Building a Testbed for Studying Service

Wayne Iba and Nicholas Burwell
Department of Mathematics and Computer Science
Westmont College, 955 La Paz Road
Santa Barbara, California 93108
{iba,nburwell } @ westmont.edu

Abstract

Performing a task for a user is one part of assistance.
As a prior step, a helper must identify which of a possi-
ble number of tasks should be assisted. We intend to
study the requirements that enable service to be ren-
dered and understand the factors that impact the deliv-
ery of assistance. Toward this end, we extended a sim-
ulated environment to use as our testbed for developing
and evaluating approaches to service. Our new testbed,
M ZEDEN, supports multiple agents, communication be-
tween agents, and records detailed logs of agents’ be-
havior. We used the testbed in preliminary studies of
servant and recipient behavior and interaction. Results
hint at the usefulness of the testbed.

Introduction

Providing assistance to a computer user is an exciting and re-
warding prospect, both for Artificial Intelligence researchers
as well as for end users. Much work is focused on advanc-
ing the ability of artificial agents to perform tasks on the
behalf of human users or to suggest to human users how to
proceed in particular situations. If such work represents the
engine that is progressively moving us forward, we want to
raise the questions, where are we trying to go and how do
we steer to get there? More specifically, we want to learn
how to most effectively target assistance when we have a
variety of tasks that could be aided. For a user to receive as-
sistance, some of the questions associated with this include
what are the user’s goals, what are the user’s capabilities and
limitations, and what are the user’s needs. This view of the
preliminary questions suggests service as a model for this
endeavor. However, an exploration into service reveals how
little we know about its nature, its requirements and its ben-
efits.

Thus, we want an experimental testbed as much for study-
ing how to deliver service as for discovering the nature of
service and addressing these other questions. Toward this
end, we implemented MADEN, a simulated environment
that satisfies a set of requirements we analyzed as necessary
to study these questions.

Having assistants persist over extended time periods
raises a number of interesting questions. However, the re-

Copyright (© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

quirements for a testbed remain the same when those re-
quirements are selected with an eye toward service in the
first place. As long as the testbed does not preclude or mask
necessary characteristics, the burden is on the designer of the
agent to support things like trust, transparency, initiative and
perseverance. Although we intend to address these issues in
ongoing work, in this paper, we focus on the development of
an appropriate testbed.

We begin the paper by viewing assistance in the light of
competition and cooperation and then consider service as a
useful model for studying the delivery of assistance. Next,
we briefly consider previous work on providing service and
argue the need for a new model such as service. Then we
turn to our search for and development of a testbed that
would prove to be suitable for studying the questions related
to service. We conclude with a summary of preliminary re-
sults, some initial conclusions from our work to date, and
our plans for continuing work.

Service as a Model of Assistance

If we consider what is taking place when one provides as-
sistance, we discover several limitations of our traditional
models. It would seem clear that we are not looking at a
competitive situation. Certainly, an assistant may have self-
interests and legitimately pursue those interests in the course
of providing assistance. However, typical adversarial mod-
els where each agent seeks to maximize its own utility at the
expense or the interests of other agents do not yield immedi-
ate insights into the nature of assistance nor do they provide
guidance on how to deliver assistance.

A cooperative model of behavior would seem to be more
promising, but it also turns out to be problematic for our pur-
poses. Cooperative systems tend to have a global objective
(even if multi-valued) and all of the cooperating agents try to
optimize their behavior with respect to this objective. How-
ever, the ideal assistant attempts to achieve the objective of
the recipient of assistance, even at the expense of its own
interests. We could attempt to finesse this problem by giv-
ing the assistant the objective function of the agent receiving
help, but this would raise thorny questions of identity that we
would rather avoid.

Thus, we have a situation where an ideal assistant is not
trying to maximize its own ends at the expense of others,
nor merely trying to maximize some collective good, but is



willing to sacrifice its own ends for the benefit of another.
Although it may be possible to capture each situation by ap-
propriately weighting the objectives of respective agents, we
think there is value in approaching the problem of assistance
using service as the model.

We propose that service is a useful model for evaluating
and learning about assistance. First, service tends to em-
phasize a relationship between a servant and a recipient of
service. Second, thinking in terms of service focuses atten-
tion on the benefit accrued to the service recipient. Although
assistance is closely related, the focus tends to shift to the
actions of the service provider rather than those of the recip-
ient. Ultimately, we think that the service model will lead to
insights that guide the design and implementation of mech-
anisms that are truly beneficial to end users.

Previous Work on Assistants and Service

There is a long tradition within Artificial Intelligence fo-
cused on developing artificial assistants that provide help to
users. Significant work has taken place just in the area of
adaptive user interfaces (Langley, 1999; Webb, 1998). In
previous work, the first author explored several approaches
to modeling user behavior and adapting a system’s behavior
to exploit the predictive power of the learned models (Iba &
Gervasio, 1999; Gervasio, Iba & Langley, 1999).

While that work successfully demonstrated an ability to
correctly anticipate user actions and preferences, it was
never clear whether the end user was better off with the
adapted system than in the first place. Possibly more prob-
lematic still, it seems that the adaptive modeling components
were selected and developed opportunistically rather than
strategically. The intention was always to help the user, but
the effort overlooked the problem of identifying what action
would provide the most help.

Perhaps this oversight is not surprising. Computer sci-
entists are not typically trained as social scientists or psy-
chological counselors. But on further reflection, even social
scientists and psychologists do not seem to have a handle on
the problem. The most relevant work is found in Manage-
ment Science but focuses on quantifying the value of service
received (Heskett, Sasser & Schlesinger, 1997).

Having been trained as computer scientists, we approach
the study of service with a strategy of developing agents that
provide help and agents that need help and placing them in
a controllable environment. Working with humans as the re-
cipients of service provides the ultimate test. However, it
also introduces a number of problematic issues. First, ex-
periments must run at the speed of the human interaction.
Second, repeatable tests with alternative conditions of help
are impossible and the scientist must instead rely on large
groups of users. Finally, we might like to control the reac-
tions of a user to given offers of help in order to evaluate
the consequences of the recipient’s behavior; with humans,
this is again problematic. For all these reasons, we chose to
study artificial helper and recipient agents within a simulated
environment.

A Simulator for Studying Service
Background

In order to address our questions about assistants and the
nature of service, we needed a testbed. Although a number
of options were available, we started with the EDEN simu-
lator (Perkins, Paine & Chattoe, 1992). Initially developed
in Poplog in 1992, it was later reimplemented in a client-
server architecture using Java and Poplog where the simula-
tion and user interface was coded as a Java applet client that
connected to a Poplog server running the agent controller.
The environment consists of a series of problems where an
autonomous agent tries to locate and consume a bit of food
before running out of energy. The agent can sense its imme-
diate surroundings, move about, and pick up and use tools
found in the world. Obstacles include impenetrable walls,
doors that can be opened with keys, etc. Some of the sam-
ple worlds consist of problems involving a sequence of ob-
stacles and tool interdependencies that require sophisticated
reasoning skills to solve.

The originators of EDEN intended to stimulate the study
of embodied agents within a reasonably constrained world.
The primary goals were to by-pass low-level sensory and ef-
fector issues, while requiring the agent to interact with an
environment that was not directly under the agent’s control.
The EDEN environment managed the interaction between a
given agent and a simulated grid-world. In principle, the de-
sign of an agent was left to a researcher. Test-worlds of vary-
ing complexity were provided and new ones could be created
via configuration files. The simulator reported to the agent
its initial situation as specified in the configuration file. The
agent would attempt certain actions and the simulator would
resolve the consequences of those actions based on the state
of the world. For example, if the agent moved forward, the
simulator would track the changes to the agent’s location in
the world and would provide sensory information reflecting
the agent’s new position. However, if an obstacle was in the
way, the simulator would maintain the agent’s current posi-
tion and it would be the responsibility of the agent to note
that the action was unsuccessful.

Desirable characteristics

Since our goal is to explore the nature of service, we want
to identify the characteristics of testbeds that facilitate this
study. A suitable testbed should support tasks with vari-
able difficulty and resource constraints on problem solving.
Since we know that service takes place in the context of a
relationship, we also need to support multiple agents and
substantial interactions between them. We also expect some
type of reward, and additionally may want some type of cur-
rency for exchange between agents. Our testbed must also
be instrumented so that we can log and subsequently analyze
the behavior of our service providers under different experi-
mental conditions. We discuss each of these briefly.

A useful testbed must clearly support multiple tasks of
varying difficulty but the difficulty may be varied in a num-
ber of ways. A problem’s difficulty can be measured in solu-
tion length (either length of time or number of steps), solu-
tion path frequency (how many different solution paths there



are), and solution path specificity (the proportion of solution
paths to non-solution paths). We can manipulate these fac-
tors either by changing the layout of the artificial world or
by altering the availability of resources to the agents.

Perhaps the most important feature of the testbed for the
purpose of studying service is that it support relationships
between multiple agents. If one agent is to assist another, the
testbed must support interaction between agents and the en-
vironment as well as between two agents. Although agents
may require sophisticated internal models of their relation-
ships with other agents, in order to provide service the en-
vironment itself need only support some form of communi-
cation between agents. In bees, we have an example where
movement alone is sufficient for some communication, but
we expect a useful testbed to support the exchange of both
messages and objects. Then, capturing the complexities of
relationship is left up to the agent designer. Finally, we
would like to have the testbed support relationships between
agents whether they are artificial or human. In other words,
there should be an interface to the testbed’s environment that
can be meaningfully used by humans.

It should be no surprise that we expect our testbed to re-
ward agents when they complete a problem. However, we
also want to think of reward, or potential reward, in terms
of currency and allow agents to exchange this currency. The
purposes of such exchange could quite naturally involve fee-
for-service, but other exchanges could be supported as well.
Once again, the testbed need only support the exchange it-
self and need not be concerned with the modeling implica-
tions of different types of exchanges.

Another critical requirement of a testbed for studying ser-
vice (yet most frequently missing), is adequate instrumen-
tation. In order to evaluate what factors or behaviors led to
favorable or unfavorable outcomes for an agent seeking as-
sistance, we must be able to analyze in detail what the agent
and the helpers actually did. This requirement is especially
necessary if humans are interacting with artificial agents or
with other humans. In general, one should be able to com-
pletely reconstruct the situation at which point a particular
action was taken.

An extended simulator

The EDEN simulator does not support many of the desirable
characteristics for studying service. Thus, we implemented
MADEN (Multi-agent EDEN) by extending EDEN to sup-
port multiple agents, communication between agents, and
detailed logging capabilities. We started working from a ra-
tional reconstruction coded by Glenn Iba in 1994 and im-
plemented these extensions. More recently, we completed
a reimplementation of the simulation engine in Java with a
client/server model.

Enabling the MZADEN environment to handle multiple
agents was the most important, but also the most difficult
of the changes. The simulator had to provide individualized
sensory data to each of the agents, resolve the consequences
of attempted actions, and update the world state accordingly.
In our first version of MADEN, agents were part of the sim-
ulator process itself. The biggest disadvantage is that agent
control programs must be implemented in the same language

Figure 1: A screen shot of MZDEN’s display showing (on
the left) a triangular agent facing south surrounded by obsta-
cles and (on the right) the circular food also surrounded by
obstacles.

as the simulator — Common Lisp. However, we are cur-
rently reimplementing the system in Java with a client/server
architecture that separates the simulation engine from the
controller code and the two communicate with each other
through sockets. At this stage, agents may be written in any
language that supports a socket interface. Such agents may
be run on any networked machine that can reach an instance
of the Java simulation engine. This architecture is the op-
posite of the approach taken in EDEN II where the server
is controlling the (single) agent. Our design explicitly sup-
ports multiple agents connecting to the same world. Figure 1
shows a screen shot of a single agent in a sample test world.

Although primitive communication can take place
through mutual observation of behavior, we wanted to sup-
port a more detailed communication through message pass-
ing between agents. MADEN supports both speech acts and
auditory senses. Messages travel a limited distance and, if
heard, include coarse direction and distance information. An
agent may choose to speak or shout a message, influencing
the distance the message will carry. The content of speech
acts is left up to the agents and their designers.

The original EDEN simulator provided very little support
for evaluating an agent attempting to solve a world. The
only quantitative measure of success was the amount of en-
ergy used during a run. But even this had to be carefully
extracted since the initial energy level could vary from one
problem to the next and the simulator reported the remaining
level. Although energy is still a primary measure in M&-
DEN, we created an extensive logging facility that allows us
to return to a situation later and analyze what a given agent
was doing. From this, we hope to assess the eventual benefit
of agents’ actions. Naturally, it is even more helpful if logs
from the agents’ controller processes can be synchronized
with the simulation logs. However, even without such views
of agent reasoning, we can infer much from which actions
agents perform and what communication events take place.



We implemented a number of other minor extensions to
EDEN. Most notably, we added support for agents to ex-
change assets for service. In response to a request for as-
sistance, the simulator manages the transfer between helper
and the recipient. Although currency exchange can play an
important role in the delivery of service, having this capabil-
ity available to agents broadens MADEN’s usefulness to the
study of other models of interaction. That is, the exchange
of currency does not entail a particular model of multi-agent
interaction but rather supports a broader range of models
than without it. The other extensions, such as variable ac-
tion costs and bread-crumb markers among others, are de-
tailed in the MADEN documentation. We anticipate making
the simulator publicly available during the Spring of 2005
(see http://www.westmont.edu/"iba/maeden/).

Preliminary Experiments and Results
Setup and framework

Having implemented a first version of the MZADEN environ-
ment, we developed some simple agents and conducted sev-
eral experiments intended to demonstrate the potential of the
testbed. For these initial tests, we were mainly interested
in three dependent measures. The first, survivability, was
simply the number of problems that could be solved by a
main agent (the one receiving help) for any given condition
of assistance. The second measure was the amount of time
and energy consumed by the main agent in the course of a
problem attempt. And the third was the amount of currency
expended in obtaining assistance. We sometimes combine
these two into net-resource consumption. We think of the
value of the provided service in inverse relation to the net-
resources consumed.

We designed our initial agents as a configurable collection
of capabilities, such as wall-following, opening doors, build-
ing maps, etc. We did not choose this architecture because
we thought it was particularly ideal for building assistants
but simply because it allowed us to define a range of agent
types with varying capabilities using the same structure. So
far, our experiments have tested only the extremes of the
spectrum. Our main agent, the one needing assistance, has
the ability to move toward the food and ask for help when
needed; the default helper agent can perform all of the skills
and respond to requests for help.

In our framework, help takes the form of a request, an ex-
change of currency, and a set of activities by a helper agent.
If the helper is successful in finding the food, it returns and
guides the main agent to the food. Note, the support for cur-
rency exchange in the simulator and our use of it in simulat-
ing service does not entail a competitive model of interaction
(although such models or others may yield insights).

Test summaries

As a first demonstration of the testbed in use, we hypothe-
sized that an unskilled agent could receive beneficial assis-
tance when facing tasks that would otherwise be impossible.
When paired with a helper that had the necessary skills, we
expected the unskilled agent to successfully complete the
impossible tasks. Unsurprisingly, the results supported this

hypothesis in terms of both survivability and net-resource
consumption.

We also demonstrated that the value of assistance in-
creased when helpers dedicated more of their resources to
helping the main agent. In other words, as the cost of help
increased, the value to the main agent decreased. Again, this
is an unsurprising result that tells us nothing about service
(other than that our agents and testbed are functioning as one
would hope). However, in the context of these runs while
also varying the main agent’s strategy of asking for help, we
noticed an interaction between the main agent’s commitment
to requesting help and the overall benefits received. A con-
servative agent would sometimes solve a problem without
help just through random chance but more often miss out on
opportunities to receive help, whereas a liberal agent would
sometime pay for help it did not need but would accomplish
the tasks more frequently. This has an intuitive appeal to our
understanding of service and we think it may point to the
importance of the role played by the recipient of assistance
in service contexts. We intend to explore this more deeply
in future work.

In a related vein, we considered the relationship between
the task difficulty and the value of obtaining assistance. We
predicted that as tasks became more difficult, the value de-
rived from service would become more significant. As it
turns out, we were not able to support this prediction. In
fact, for the most difficult tasks, the value tends to decrease.
These results appear to arise because we have not combined
the measure of completing a task with the net-resource con-
sumption. Looking at the completion rate, we see that the
main agent is surviving the most difficult worlds when as-
sisted by a helper even though the value (as given by re-
source consumption) is going down. Further details on all
of these experiments may be found elsewhere (Iba & Bur-
well, in press).

Conclusions and Next Steps

We can conclude from our initial experiments with MADEN
that there is much to be learned about service and that arti-
ficial agents in a simulated environment can begin to shed
light on some of the relevant questions. Those questions in-
clude how can we measure the value of service and what fac-
tors influence its delivery. The few preliminary tests run so
far suggest a number of additional tests that we expect will
yield insight into the nature of service. Although these re-
sults are not specific to assistance being delivered over pro-
longed periods, we anticipate that the lessons learned will
inform such contexts.

As preliminary work, we have many tasks before us for
ongoing work. We are currently finishing the Java version of
MZAEDEN and anticipate a first release in the Spring of 2005.
Improvements on our initial study will include varying the
capabilities of the agents and helpers and implementing se-
lective help-acquisition schemes. Our agent design lends it-
self nicely to different subsets of skills and consequently to
different levels of expertise. We predict that the main agent,
even with more skills, can still receive benefit even from
helpers that are less skilled. We also intend to implement



alternative help-request schemes that vary the willingness to
ask for help and how much will be paid.

It seems obvious that helping users in settings over ex-
tended time periods demands adaptation to characteristics
of the user. We certainly intend to explore agent types that
can build models of each other. The implementation of M &-
DEN was a necessary precursor to that effort but we hope to
address it as the simulator stabilizes. And in that context we
hope to gain greater insight into the nature of service and to
formalize its elements.

References

Gervasio, M. T., Iba, W. & Langley, P. (1999). Learning
user evaluation functions for adaptive scheduling assistance.
In Proceedings of the Sixteenth International Conference on
Machine Learning (pp. 152-161). Bled, Slovenia: Morgan
Kaufmann.

Heskett, J. L., Sasser, W. E., & Schlesinger, L. A. (1997).
The Service Profit Chain: How leading companies link profit
and growth to loyalty, satisfaction, and value. The Free
Press: New York.

Iba, W. & Burwell, N. (in press). Studying service: An ex-
ploration of the costs and benefits of assistance. In Proceed-
ings of the 18th International FLAIRS Conference. Clear-
water, FL: AAAI Press.

Iba, W. & Gervasio, M. (1999). Adapting to user prefer-
ences in crisis response. In Proceedings of the International
Conference on Intelligent User Interfaces. Redondo Beach,
CA: ACM Press.

Langley, P. (1999). User Modeling in Adaptive Interfaces.
In Proceedings of the Seventh International Conference on
User Modeling, (357-370). Banff, Canada: SpringWien.

Perkins, S., Paine, J. & Chattoe, E. (1992). Eden:
Poplog-based AI Microworld. Areas:Testbeds:Eden, CMU-
Al Repository.

Webb, G. (1998). Special issue on machine learning for
user modeling. User Modeling and User-Adapted Interac-
tion, 8. Kluwer.

Acknowledgments

We gratefully acknowledge the support of Westmont’s
Provost, Shirley Mullen. A Westmont Faculty Develop-
ment grant to the first author supported the second author
and a second student assistant, Chris Phillips. We especially
thank Glenn Iba for the Common Lisp version of EDEN from
which we started, and Chris Phillips for his assistance with
implementing the MADEN simulator. We also thank Cailin
Andruss and Annie Evans for commenting on earlier drafts.
We appreciate the helpful suggestions and criticisms from
several anonymous reviewers; they identified a number of
ways to significantly improve the paper, but of course any
remaining problems are our own fault.



