59) gThresh(x0)← g0 . . . gThresh(xk)← gk

(60) fbest ← gInfo(x0)[g0] + . . . + gInfo(xk)[gk]

procedure calcTbl ( gQuery)
(61) sortdi ∈ Di by increasingLB(di)
(62) for x = gQuery to 0do
(63) whiled1 doesn’t satisfy a g-threshold ofx removed1

(64) if di notnull
(65) gTbl[x]← LB(d1)
(66) else
(67) gTbl[x]← infty

Figure 4: Public-g Pseudo-code

Figure 5: Measuring the global cost f as a function of local
thresholds g

Figure 6: Measuring run time in cycles as a function of the
threshold g.

Figure 6 demonstrates the effect of a varying g-constraint
on the runtime of private-g. The runtime is measured in cy-
cles and was generated by simulating the execution of the
algorithm on a single processor. The data points represent
10 runs of both tree and graph structured networks. The run-
time is lowest when the search is either unconstrained due to
a large g-constraint or so constrained that little search space
needs be explored.

Figure 7 shows the relative runtimes of the private-g
and public-g algorithms on a set of tree structured graphs.
The graph is lograrithmically scaled and demonstrates that
public-g decreases the runtime by a factor of 5 on average
for 5-node trees and 27 for 10-node trees. The quality of
solution is unaffected.

Related Work

Previous work in collaborative multicriteria negotiation
(Moraitis and Tsoukias 1996)(Fallahet al. 2000) has fo-
cused on applications such as distributed planning, but this
work did not benefit from the recent research that formalized
DCOP representations and developed efficient algorithms
for it. The key difference between our work and this pre-
vious work is that we build on these efficient algorithms, in
particular, ADOPT, leading to a more efficient MC-ADOPT
algorithm.



Figure 7: Comparing the runtime in cycles as a function of
g

Conclusion
In many applications, personal assistant agents must negoti-
ate over multiple criteria, where they must not only attempt
to optimize a global team objective, but they must simul-
taneously meet additional user-specified criteria. In previ-
ous work, distributed constraint optimization (DCOP) has
emerged as a key technology for multiple collaborative as-
sistants to negotiate with each other, as it enables such nego-
tiations while protecting user privacy. Unfortunately, previ-
ous work in DCOP only focuses on negotiation in service of
optimizing a single global team objective. This paper pro-
vides 2 novel DCOP algorithms that enable personal assis-
tants to engage in multi-criteria negotiation. TThe first algo-
rithm employs n-ary NOGOODS and maintains the individ-
ual criterion private. The second interleaves the searches for
the multiple criteria — rather than sequentially attempting to
satisfy the criteria — and improves efficiency. These ideas
are realized in the form ofpublic-g and private-g Multi-
criteria ADOPT, built on top of ADOPT, one of the most
efficient DCOP algorithms. We present our detailed algo-
rithm, as well as some initial experimental results in per-
sonal assistant domains.
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