
For Problems Sufficiently Hard . . . AI Needs CogSci

Selmer Bringsjord & Micah Clark
Department of Cognitive Science
Department of Computer Science

Rensselaer AI & Reasoning (RAIR) Lab:
http://www.cogsci.rpi.edu/research/rair/index.php

Troy NY 12180 USA
selmer@rpi.edu • clarkm5@rpi.edu

http://www.rpi.edu/∼brings

The View Sketched

Is cognitive science relevant to AI problems? Yes — but
only when these problems are sufficiently hard. When
they qualify as such, the best move for the clever AI
researcher is to turn not to yet another faster machine
bestowed by Moore’s Law, and not to some souped-up
version of an instrument in the AI toolbox, but rather
to the human mind’s approach to the problem in ques-
tion. Despite Turing’s (Turing 1950) prediction, made
over half a century ago, that by now his test (the Tur-
ing test, of course) would be passed by machines, the
best conversational computer can’t out-debate a sharp
toddler. The mind is still the most powerful thinking
thing in the known universe; a brute fact, this.

But what’s a “sufficiently hard” problem?
Well, one possibility is that it’s a problem in a set of

those which are Turing-solvable, but which takes a lot
of time to solve. As you know, this set can be analyzed
into various subsets; complexity theorists do that for
us. Some of these subsets contain only problems that
most would say are very hard. For example, most would
say that an NP-complete problem is very hard. But is
it sufficiently hard, in our sense? No. Let P be such
a problem, a decision problem for F associated with
some finite alphabet A, say. We have an algorithm A
that solves P .1 And odds are, A doesn’t correspond
to human cognition. The best way to proceed in an
attempt to get a computer to decide particular members
of A? is to rely on computational horsepower, and some
form of pruning to allow decisions to be returned in
relatively short order.

What we have just described structurally, maps with
surprising accuracy onto what was done in AI specifi-
cally for the problem of chess. In his famous “20 Ques-
tions” paper, written in the very early days of AI and
CogSci (and arguably at the very dawn of a sub-field
very relevant, for reasons touched upon later, to is-
sues dealt with herein: computational cognitive model-
ing and cognitive architectures), Newell (Newell 1973)
suggested that perhaps the nature of human cognition
could be revealed by building a machine able to play
good chess. But Deep Blue was assuredly not what
Newell had in mind. Deep Blue was an experiment
in harnessing horsepower to muscle through a Turing-

1I.e., for every u ∈ A?, A(u) = Y es iff Fu (F is true of
u), and A returns No when not Fu.

solvable, but time-consuming, problem. Kasparov lost
because he earns his livelihood playing a game that,
from the standpoint of the affirmative answer defended
in this brief paper, is too easy (as one of us has argued
elsewhere: (Bringsjord 1998)).

Things change when you move to Turing-unsolvable
problems. Now of course if you agreed that some hu-
mans can solve such a problem, you would have to agree
as well that computationalism, the view (put roughly)
that human minds are bio-incarnated computing ma-
chines at or below the Turing Limit, is false.2 We sus-
pect that many of our readers will be averse to such
agreement, and in the present debate that’s fine. It’s
fine because our claim is that if AI researchers want to
try to get standard computing machines to solve meaty
particular problems from a Turing-unsolvable class of
problems,3 they need to turn for help to human cogni-
tion. Obviously, one can affirm computationalism while
still maintaining that humans have the capacity to solve
particular problems from a Turing-unsolvable class. For
example, while it may not be true that humans can
solve the halting problem, it’s undeniable that, for some
particular Turing machines of considerable complexity,
ingenious, diligent humans can ascertain whether or not
they halt.

Now, we must confess that, at least as of now, we
don’t have a deductive argument for the view that AI
must turn to human cognition in order to produce a
machine capable of solving particular problems from a
set of Turing-unsolvable ones. What we do have is some
empirical evidence, connected to specific challenges of
the sort in question. That is, we can explain the chal-
lenges, and show that AI of a sort that explicitly turns
for guidance to the human case is more successful than
cognitive-science-ignoring variety in surmounting these
challenges. We will briefly mention three such chal-
lenges here: one that researchers have explored in the
Rensselaer AI & Reasoning (RAIR) Lab with indis-
pensable help from many others (esp. Owen Kellett),
and with support from the National Science Founda-
tion; another that has in significant part catalyzed a
major advance in computational logic; and thirdly, the

2For a recent clarification of what computationalism
amounts to, and an argument that the doctrine is false, see
(Bringsjord & Arkoudas 2004).

3We include as well problems that appear to be Turing-
unsolvable.

http://www.cogsci.rpi.edu
http://wwww.cs.rpi.edu
http://www.cogsci.rpi.edu/research/rair/index.php
http://www.rpi.edu/~brings

challenge of getting a machine to learn in a special man-
ner associated, in the human sphere, with learning by
reading.

Challenge #1: Busy Beaver
The first challenge is produced by the attempt to
“solve” Rado’s (Rado 1963) Σ problem (or the “busy
beaver” problem).4 The Σ function is a mapping from
N to N such that: Σ(n) is the largest number of con-
tiguous 1’s an n-state Turing machine with alphabet {0,
1} can write on its initially blank tape, just before halt-
ing with its read/write head on the leftmost 1, where a
sequence

m times︷ ︸︸ ︷
11 . . . 11

is regarded simply as m.5 Rado (Rado 1963) proved
this function to be Turing-uncomputable long ago; a
nice contemporary version of the proof (which is by the
way not based diagonalization, the customary technique
used in the proof of the halting problem) is given in
(Boolos & Jeffrey 1989). Nonetheless, the busy beaver
problem is the challenge of determining Σ(n) for ever
larger values of n.6

How would one go about trying to get a computer to
determine Σ(n), for, say, 6? Well, no matter what you
do, you will run smack into a nasty problem: the prob-
lem of holdouts, as they are called. Holdouts are Turing
machines which, when simulated (starting, of course, on
an empty tape) continue to run, and run, and run . . .
and you’re not sure if they’re going to stop or not.7 So
what to do? Well, smart humans develop ingenious vi-
sual representation and reasoning to figure out whether
holdouts will terminate. Some of these representations,
and the reasoning over them, are remarkable.

As a case in point, let us examine one of these rep-
resentations: so-called “Christmas Trees,” discussed in
(Brady 1983; Machlin & Stout 1990). For purposes of
this discussion, consider the following notation used to
represent the contents of a tape:

0∗[U][X][X][X][Vs]0∗.

Here 0∗ denotes an infinite sequence of 0’s that caps
each end of the tape. Additionally, [U], [X], and [V]
represent some arbitrary sequence of characters on the
tape while the subscripted s indicates that the machine
is in state s with its read/write head at the leftmost
character of the [V] character sequence.

With this in mind, we can describe the Christmas
Tree pattern in the context of the transformations that

4For information, go to

• http://www.cs.rpi.edu/ kelleo/busybeaver

5As we explain below, there are a number of variations
on the exact format for the function. E.g., one can drop the
conditions that the output 1’s be contiguous.

6Because the formal specification of a Turing machine
varies (e.g., between the quadruple and quintuple for-
malisms), the problem isn’t fully defined until the specifica-
tion is selected. But we can leave this aside in the present
white paper.

7Yes, the Σ problem is related to the halting problem.

 1111111110 State 2
 1111111110 State 3
 1111111110 State 0
 1111111010 State 3
 1111111010 State 3
 1111111010 State 0
 1111101010 State 3
 1111101010 State 3
 1111101010 State 0
 1110101010 State 3
 1110101010 State 3
 1110101010 State 0
 1010101010 State 3
 1010101010 State 3
01010101010 State 0
11010101010 State 1
11010101010 State 2
11010101010 State 0
11110101010 State 1
11110101010 State 2
11110101010 State 0
11111101010 State 1
11111101010 State 2
11111101010 State 0
11111111010 State 1
11111111010 State 2
11111111010 State 0
11111111110 State 1
11111111110 State 2
11111111110 State 0
11111111111 State 1
111111111110 State 2

= 0*[U][X][X][X][Vs]0*

= 0*[U][X][X][Xq][V’]0*

= 0*[U][X][Xq][Y][V’]0*

= 0*[U][Xq][Y][Y][V’]0*

= 0*[Uq][Y][Y][Y][V’]0*

= 0*[U’][rY][Y][Y][V’]0*

= 0*[U’][Z][rY][Y][V’]0*

= 0*[U’][Z][Z][rY][V’]0*

= 0*[U’][Z][Z][Z][rV’]0*

= 0*[U’][Z][Z][Z][V’’s]0*

Figure 1: Christmas Tree Execution

it makes on the tape. Machines exhibiting this behavior
are classified as non-halters due to a repeatable back
and forth sweeping motion which they exhibit on the
tape. Observably, the pattern of the most basic form
of Christmas Trees is quite easy to recognize. The ma-
chine establishes two end components on the tape and
one middle component. As the read/write head sweeps
back and forth across the tape, additional copies of
the middle component are inserted, while maintaining
the integrity of the end components at the end of each
sweep.

Figure 1 displays a partial execution of a 4-state
Christmas Tree machine which is representative of one
sweep back and forth across the tape. As can be seen,
at the beginning of this execution, the machine has es-
tablished three middle or [X] components capped by
the [U] and [V] end components on each side. As the
read/write head sweeps back and forth across the tape,
it methodically converts the [X] components into [Y]
components and then into [Z] components on the return
sweep. At the completion of the sweep, the tape is left
in the state: 0∗[U ′][Z][Z][Z][V ′′

s]0∗ which can be shown
to be equivalent to 0∗[U][X][X][X][X][Vs]0∗. Thus each
successive sweep across the tape performs similar trans-
formations, adding an additional [X] component in an
infinite pattern.

In any attempt to engineer a standard computer to
solve ever greater Σ(n), it seems necessary to model
human visual reasoning. We will report on our latest
attempt to model such reasoning, in a system known as
Vivid.8

8See

http://kryten.mm.rpi.edu/vivid 120405.pdf

http://www.cs.rpi.edu/~kelleo/busybeaver
http://kryten.mm.rpi.edu/vivid_120405.pdf

Challenge #2: Provability
Our second challenge is another sort of unsolvable prob-
lem. Let Φ be an arbitrary set of first-order formulas,
and let φ be a particular arbitrary formula of this kind.
Then, as is well-known, there is no algorithm that can
decide whether

Φ ` φ,

that is, whether φ can be deduced from Φ. So what do
you do when you nonetheless have to answer this ques-
tion for particular meaty instances of it? By ‘meaty’
here we mean questions of this type that the best au-
tomated theorem provers (such as Vampire: (Voronkov
1995)) completely choke on. The only option is to turn
to human ingenuity, and use an interactive theorem
prover that allows for contributions made by the hu-
man mind to be part of the proofs or disproofs. (In
the longer run, the human contributions would perhaps
be formalized and fully automated.) Arguably the best
such system is Athena,9 a DPL (denotational proof lan-
guage) (Arkoudas 2000) responsive to the way humans
reason, not simply based on what is perceived to be
most convenient for a computer (e.g., resolution). We
will provide specific examples at the symposium, and
will demonstrate for those interested. Here, we give
only a very simple example of a proof in NDL, a type-α
DPL.10 The example is a proof in NDL of one of the
simple theorems proved in 1956 by Logic Theorist:

// Logic Theorist’s claim to fame (reductio):

//

// (A ==> B) ==> (~B ==> ~A)

Relations A:0, B:0.

assume A ==> B

begin

assume ~B

begin

suppose-absurd A

begin

modus-ponens A ==> B, A;

absurd B, ~B

end

end

end

Readers might want to consider the corresponding proof
carried out by resolution, a form of reasoning popular
in automated theorem proving, but so far incapable of
producing proofs that can be compared with what ex-
pert humans produce. Notice that in the NDL proof,
there is a block structure that corresponds to the way
humans express proofs. At the symposium, we will dis-
cuss human-structured proofs of more difficult theorems
— theorems apparently beyond the reach of ordinary
Turing machine operating in ways not guided by the
human case.

9Available, with full description, at

http://www.cag.csail.mit.edu/ kostas/dpls/athena

10NDL is used for teaching formal logic at RPI, and is
available from the course web site there:

http://www.cogsci.rpi.edu/courses/intrologic/materials.php

Challenge #3: Learning by Reading

One of the odd things about AI is that what is called
learning in it isn’t really what most people associate
with the term. For the most part, you and I have been
engaged in learning from our earliest days because we
have been reading. But if you examine a standard AI
textbook top to bottom in search of learning by reading,
you will come up empty. Instead, you will find that
learning means something exceedingly narrow (usually
learning a mundane function through multiple trials).

The best current explanation in cognitive science of
the difference between those in an academic setting who
truly learn by reading, versus those who don’t, is that
those who do are self-reflective in a way that evidently
facilitates their correctly answering and defending ques-
tions given on tests (Chi et al. 1994). This explanation
is strikingly consonant with the specific new type of
machine learning that distinguishes our approach. We
refer to this type of learning as poised-for learning, or
just p.f. learning. The system under construction that
learns in this fashion is PFL.

At the heart of p.f. learning is the idea that if a ma-
chine is to have truly learned about (say) algebra and
related matters by assimilating a book (or part of one)
on the subject, then when we examine the “brain” of
this machine (its knowledge and methods it possesses
for processing that knowledge), we will be able to find
what we call “poised-for” knowledge, or just p.f. knowl-
edge. And, accordingly, we may say that the machine
has p.f. learned. The basic idea is that: p.f. knowl-
edge is knowledge poised for the semantically correct
generation of output that would provide overwhelming
psychometric evidence that deep and durable learning
has taken place. In turn, and derivatively, we say that
p.f. learning has taken place if the system in question
has developed the p.f. knowledge sufficient to enable
the generation of output (selecting/writing the correct
answer) that provides this kind of evidence.

Additional details on the DARPA-sponsored PFL
system will be provided at the symposium. A key as-
pect of our work is to resrict our attention to English
as expressed in what we call logically controlled lan-
guages (LCLs); we will discuss them at the sympo-
sium.11

The Cognitive Architecture Connection

Finally, alert readers will be waiting for us to explain
why we said, in an earlier parenthetical, that cogni-
tive architectures are relevant to the issues at hand.
That explanation, at least in broad strokes, is easy
to state. Cognitive architectures are relevant because
they mark a key nexus between AI and CogSci: they

11One LCL in use is Attempto Controlled English (ACE)
(Hoefler 2004). The home page for ACE is

http://www.ifi.unizh.ch/attempto

Another LCL we are exploring is CLCE, information about
which is available at

http://www.jfsowa.com/clce/specs.htm

http://www.cag.csail.mit.edu/~kostas/dpls/athena
http://www.cogsci.rpi.edu/courses/intrologic/materials.php
http://www.ifi.unizh.ch/attempto
http://www.jfsowa.com/clce/specs.htm

are attempts to engineer intelligent behavior by mech-
anizing cognition, human cognition. This suggests an
interesting line of investigation: viz., attempt to use
a cognitive architecture to tackle the kinds of “suffi-
ciently hard” challenges we are pointing to. To our
knowledge, this investigation hasn’t been pursued (it
has certainly been quietly pursued if it has been). Per-
haps it should be. Accordingly, we will report on
attempts to get cognitive architectures to solve some
of the microcosmic challenges alluded to above. The
specific cognitive architecture that we will focus on
is a new one: RASCALS (Bringsjord et al. 2005;
Bringsjord forthcoming).

Acknowledgments
We are indebted to Owen Kellett for work on the busy
beaver problem, to Kostantine Arkoudas for his NDL
and Athena systems on which we build, to Bettina Schi-
manski, Gabe Mulley, Eric Pratt, Andrew Shilliday,
and Joshua Taylor for work on p.f. learning, and to
NSF and DARPA for support of some of the research
described herein.

References
[Arkoudas 2000] Arkoudas, K. 2000. Denotational Proof
Languages. PhD dissertation, MIT.

[Boolos & Jeffrey 1989] Boolos, G. S., and Jeffrey, R. C.
1989. Computability and Logic. Cambridge, UK: Cam-
bridge University Press.

[Brady 1983] Brady, A. 1983. The determination of the
value of rado’s noncomputable function Σ(k) for four-
state turing machines. Mathematics of Computation
40(162):647–665.

[Bringsjord & Arkoudas 2004] Bringsjord, S., and Ark-
oudas, K. 2004. The modal argument for hypercomputing
minds. Theoretical Computer Science 317:167–190.

[Bringsjord et al. 2005] Bringsjord, S.; Khemlani, S.; Ark-
oudas, K.; McEvoy, C.; Destefano, M.; and Daigle, M.
2005. Advanced synthetic characters, evil, and E. In Al-
Akaidi, M., and Rhalibi, A. E., eds., Game-On 2005, 6th
International Conference on Intelligent Games and Simu-
lation. Ghent-Zwijnaarde, Belgium: European Simulation
Society. 31–39.

[Bringsjord 1998] Bringsjord, S. 1998. Chess is too easy.
Technology Review 101(2):23–28.

[Bringsjord forthcoming] Bringsjord, S. forthcoming. The
RASCALS cognitive architecture: Logic, top to bottom, to
the rescue. In Sun, R., ed., The Handbook of Computational
Cognitive Modeling. Cambridge University Press.

[Chi et al. 1994] Chi, M.; Leeuw, N.; Chiu, M.; and La-
vancher, C. 1994. Eliciting self-explanations improves un-
derstanding. Cognitive Science 18:439–477.

[Hoefler 2004] Hoefler, S. 2004. The syntax of attempto
controlled english: An abstract grammar for ace 4.0. Tech-
nical Report ifi-2004.03, Department of Informatics, Uni-
versity of Zurich, Zurich, Switzerland.

[Machlin & Stout 1990] Machlin, R., and Stout, Q. 1990.
The complex behavior of simple machines. Physica D
42:85–98.

[Newell 1973] Newell, A. 1973. You can’t play 20 questions
with nature and win: Projective comments on the papers
of this symposium. In Chase, W., ed., Visual Information
Processing. New York: Academic Press. 283–308.

[Rado 1963] Rado, T. 1963. On non-computable functions.
Bell System Technical Journal 41:877–884.

[Turing 1950] Turing, A. 1950. Computing machinery and
intelligence. Mind LIX (59)(236):433–460.

[Voronkov 1995] Voronkov, A. 1995. The anatomy of vam-
pire: Implementing bottom-up procedures with code trees.
Journal of Automated Reasoning 15(2).

	The View Sketched
	Challenge #1: Busy Beaver
	Challenge #2: Provability
	Challenge #3: Learning by Reading
	The Cognitive Architecture Connection
	Acknowledgments

