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Abstract 
 
We discuss an approach in which engineers formally and 
iteratively construct information representations, called 
Perspectives, from information in other Perspectives using 
personal computational assistants, called Perspectors. 
Engineers can select from predefined, reusable, Perspectors, 
or program new Perspectors, and compose them into 
directed acyclic graph structures, called Narratives, to 
quickly and accurately construct useful dependent 
Perspectives. The approach also formalizes simple 
management processes with which professionals can control 
the integration of their Perspectives with respect to the 
Perspectives on which they depend. The result is an 
evolving, distributed, multi-disciplinary and integrated 
project model. We describe one conceptual Narrative that 
formalizes a multidisciplinary cost-benefit analysis to help 
designers choose amongst sustainable strategies. We 
describe one implemented Narrative that automatically 
generates a metal decking contractor’s connection details 
that are needed to connect concrete slabs that are described 
in an architect’s model and steel beams that are described in 
a steel detailers model. We discuss how these Narratives 
could have enabled engineers to better design, 
communicate, integrate, and automate their design processes 
than is possible on a recent state-of-the-art AEC projects. 
Narratives are intended to enable engineers from multiple 
disciplines to engage in novel, automated, and integrated 
design and analysis by easily yet formally constructing and 
integrating Perspectives from other Perspectives. 

Introduction 
Architecture, Engineering and Construction (AEC) projects 
are multidisciplinary, constructive, iterative, and unique 
processes.   On these projects, AEC professionals, such as 
architects, consultants, contractors, detailers, and 
fabricators use task-specific representations to design, plan, 
and execute a project.  These representations contain 
information that is ideally structured for their specific task, 
describing everything from existing conditions, to project 
requirements, to design options, to design analyses, to 
construction documentation, to fabrication, to installation 
and as-built information AEC Professionals often construct 
the information in these representations based on 
information in other engineers’ representations, Dependent 

representations often become source representations of 
other dependent representations: A network of 
dependencies between distributed, task-specific 
representations emerges as the design progresses. When 
source representations are modified, dependent 
representations often must be integrated.  
 
That is, AEC professionals develop what we call narratives 
for their own work and interweave them with narratives of 
other engineers. The Oxford English Dictionary defines a 
narrative as “An account of a series of events, facts, etc., 
…with the establishing of connections between them.” In 
AEC practice, narratives help professionals expose cross-
disciplinary impacts and integrate their work with the work 
of other project stakeholders; however, currently these 
narratives are not formally represented or managed. 
Surprisingly, the connections between different disciplines 
information, in this case the dependencies, are not 
generically represented but rather stored locally, or in the 
heads of the professionals.  
 
This way of constructing, organizing, and communicating 
project information is proving to be time-consuming, error-
prone, and expensive. AEC professionals would benefit 
from computational assistance in constructing and 
integrating their project specific engineering narratives. 
However, AEC projects are unique, formalizing the 
dependencies between their representations a priori has 
proven very difficult.  This paper describes the need for, 
and a proposed way toward, enabling AEC professionals to 
define their own formal MDA Narratives. These Narratives 
consist of a collection of design and analysis 
representations, “connected” by dependencies. 
 
We first describe industry test cases that illustrate the 
multidisciplinary, constructive, iterative, and unique 
character of AEC projects. The test cases show that these 
projects can be structured as MDA Narratives, that it is 
difficult today to predetermine the specific content of these 
narratives, and that therefore engineers could benefit from 
methods that enable them to more easily and formally 
construct and control their own project specific MDA 
Narratives.  We then review the knowledge base of the 
AEC profession with respect to representing and 



interrelating multidisciplinary project information and 
propose professionals need a simple, formal, generic, 
expressive collection of generic representation, reasoning, 
and management methods that enable AEC professionals to 
collaboratively construct and control MDA Narratives. 
These methods should be persistent, in order to control the 
integration of Narratives. We describe our ongoing efforts 
to implement such methods, examples of one implemented 
and one conceptual Narrative, and ongoing efforts to 
validate the benefits of Narratives with respect to how they 
enable AEC professionals to better communicate, integrate, 
and automate their MDA design processes. 

Test Cases: the narrative structure of AEC 
projects 

This section briefly describes two test cases that illustrate 
the implicit narrative structure of AEC projects, the 
difficulties professionals have executing these projects, and 
the benefits that could be derived by formalizing the 
narrative structure of these projects. 

Cost benefit analysis for skylights and atria 
On each project, Cradle-to-Cradle (C2C) designers like 
William McDonough Partners (WMP) study local and 
global conditions and work to define and exceed project 
specific economy, ecology, equity, and elegance goals. 
William McDonough says that C2C designers work toward 
these goals by asking and answering many questions 
(McDonough 2004). Yet in order to answer their questions, 
C2C designers often need to ask other related questions: an 
implicit narrative of interconnected questions (reasoning) 
and answers (representations) emerges as the project 
progresses. This test case describes a narrative of questions 
and answers that WMP raised regarding the costs and 
benefits of employing various design strategies such as an 
atrium and skylights.  
 
Figure 1 describes and diagrams the narrative of questions 
WMP and their consultants asked, the answers they 
constructed for these questions, and the information 
dependencies between these questions and answers. The 
lines are dashed because the dependencies, or connections, 
between representations were not formalized in the 
computer. 
 
WMP knows that atria and skylights can be effective ways 
to take advantage of natural light, reduce building energy 
consumption, and improve the quality of the work 
environment. However, both skylights and atria cost 
money, can cause uncomfortable glare conditions, and have 
constructability and maintenance issues; and atria generally 
result in a bigger building footprint. Therefore WMP 
wanted an answer to the question: What are the costs and 
benefits of skylights and an atrium on this project?  
 

This building was to house some of the client’s most valued 
and talented employees. Were the added daylight from the 
skylights and atrium to appreciably improve the 
productivity and reliability of their workforce, this would 
be a strong argument for including these features. WMP 
studied industry data that has measured the improved 
productivity and reliability of the workforce in similar 
environments, and constructed a reasonable estimate for the 
expected productivity gain and absenteeism improvement 
in a strategically day lit space compared to a more 
traditional, artificially illuminated space. As a business, 
they needed to weigh this expected productivity gain 
against the expected lifecycle cost of constructing and 
operating the building. To calculate this cost, they asked 
what the added construction cost and potential energy 
savings (due to the reduction in artificial light) would be. In 
order to answer these questions, they needed to ask how 
much natural light would enter the building should different 
combinations of skylights and atria be employed. In order 
to answer these questions, they needed to ask what a 
building with and without atria and skylight might look 
like. In order to answer these questions, they asked about 
the client’s requirements, the prevailing regulatory 
requirements, and the characteristics of the site.   
 
No diagram or other formal description of such a narrative 
existed for this project. WMP provided a series of 
Microsoft Word™ documents, containing over one 
hundred pages, in which they described the process they 
executed to determine the costs and benefits of the 
skylights and atrium. Because of the time and resource 
constraints, WMP was not able to fully explore this 
narrative. For example, they were unable to sufficiently 
explore many configurations of skylight and atria layout to 
determine the optimal layout for the energy, daylight, cost, 
and productivity criteria they determined were important. 
We believe the ability to formally represent this narrative in 
the computer would have enabled WMP to more 
effectively communicate their design logic to the owner 
and other project participants, more effectively integrate 
and automate their design representations for the 
exploration of more options, and achieve more optimal 
design solutions. 

Design and fabrication of deck attachments 
Figure 2 describes a portion of the design and construction 
of the Walt Disney Concert Hall’s steel and concrete frame. 
The lines are dashed because on this project the 
connections between representations were not formalized 
in the computer; the project engineers maintained them in 
an ad-hoc and manual manner. The architect (see Figure 
2A) constructed and integrated a Concrete Slabs 
representation describing the boundary of each concrete 
slab on the project. From this and other representations, the 
structural engineer (see Figure 2B) constructed a Framing 
Center Lines representation describing the centerline of 
each steel member required for the frame of the building. 
The steel detailer (see Figure 2C) constructed a Steel 



Framing representation describing the boundary of each 
steel member and its fasteners. The metal decking detailer 
(see Figure 2D) constructed a Deck Attachments 
representation describing where to install attachments to 
connect the metal decking for concrete floor slabs to the 
structural beams (see Figure 2F). The metal decking 
detailer constructed this representation by drawing a line 
along the edge of each beam where an attachment was 

required (see Figure 2G). The steel fabricator (see Figure 
2E) fabricated the beams, welding the required deck 
attachments to the respective beams in the shop. The design 
process was iterative. Changes in the design of the concrete 
slabs needed to propagate through the narrative, requiring 
modifications to the steel design and therefore to the deck 
attachment design. 
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Center 45 - 55 70 - 80 95 - 105 150 - 160 140 - 150 250 - 270
Near Perimeter 45 - 55 90 - 100 100 - 120 160 - 180 150 - 170 275 - 295

Estimated Likely Illuminance in FootCandles for Upper Level on Overcast Day
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Estimated Likely Illuminance in FootCandles for Lower Level on Overcast Day
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approx. 70% of lighting energy is 
saved in areas where daylighting
is employed.  In addition, electric 
lamp replacement and cooling 
loads are reduced. 
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Figure 1: A narrative of questions (reasoning) and answers (representations) that WMP used to understand the cost 
benefit of using an atrium and configuration. The arrows between answers and subsequent questions are shown as dashed 
because the dependencies are not formally represented in a computer. 

 
Fig. 2: A portion of the narrative the AEC professionals used to design and construct the Walt Disney Concert Hall. AEC 
professionals (humans shown in boxes) construct task-specific representations (shown as database barrels) from other 
representations. The arrows are shown as dotted, because the connections between these representations remained 
implicit; the engineers did not formalize them either in their documentation or in a computer model. 

 



Observations from test cases  
The test cases illustrate (Haymaker et al 2004a) that AEC 
projects are multidisciplinary: AEC professionals on these 
projects construct discipline-specific representations of the 
project to do their work. AEC projects are constructive: 
these professionals construct representations from 
information in other representations. AEC projects are 
iterative: When source representations are modified, 
dependent representations must be integrated. AEC 
projects are unique: Atria and deck attachments are an 
issue on some, but not all projects. Finally, as practiced 
today, AEC projects are error prone, time-consuming and 
difficult. 
In Haymaker et al 2004 a, we proposed that AEC 
professionals could have addressed many of these 
difficulties by formalizing their MDA Narratives. More 
specifically, we propose that MDA processes could be 
augmented by, if not founded on, simple formal, generic, 
expressive methods to construct information by formalizing 
its dependency on other disciplines’ information and by 
controlling the integration of this information as the project 
progresses. A formal MDA Narrative could emerge as AEC 
professionals iteratively apply and manage such methods. 

Formalization:  
In Haymaker et al 2004 b we proposed formalization for 
Narratives. Called the Perspective Approach this 
formalization enables AEC professionals to specify the 
sources, status and nature of the dependency of their 
representation, called a Perspective, on other Perspectives. 
· Sources: The source information on which dependent 

information depends.  
· Status: Integration status of the information with respect 

to its source information.  
· Nature: The reasoning method (automated or manual) 

that constructs the dependent information from source 
information. We call this reasoning method a Perspector. 

Figure 3: Formalizing the sources, nature, and status 
of the dependency of a dependent view on source 
views. 

 
Fig. 3 diagrams this formalization of the dependency of 
dependent information on source information(s). Fig. 4 
shows that a formal Narrative can emerge form the iterative 

application of this representation method. It also shows that 
the Perspectors are generic, and can therefore specify either 
human or automated, off-the-shelf or user defined 
reasoning. 
 
The Perspective Approach also formalizes Management 
Processes to help AEC professionals control the integration 
of these Narratives in which Perspectives are persistently 
notified when source Perspectives are modified. 
Perspectors can be persistently run, to reintegrate these 
Perspectives automatically, or, can wait for user requests to 
integrate. 

 
 
 
 
 
 
 
 

 

 

 

 

Figure 4: A Narrative emerges from the repeated 
application of the formalism described in A. 

POD: Approaches to building information 
modeling 

In this section we discuss related efforts in research and 
practice in the area of representing, reasoning about, and 
managing building information models. We first discuss 
efforts to formally represent building information. We then 
discuss efforts to develop reasoning algorithms to automate 
the construction and analysis of this information. Finally, 
we discuss efforts to integrate representation and reasoning 
into project model frameworks for AEC. We conclude that 
while the representation and reasoning work serves as 
excellent building blocks for Narratives, efforts to integrate 
AEC project information, which primarily relies on 
predefined, centralized project models, do not adequately 
address the multidisciplinary, constructive, iterative, and 
unique nature of AEC processes. 
Representation: Most AEC projects today rely on 
proprietary information formats, resulting in serious 
interoperability difficulties when multiple project 
stakeholders adopt different proprietary solutions. To 
address these difficulties, industry and government have 
initiated major efforts in the area of generic engineering 
data standards, including STEP (Standard for the Exchange 
of Product data (ISO, 1994)) and IFC (Industry Foundation 
Classes (IAI, 2004)). For example, the schema defined in 
IFC 2.X enables an engineer to represent Ifcbeam features 
and Ifcslab features. As currently formalized, these 
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standard representation languages do not contain an 
explicit mechanism for representing the existence, status, 
and nature of the dependencies between information from 
different disciplines.  
Reasoning: Computer programs that automatically 
construct useful task-specific dependent information from 
source information are increasingly used in practice today. 
AEC professionals are using programs for daylight analysis 
(Radiance 2004), energy analysis (DOE2 2004), structural 
analysis (SAP2000 2004), cost estimating (Timberline 
2004), and automated steel detailing (Tekla, 2004), among 
other uses. Considerable research is devoted to improve on 
and extend these suites of task-specific, automated design 
and analysis programs. We discuss many of these efforts in 
Haymaker et al 2004c. 
Other approaches to constructing task-specific 
representations of project information are more generic. 
Query languages (Date and Darwen 1993) enable the 
automatic selection or limited transformation of 
information in a model into a view. Feature Recognition 
(Dixon and Poli 1995) identifies instances of feature 
classes in a geometric model. Recent approaches in 
mechanical engineering (Lou et al 2003) investigate 
generic CAD query languages that enable engineers to 
query a model for geometric features. Generally, today 
there is a wealth of task-specific and generic reasoning 
tools, but what is needed is a general, simple framework to 
integrate these methods.  
Project Model Frameworks: To address this need, some 
(i.e., Eastman and Jeng 1999, Haymaker et al 2000, 
Autodesk 2003, Sacks et al 2004) develop reasoning and 
management that constructs and controls dependencies of 
information in a predefined central model. For example, 
Eastman and Jeng 1999 formalize a system, called EDM-2, 
in which applications construct task-specific views of a 
central model and write information back into the model. 
Other applications then reconstruct their task-specific view 
of this modified central model. Others (Khedro and 
Genesereth 1994, Sriram 2002, Bentley 2003) develop 
similar reasoning and management approaches that 
construct and control dependencies between information in 
a federation of predefined task-specific views. In both these 
central and federated model approaches, system 
programmers are generally required to define the nature of 
the dependencies.   
Parametric techniques (Shah and Mäntyla [35]) enable 
professionals to define sets of related numeric or symbolic 
equations that can be solved to realize feasible designs. 
Commercially available parametric modelers, such as 
CATIA, provide tools to assist engineers both in generating 
2D sketches from which 3D form features are 
parametrically generated and also in specifying the 
assembly of these form features parametrically with respect 
to the positions of other form features. Some systems 
employing parametric techniques are being commercially 
introduced specifically for the AEC industry, such as 
XSteel (Tekla 2003), Revit  (Autodesk 2003), Object 
Genome System (Onuma 2004), and Generative 

Components (Bentley 2004). While some successes are 
being reported within the context of single domains (Sacks 
2004), parametric techniques are not being widely used in 
the AEC industry to integrate the work of multiple 
disciplines. This is because, as currently formalized, these 
techniques have not adequately supported the 
multidisciplinary, constructive, iterative, and unique nature 
of AEC projects: They do not enable professionals to easily 
and formally construct new representations from 
information in other professionals’ representations, and 
control the integration of these representations as the 
project progresses. 
Project management systems, such as Primavera (2004), 
are task-focused representations of a project. They 
represent precedence dependencies among tasks and are 
used to calculate issues such as project duration. They do 
not contain an explicit representation of task-specific 
information, nor do they represent or manage the nature 
and status of the dependencies between this information. 
Current project modeling frameworks do not provide 
adequately simple, formal, generic, expressive methods that 
AEC professionals need to construct and control their 
MDA Narratives. Instead professionals are utilizing a 
hodgepodge of AEC systems that in many ways complicate 
the streamlining and integration of information and 
communication. 

ONGOING WORK: FORMALIZING AND 
IMPLEMENTING MDA NARRATIVES 

This section describes ongoing work in which we are 
gathering and formalizing test cases; building frameworks 
in which to implement the test cases, and validating 
Narratives in terms of their ability to improve 
communication, integration, and automation, and by 
extension, design. 

Gather and formalize test cases 
Figure 5 diagrams and describes a formal MDA Narrative 
for the cost-benefit analysis test case. The figure shows that 
any Perspector can itself be decomposed into a sub-
Narrative. Such decomposition aids the thought process 
when constructing a Narrative, and enhances the readability 
of a composite Narrative. 
 
Decomposition of Perspectors into sub-Narratives can 
conceptually extend to a very low level. In Haymaker et al 
2004b & c, we compose a sub-Narrative of geometric 
selection, reformulation and generation Perspectors that 
together automatically construct the Deck Attachments 
Perspective from the Concrete Slabs and Steel Framing 
Perspectives. See Figure 6. In these papers, we also show 
that these Perspectors can be reused in different Narratives, 
suggesting that a generic language of low-level Perspectors 
can be defined and reused, significantly reducing or 
eliminating the need to write computer code. 
 



  

 

Under floor HVAC System: 

•Maintains temperature at 
occupant level, reducing 
cooling load 20%. 

•Provides direct, superior 
ventilation, total economizer 
cycle

•Workers have complete 
control of their environments

Operable Windows: 

•Allows additional user 
control as well as possible 
“free cooling” from 
ventilation during much of 
the year.

•Total “churn” flexibility

Indoor Air Quality – Raised Floor

Simple Payback: 3.5 years 
(2.6 for Plenum)

Reduced Energy Loads: 
approx. 70% of lighting energy is 
saved in areas where daylighting
is employed.  In addition, electric 
lamp replacement and cooling 
loads are reduced. 

Increased Productivity: Worker 
productivity has increased 

Reduced absenteeism: 
Workers remain more alert, and 
are absent less, under natural 
lighting conditions.Simple Payback: 5.9 years

Daylighting

Provides High Thermal 
Resistance

Provides Acoustic Insulation: 
attenuates sounds transmission 
by up to 50 Db (nearby airport)

Increases Roof Life 
Expectancy: roof membrane is 
protected from mechanical 
puncture, temperature 
extremes and UV degradation

Saves Energy: cooling effect 
of roof assembly lowers the 
cost of heating and cooling the 
building

Creates Habitat:  native plant 
nursery

Simple Payback: 8.8 years

Green Roof

Typical base-building cost: $100/sf
Area per person (MIS): approx. 200 sf

CapEx/person: $20,000

Green cost premium: 10% or $2,000
“Cost of green”: +/- $400 year/person

Annual employee cost: $100,000

Value of 1% productivity increase:
$1,000/person/yr

1% of workday: 5 min.
CapEx payback: 1,000/400 = 2 ½ min.

1 day absentee: $50/hr. x 8 = $400

Reduce Contingent Liability -esp. IAQ

Depending on program, available data show 
productivity gains of 4 -16%, particularly in the 
MIS and clerical sectors.

Value Proposition – Senior Executive Perspective
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A Narrative that starts with representations of the site, the 
client’s requirements, and regulatory requirements, and first 
designs building layouts with and without atrium. The Narrative 
then elaborates on these initial layouts to generate different 
alternatives, including designs with and without skylights, a 
grass roof, and a raised floor. The Narrative then analyzes and 
compares the atrium, skylight, grass roof, and raised floor 
alternatives with respect to the more traditional strategies, 
formalizes the costs and benefits of each of these strategies, 
and finally develops a summary of the cost and benefits of 
each strategy.

A sub-Narrative that analyzes the addition of skylights 
and atrium in terms of several criteria, including 
daylight, energy consumption, structural stability, 
constructability, and first and lifecycle costs, and that 
compares the results of these analyses.

A sub-Narrative that analyzes the 
addition of skylights and atrium in 
terms of daylight and compares 
the results of these analyses in 
terms of light contribution, 
distribution, and adequacy.

 
Figure 5: A conceptual Narrative to formalize a cost-benefit analysis 



Find Deck Attachments Perspector

The Find Deck Attachments Perspector analyzes the Slabs 
Perspective (produced by the Architect) and the Steel Framing 
Perspective (produced by the Steel Detailer) to automatically 
construct the Deck Attachments Perspective. The Find Deck 
Attachments Perspector also relates each deck attachment with 
their associated slab and beams. This Perspector can be 
decomposed into a sub Narrative that reformulates slabs and 
beams then performs geometrical analyses and generates deck 
attachments where they are required. A rendering of a typical 
feature is shown under each representation.  

Figure 6: Applying Narratives to the Deck Attachment test case.  

A  B  
Figure 7: Implementations of a Narrator that enables engineers to quickly connect reasoning and representations into 
MDA Narratives. A. Our initial software, which implemented the deck attachment test case. B. A future implementation 
of the Narrator mocked-up for the I-Room. In this scenario, the team is iteratively modifying a design of the building (the 
left screen) as they work to achieve their project goals (right screen). The Narrative is on the center screen.

Design and Build a Framework:  
Figure 7A shows an initial framework, described in 
Haymaker et al 2004b in which AEC professionals can 
quickly construct and relate representation and reasoning 
into MDA Narratives. The current implementation runs on 
a single machine and handles only geometric 
representations and reasoning. We are currently working 
to construct a new implementation, called the Narrator 
that addresses these limitations. Specifically, the Narrator 
will be deployed in an I-Room setting, and enable 
distributed and arbitrary representation and reasoning. See 
Figure 7B. 

Validation:   
Enabling project teams to define, communicate, integrate, 
and automate their design processes better than current 
methods allow. As illustrated in Figures 5 and 6, we find 
the Narrative diagrams to be effective ways to define and 
communicate a design process. Future work will use the 
DEEPAND system (Garcia et al 2003) developed for 
measuring meeting effectiveness. This approach measures 
the time spent in a meeting Describing, Explaining, 
Evaluating, Predicting, Analyzing, Negotiating, and 
Deciding. The main hypothesis for measuring meetings in 
this way is that certain activities (i.e., Describing, 



Explaining) are less value adding than others, (i.e., 
Predicting, Analyzing).  
 
The deck attachment case provides evidence that it is 
possible to better control the integration of information 
from multiple disciplines than was possible on a state-of-
the-art-project (Haymaker et al 2004 b & c). Future work 
will measure the latency from the time a change occurs in 
a source representation; to the time the corresponding 
dependent representations are integrated. In Haymaker et 
al 2004 c we showed that we were able to effectively 
automate the design of 84 of the 86 deck attachments that 
were required, but were field welded, in an area of the 
WDCH project. Future work will measure the number of 
design alternatives explored, the amount of time required 
per alternative, and the accuracy and completeness of 
automated representations compared to current practice. 

CONCLUSION: A POWERFUL AND 
GENERAL MODEL FOR MDA  

AEC professionals need a simple, formal, expressive, 
generic set of methods to help them communicate, 
integrate, and automate their design processes; they must 
be flexible enough to evolve with practice, yet powerful 
enough to provide them with the information they need. 
We propose that Narratives can provide this power and 
flexibility. With adequate adoption and support, 
Narratives could transform the way the AEC industry 
practices design and construction. We seek methods that 
will enable AEC professionals to weave together 
Narratives that quickly, accurately, and where desired 
persistently, communicate, integrate, and automate their 
MDA processes. 
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